
A Survey on DQBF: Formulas, Applications,
Solving Approaches

Gergely Kovásznai

IoT Research Center,
Eszterhazy Karoly University of Applied Sciences,

Eger, Hungary
kovasznai.gergely@iot.uni-eger.hu

QUANTIFY 2015
August 3, 2015
Berlin, Germany

Gergely Kovásznai A Survey on DQBF: Formulas, Applications, Solving Approaches

kovasznai.gergely@iot.uni-eger.hu

The IF logic

1996: Jaakko Hintikka – Independence Friendly (IF) Logic

in his book [Jaakko Hintikka. The Principles of Mathematics
Revisited. 1996.]

Logicians were questioning if IF logic was a logic at all.

[Janssen. Independent Choices and the Interpretation of IF Logic.
JLLI, 2002.]
Strange properties of the IF logic:

φ, φ ∧ φ, and φ ∨ φ are not equivalent
Bound variables cannot be renamed

[Feferman. What Kind of Logic is “Independence Friendly” Logic?.
Library of Living Philosophers, 2006.]

Is IF logic a logic at all?

Gergely Kovásznai A Survey on DQBF: Formulas, Applications, Solving Approaches

The IF logic

1996: Jaakko Hintikka – Independence Friendly (IF) Logic

in his book [Jaakko Hintikka. The Principles of Mathematics
Revisited. 1996.]

Logicians were questioning if IF logic was a logic at all.

[Janssen. Independent Choices and the Interpretation of IF Logic.
JLLI, 2002.]
Strange properties of the IF logic:

φ, φ ∧ φ, and φ ∨ φ are not equivalent
Bound variables cannot be renamed

[Feferman. What Kind of Logic is “Independence Friendly” Logic?.
Library of Living Philosophers, 2006.]

Is IF logic a logic at all?

Gergely Kovásznai A Survey on DQBF: Formulas, Applications, Solving Approaches

Henkin quantifiers

In the IF logic and in DQBF Henkin (or branching) quantifiers are used
to express the “independence” of variables from each other.

∀x∃e
∀y∃f

{
φ(x , e, y , f)

In terms of Skolem functions:

φ
(
x , e(x), y , f (y)

)

In IF logic: φ is a 1st-order formula

In DQBF: φ is a Boolean formula

Fundamental application:
partial-information (or imperfect-information) games

Gergely Kovásznai A Survey on DQBF: Formulas, Applications, Solving Approaches

Henkin quantifiers

In the IF logic and in DQBF Henkin (or branching) quantifiers are used
to express the “independence” of variables from each other.

∀x∃e
∀y∃f

{
φ(x , e, y , f)

In terms of Skolem functions:

φ
(
x , e(x), y , f (y)

)

In IF logic: φ is a 1st-order formula

In DQBF: φ is a Boolean formula

Fundamental application:
partial-information (or imperfect-information) games

Gergely Kovásznai A Survey on DQBF: Formulas, Applications, Solving Approaches

Henkin quantifiers

In the IF logic and in DQBF Henkin (or branching) quantifiers are used
to express the “independence” of variables from each other.

∀x∃e
∀y∃f

{
φ(x , e, y , f)

In terms of Skolem functions:

φ
(
x , e(x), y , f (y)

)

In IF logic: φ is a 1st-order formula

In DQBF: φ is a Boolean formula

Fundamental application:
partial-information (or imperfect-information) games

Gergely Kovásznai A Survey on DQBF: Formulas, Applications, Solving Approaches

What is DQBF?

[Peterson, Reif. Multiple-person alternation. Foundations of Computer
Science, 1979.]

DQBF = Dependency Quantified Boolean Formulas

∀u1, u2, u3 ∃e(u1,u3), f (u2) . (u2 ∨ u3 ∨ e) ∧ (u1 ∨ u2 ∨ e ∨ f)

Generalization of QBF

Variable dependencies can be explicitly given

Higher complexity:

QBF – PSpace-complete
DQBF – NExpTime-complete

Gergely Kovásznai A Survey on DQBF: Formulas, Applications, Solving Approaches

1st solving approach – DQDPLL

[Fröhlich, Kovásznai, Biere. A DPLL Algorithm for Solving DQBF. POS,
2012.]
Main motivation: quantifier-free bit-vector formulas (QF BV) has the
same complexity as DQBF.

