A Survey on DQBF: Formulas, Applications, Solving Approaches

Gergely Kovásznai

loT Research Center, Eszterhazy Karoly University of Applied Sciences, Eger, Hungary kovasznai.gergely@iot.uni-eger.hu

> QUANTIFY 2015 August 3, 2015 Berlin, Germany

The IF logic

1996: Jaakko Hintikka – Independence Friendly (IF) Logic

• in his book [Jaakko Hintikka. *The Principles of Mathematics Revisited*. 1996.]

Logicians were questioning if IF logic was a logic at all.

• [Janssen. Independent Choices and the Interpretation of IF Logic. JLLI, 2002.]

Strange properties of the IF logic:

- ϕ , $\phi \land \phi$, and $\phi \lor \phi$ are <u>not</u> equivalent
- Bound variables cannot be renamed
- [Feferman. *What Kind of Logic is "Independence Friendly" Logic?*. Library of Living Philosophers, 2006.]
 - Is IF logic a logic at all?

The IF logic

1996: Jaakko Hintikka – Independence Friendly (IF) Logic

• in his book [Jaakko Hintikka. *The Principles of Mathematics Revisited*. 1996.]

Logicians were questioning if IF logic was a logic at all.

• [Janssen. Independent Choices and the Interpretation of IF Logic. JLLI, 2002.]

Strange properties of the IF logic:

- ϕ , $\phi \land \phi$, and $\phi \lor \phi$ are <u>not</u> equivalent
- Bound variables cannot be renamed
- [Feferman. What Kind of Logic is "Independence Friendly" Logic?. Library of Living Philosophers, 2006.]
 - Is IF logic a logic at all?

Henkin quantifiers

In the IF logic and in DQBF *Henkin (or branching) quantifiers* are used to express the "independence" of variables from each other.

In terms of Skolem functions:

 $\phi\bigl(x,e(x),y,f(y)\bigr)$

In IF logic: ϕ is a 1st-order formula

In DQBF: ϕ is a Boolean formula

Fundamental application: partial-information (or imperfect-information) games

Henkin quantifiers

In the IF logic and in DQBF *Henkin (or branching) quantifiers* are used to express the "independence" of variables from each other.

In terms of Skolem functions:

 $\phi\bigl(x,e(x),y,f(y)\bigr)$

In IF logic: ϕ is a 1st-order formula

In DQBF: ϕ is a Boolean formula

Fundamental application: partial-information (or imperfect-information) games

Henkin quantifiers

In the IF logic and in DQBF *Henkin (or branching) quantifiers* are used to express the "independence" of variables from each other.

In terms of Skolem functions:

 $\phi\bigl(x,e(x),y,f(y)\bigr)$

In IF logic: ϕ is a 1st-order formula

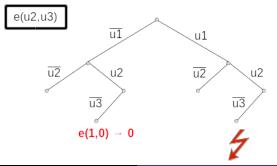
In DQBF: ϕ is a Boolean formula

Fundamental application: partial-information (or imperfect-information) games [Peterson, Reif. *Multiple-person alternation*. Foundations of Computer Science, 1979.]

• DQBF = Dependency Quantified Boolean Formulas

 $\forall u_1, u_2, u_3 \exists e(\mathbf{u_1}, \mathbf{u_3}), f(\mathbf{u_2}) . (u_2 \lor \overline{u}_3 \lor e) \land (u_1 \lor \overline{u}_2 \lor \overline{e} \lor f)$

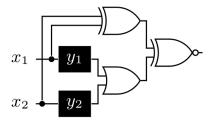
- $\bullet~\mbox{Generalization}$ of $\rm QBF$
- Variable dependencies can be explicitly given
- Higher complexity:
 - QBF PSPACE-complete
 - DQBF NExpTime-complete


1st solving approach – DQDPLL

[Fröhlich, Kovásznai, Biere. A DPLL Algorithm for Solving DQBF. POS, 2012.]

Main motivation: quantifier-free bit-vector formulas ($\rm QF_BV)$ has the same complexity as $\rm DQBF.$

Adaptation of QDPLL from QBF to DQBF: e.g., unit propagation, clause learning, universal reduction, watched literals, etc.

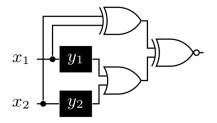

Implemented, but slow. Why?

1st "killer" application

[Gitina, Reimer, Sauer, Wimmer, Scholl, Becker. *Equivalence checking of partial designs using dependency quantified Boolean formulae*. ICCD, 2013.]

"Killer" app: partial equivalence checking (PEC) of circuits

source: [Finkbeiner, Tentrup. 2014.]


Expansion-based solver:

- \bullet expands DQBF to QBF (or even to SAT)
- not publicly available

1st "killer" application

[Gitina, Reimer, Sauer, Wimmer, Scholl, Becker. *Equivalence checking of partial designs using dependency quantified Boolean formulae*. ICCD, 2013.]

"Killer" app: partial equivalence checking (PEC) of circuits

source: [Finkbeiner, Tentrup. 2014.]

Expansion-based solver:

- \bullet expands DQBF to QBF (or even to $\mathrm{SAT})$
- not publicly available

[Finkbeiner, Tentrup. Fast DQBF Refutation. SAT, 2014.] Similar to BMC. Given a bound $k \ge 1$,

- Use k copies of all variables and the matrix
- Ackermann constraints as a guard:

$$consistent(e,k) := \bigwedge_{1 \le i,j \le k} \Big(\bigwedge_{u \in deps_e} u^i = u^j \Rightarrow e^i = e^j \Big)$$

 $\bullet~{\sf Solve}$ the ${\rm QBF}$

$$\exists u_1^1, \dots, u_m^k \; \forall e_1^1, \dots, e_n^k \; .$$

consistent(e₁, k) $\land \dots \land$ consistent(e_n, k) $\Rightarrow \bigvee_{1 \le i \le k} \neg \phi^k$

In practice, it can solve only <u>UNSAT</u> problems.

1st publicly available "complete" solver – IDQ

[Fröhlich, Kovásznai, Biere. IDQ: Instantiation-Based DQBF Solving. POS, 2014.]

Adapts and extends the *Inst-Gen* approach to DQBF.

Inst-Gen:

- $\bullet\,$ The solving approach for ${\rm EPR}$ logic
 - The $\exists^* \forall^* . \phi$ fragment of 1st-order logic
 - $\bullet\,$ Has the same complexity as DQBF
- \bullet The core of iProver, the most successful $\mathrm{EPR}\xspace$ -solver
- A CEGAR loop generates clause instances by unification

Adaptations: e.g.

- Takes advantage of Boolean domain: uses bit-masks to represents clause instances
- Bit-mask operations for unification, new instances, redundancy check
- VSIDS heuristics

1st publicly available "complete" solver – IDQ

[Fröhlich, Kovásznai, Biere. IDQ: Instantiation-Based DQBF Solving. POS, 2014.]

Adapts and extends the *Inst-Gen* approach to DQBF.

Inst-Gen:

- $\bullet\,$ The solving approach for ${\rm EPR}$ logic
 - The $\exists^* \forall^*. \phi$ fragment of 1st-order logic
 - $\bullet\,$ Has the same complexity as DQBF
- \bullet The core of iProver, the most successful $\mathrm{EPR}\text{-solver}$
- A CEGAR loop generates clause instances by unification

Adaptations: e.g.

- Takes advantage of Boolean domain: uses bit-masks to represents clause instances
- Bit-mask operations for unification, new instances, redundancy check
- VSIDS heuristics

1st publicly available "complete" solver – IDQ

$\mathrm{DQBF}\xspace$ PEC benchmarks

	#(sat/uns)	то	time		#(sat/uns)	то	time	
	bitcell_16_2				bitcell_16_6			
Dqbf2Qbf	98 (0/98)	2	18.6		97 (0/97)	3	27.8	
ıDQ	88 (2/86)	12	128.1		22 (0/22)	78	735.9	
IDQ_{vsids}	97 (2/95)	3	39.2		36 (0/36)	64	592.0	
IPROVER	82 (0/82)	18	248.6		7 (0/7)	93	851.7	
	adder_3_2				adder_3_6			
Dqbf2Qbf	94 (0/94)	6	54.8		74 (0/74)	26	234.6	
ıDQ	82 (1/81)	18	246.8		11(0/11)	89	841.4	
IDQ_{vsids}	43 (0/43)	57	546.3		6 (0/6)	94	863.9	
IPROVER	86 (1/85)	14	221.6		5 (0/5)	95	876.9	
	pec_xor2				pec_xor4			
Dqbf2Qbf	49 (0/49)	51	459.4		99 (0/99)	1	10.6	
ıDQ	100 (51/49)		.5		100 (1/99)		3.3	
IDQ_{vsids}	100 (51/49)		.5		100 (1/99)		2.2	
IPROVER	100 (51/49)		.5		100 (1/99)		2.8	

TO = timeout

[Gitina, Wimmer, Reimer, Sauer, Scholl, Becker. *Solving DQBF Through Quantifier Elimination*. DATE, 2015.]

An improved expansion-based solver:

- $\bullet~\mathsf{Expands}~\mathrm{DQBF}$ to QBF
 - Eliminates (universal and existential) variables

 $\forall u_1, u_2 \exists e(u_1) \ . \ \phi \ \longrightarrow \ \forall u_2 \exists e, e' \ . \ \phi[0/u_1] \land \phi[1/u_2][e'/e]$

- Eliminates the *minimum set* of variables that cause non-linear dependencies
 - Expressed as a partial MaxSAT problem
- Uses AIGs to detect units and pure literals
- Publicly available?