Adaptation of QDPLL from QBF to DQBF: e.g., unit propagation, clause
learning, universal reduction, watched literals, etc.

Implemented, but slow. Why?

Gergely Kovásznai A Survey on DQBF: Formulas, Applications, Solving Approaches

1st “killer” application

[Gitina, Reimer, Sauer, Wimmer, Scholl, Becker. Equivalence checking of
partial designs using dependency quantified Boolean formulae. ICCD,
2013.]
“Killer” app: partial equivalence checking (PEC) of circuits

source: [Finkbeiner, Tentrup. 2014.]

Expansion-based solver:

expands DQBF to QBF (or even to SAT)

not publicly available

Gergely Kovásznai A Survey on DQBF: Formulas, Applications, Solving Approaches

1st “killer” application

[Gitina, Reimer, Sauer, Wimmer, Scholl, Becker. Equivalence checking of
partial designs using dependency quantified Boolean formulae. ICCD,
2013.]
“Killer” app: partial equivalence checking (PEC) of circuits

source: [Finkbeiner, Tentrup. 2014.]

Expansion-based solver:

expands DQBF to QBF (or even to SAT)

not publicly available

Gergely Kovásznai A Survey on DQBF: Formulas, Applications, Solving Approaches

1st publicly available solver

[Finkbeiner, Tentrup. Fast DQBF Refutation. SAT, 2014.]
Similar to BMC. Given a bound k ≥ 1,

Use k copies of all variables and the matrix

Ackermann constraints as a guard :

consistent(e, k) :=
∧

1≤i,j≤k

(∧
u∈depse

ui = uj ⇒ e i = e j
)

Solve the QBF

∃u1
1 , . . . , u

k
m ∀e1

1 , . . . , e
k
n .

consistent(e1, k) ∧ · · · ∧ consistent(en, k) ⇒
∨

1≤i≤k

¬φk

In practice, it can solve only UNSAT problems.

Gergely Kovásznai A Survey on DQBF: Formulas, Applications, Solving Approaches

1st publicly available “complete” solver – iDQ

[Fröhlich, Kovásznai, Biere. iDQ: Instantiation-Based DQBF Solving.
POS, 2014.]
Adapts and extends the Inst-Gen approach to DQBF.

Inst-Gen:

The solving approach for EPR logic

The ∃?∀?.φ fragment of 1st-order logic
Has the same complexity as DQBF

The core of iProver, the most successful EPR-solver

A CEGAR loop generates clause instances by unification

Adaptations: e.g.

Takes advantage of Boolean domain: uses bit-masks to represents
clause instances

Bit-mask operations for unification, new instances, redundancy check

VSIDS heuristics

Gergely Kovásznai A Survey on DQBF: Formulas, Applications, Solving Approaches

1st publicly available “complete” solver – iDQ

[Fröhlich, Kovásznai, Biere. iDQ: Instantiation-Based DQBF Solving.
POS, 2014.]
Adapts and extends the Inst-Gen approach to DQBF.

Inst-Gen:

The solving approach for EPR logic

The ∃?∀?.φ fragment of 1st-order logic
Has the same complexity as DQBF

The core of iProver, the most successful EPR-solver

A CEGAR loop generates clause instances by unification

Adaptations: e.g.

Takes advantage of Boolean domain: uses bit-masks to represents
clause instances

Bit-mask operations for unification, new instances, redundancy check

VSIDS heuristics

Gergely Kovásznai A Survey on DQBF: Formulas, Applications, Solving Approaches

1st publicly available “complete” solver – iDQ

DQBF PEC benchmarks

#(sat/uns) TO time #(sat/uns) TO time
bitcell 16 2 bitcell 16 6

Dqbf2Qbf 98 (0/98) 2 18.6 97 (0/97) 3 27.8
iDQ 88 (2/86) 12 128.1 22 (0/22) 78 735.9
iDQvsids 97 (2/95) 3 39.2 36 (0/36) 64 592.0
iProver 82 (0/82) 18 248.6 7 (0/7) 93 851.7

adder 3 2 adder 3 6
Dqbf2Qbf 94 (0/94) 6 54.8 74 (0/74) 26 234.6
iDQ 82 (1/81) 18 246.8 11 (0/11) 89 841.4
iDQvsids 43 (0/43) 57 546.3 6 (0/6) 94 863.9
iProver 86 (1/85) 14 221.6 5 (0/5) 95 876.9

pec xor2 pec xor4
Dqbf2Qbf 49 (0/49) 51 459.4 99 (0/99) 1 10.6
iDQ 100 (51/49) .5 100 (1/99) 3.3
iDQvsids 100 (51/49) .5 100 (1/99) 2.2
iProver 100 (51/49) .5 100 (1/99) 2.8