$\mathrm{DQBF}\xspace$ PEC benchmarks

<i>#(sat/uns)</i>	ΤΟ/ΜΟ	time		<i>#(sat/uns)</i>	ТО/МО	time		
a		bitcell						
300 (42/258)	0/0	9.7		300 (7/293)	0/0	11.3		
216 (3/213)	84/0	89828		190 (2/188)	110/0	78107		
look	ahead			pec_xor				
300 (10/290)	0/0	23.2		200 (24/176)	0/0	33.6		
273 (4/269)	27/0	39540		200 (24/176)	0/0	181.6		
	z4			comp				
240 (72/168)	0/0	4.9		155 (39/116)	9/76	17.8		
111 (8/103)	129/0	41626		25 (0/25)	180/35	11.6		
C432				-				
60 (19/41)	0/180	1333						
20 (0/20)	85/135	0.2						
	ard 300 (42/258) 216 (3/213) look 300 (10/290) 273 (4/269) 240 (72/168) 111 (8/103) C 60 (19/41)	adder 300 (42/258) 0/0 216 (3/213) 84/0 lookahead 300 (10/290) 0/0 273 (4/269) 27/0 z4 240 (72/168) 0/0 111 (8/103) 129/0 C432 60 (19/41) 0/180	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c cccc} adder \\ \hline adder \\ \hline 300 (42/258) & 0/0 & 9.7 \\ \hline 216 (3/213) & 84/0 & 89828 \\ \hline lookahead \\ \hline 300 (10/290) & 0/0 & 23.2 \\ \hline 273 (4/269) & 27/0 & 39540 \\ \hline z4 \\ \hline 240 (72/168) & 0/0 & 4.9 \\ \hline 111 (8/103) & 129/0 & 41626 \\ \hline C432 \\ \hline 60 (19/41) & 0/180 & 1333 \\ \end{array}$	$\begin{array}{c ccccc} adder & & adder & & b \\ \hline adder & & & & \\ 300 & (42/258) & 0/0 & 9.7 & & 300 & (7/293) \\ \hline 216 & (3/213) & 84/0 & 89828 & & \\ \hline lookahead & & & \\ \hline 300 & (10/290) & 0/0 & 23.2 & & \\ 273 & (4/269) & 27/0 & 39540 & & \\ \hline 273 & (4/269) & 27/0 & 39540 & & \\ \hline 273 & (4/269) & 27/0 & 39540 & & \\ \hline 240 & (72/168) & 0/0 & 4.9 & & \\ \hline 111 & (8/103) & 129/0 & 41626 & & \\ \hline C432 & & & \\ \hline 60 & (19/41) & 0/180 & 1333 & & \\ \hline \end{array}$	$\begin{array}{c ccccc} adder & bitcell \\ \hline 300 (42/258) & 0/0 & 9.7 \\ 216 (3/213) & 84/0 & 89828 \\ \hline lookahead & \\ \hline 300 (10/290) & 0/0 & 23.2 \\ 273 (4/269) & 27/0 & 39540 \\ \hline 24 & \\ \hline 240 (72/168) & 0/0 & 4.9 \\ 111 (8/103) & 129/0 & 41626 \\ \hline C432 & \\ \hline 60 (19/41) & 0/180 & 1333 \end{array} \qquad \begin{array}{c ccccc} bitcell & \\ 300 (7/293) & 0/0 \\ 190 (2/188) & 110/0 \\ \hline 300 (2/188) & 110/0 \\ \hline 200 (24/176) & 0/0 \\ \hline 200 (24/176) & 0/0 \\ \hline 200 (24/176) & 0/0 \\ \hline comp \\ 155 (39/116) & 9/76 \\ \hline 25 (0/25) & 180/35 \\ \hline \end{array}$		

TO = timeoutMO = memory out When experimenting with $\mathrm{IDQ}\textsc{,}$ we tried out simple preprocessing techniques:

- Dependency set reduction \Rightarrow did not pay off
 - $\bullet\,$ by using the standard dependency scheme (such as in $\rm DePQBF,$ by Lonsing);
 - by using resolution-path dependency scheme (by Slivovsky, Szeider)
- Blocked clause elimination (BCE)

$\mathrm{DQBF}\xspace$ PEC benchmarks

	#(sat/uns)	ТО	time		#(sat/uns)	ТО	time
	bitcell_16_2			bitcell_16_6			
лDQ	88 (2/86)	12	128.1		22 (0/22)	78	735.9
1DQ _{BCE}	100 (2/98)		.7		95 (0/95)	5	49.5
IDQ_{vsids}	97 (2/95)	3	39.2		36 (0/36)	64	592.0
$IDQ_{vsids+BCE}$	100 (2/98)		.7		85 (0/85)	15	185.6
	lookahead_16_2			lookahead_16_6			
ıDQ	82 (1/81)	18	246.8		11 (0/11)	89	841.4
IDQ_{BCE}	100 (3/97)		.7		87 (1/86)	13	132.4
IDQ_{vsids}	43 (0/43)	57	546.3		6 (0/6)	94	863.9
$_{\rm IDQ}_{\sf vsids+BCE}$	100 (3/97)		.9		6 (0/6)	94	853.9

There are some rumors about a SAT'15 paper on DQBF preprocessing. It is said to be great... :)

- $\bullet~\mathrm{DQBF}$ solving is getting more and more serious
 - \bullet Complex and sophisticated solving approaches: e.g., CEGAR, $\rm QBF$ solver back-end, MaxSAT, clever heuristics, etc.
- Preprocessing in on the way...
- Industrial DQBF instances should appear soon
- \bullet Any other "natural" application for $\mathrm{DQBF}?$