TO = timeout
Gergely Kovásznai A Survey on DQBF: Formulas, Applications, Solving Approaches

A new solver – HQS

[Gitina, Wimmer, Reimer, Sauer, Scholl, Becker. Solving DQBF Through
Quantifier Elimination. DATE, 2015.]
An improved expansion-based solver:

Expands DQBF to QBF

Eliminates (universal and existential) variables

∀u1, u2∃e(u1) . φ −→ ∀u2∃e, e′ . φ[0/u1] ∧ φ[1/u2][e
′/e]

Eliminates the minimum set of variables that cause non-linear
dependencies

Expressed as a partial MaxSAT problem

Uses AIGs to detect units and pure literals

Publicly available?

Gergely Kovásznai A Survey on DQBF: Formulas, Applications, Solving Approaches

A new solver – HQS

DQBF PEC benchmarks

#(sat/uns) TO/MO time #(sat/uns) TO/MO time
adder bitcell

HQS 300 (42/258) 0/0 9.7 300 (7/293) 0/0 11.3
iDQ 216 (3/213) 84/0 89828 190 (2/188) 110/0 78107

lookahead pec xor
HQS 300 (10/290) 0/0 23.2 200 (24/176) 0/0 33.6
iDQ 273 (4/269) 27/0 39540 200 (24/176) 0/0 181.6

z4 comp
HQS 240 (72/168) 0/0 4.9 155 (39/116) 9/76 17.8
iDQ 111 (8/103) 129/0 41626 25 (0/25) 180/35 11.6

C432
HQS 60 (19/41) 0/180 1333
iDQ 20 (0/20) 85/135 0.2

TO = timeout
MO = memory out

Gergely Kovásznai A Survey on DQBF: Formulas, Applications, Solving Approaches

Preprocessing for DQBF

When experimenting with iDQ, we tried out simple preprocessing
techniques:

Dependency set reduction ⇒ did not pay off

by using the standard dependency scheme (such as in DepQBF, by
Lonsing);
by using resolution-path dependency scheme (by Slivovsky, Szeider)

Blocked clause elimination (BCE)

Gergely Kovásznai A Survey on DQBF: Formulas, Applications, Solving Approaches

Preprocessing with iDQ

DQBF PEC benchmarks

#(sat/uns) TO time #(sat/uns) TO time
bitcell 16 2 bitcell 16 6

iDQ 88 (2/86) 12 128.1 22 (0/22) 78 735.9
iDQBCE 100 (2/98) .7 95 (0/95) 5 49.5
iDQvsids 97 (2/95) 3 39.2 36 (0/36) 64 592.0
iDQvsids+BCE 100 (2/98) .7 85 (0/85) 15 185.6

lookahead 16 2 lookahead 16 6
iDQ 82 (1/81) 18 246.8 11 (0/11) 89 841.4
iDQBCE 100 (3/97) .7 87 (1/86) 13 132.4
iDQvsids 43 (0/43) 57 546.3 6 (0/6) 94 863.9
iDQvsids+BCE 100 (3/97) .9 6 (0/6) 94 853.9

Gergely Kovásznai A Survey on DQBF: Formulas, Applications, Solving Approaches

Preprocessing for DQBF

There are some rumors about a SAT’15 paper on DQBF preprocessing.
It is said to be great... :)

Gergely Kovásznai A Survey on DQBF: Formulas, Applications, Solving Approaches

Conclusion

DQBF solving is getting more and more serious

Complex and sophisticated solving approaches: e.g., CEGAR, QBF
solver back-end, MaxSAT, clever heuristics, etc.

Preprocessing in on the way...

Industrial DQBF instances should appear soon

Any other “natural” application for DQBF?

Gergely Kovásznai A Survey on DQBF: Formulas, Applications, Solving Approaches

