
A Survey on DQBF: Formulas, Applications,
Solving Approaches

Gergely Kovásznai

IoT Research Center,
Eszterhazy Karoly University of Applied Sciences,

Eger, Hungary
kovasznai.gergely@ekf.hu

1 Introduction

Dependency Quantified Boolean Formulas (DQBF) are obtained by adding
Henkin quantifiers to Boolean formulas and have seen growing interest in the
last years. In contrast to QBF, the dependencies of a variable in DQBF are ex-
plicitly specified instead of being implicitly defined by the order of the quantifier
prefix. This enables us to also use partial variable orders as part of a formula
instead of only allowing total ones. As a result, problem descriptions in DQBF
can possibly be exponentially more succinct. While QBF is PSpace-complete,
DQBF was shown to be NExpTime-complete [14].

2 Applications

Many practical problems are known to be NExpTime-complete. This includes,
e.g., partial information non-cooperative games [13] or certain bit-vector log-
ics [12, 15] used in the context of Satisfiability Modulo Theories (SMT). More
recently, also applications in the area of partial equivalence checking (PEC) prob-
lems [7, 8] have been discussed and DQBF has been shown to offer a natural
encoding for PEC problems. For running experiments, one can access publicly
available PEC problem instances and their DQBF encodings [3, 6, 9].

3 Solving Approaches

The first known direct solving approach for DQBF is an adaptation of QDPLL [5],
which did not end up being very efficient.

Expansion-based techniques for DQBF were also investigated [1, 2] and yielded
in a (not publicly available) expansion-based solver in [8] that uses an underlying
SAT solver.

In [4], a refutational approach is proposed that is based on QBF abstraction,
thus an uderlying QBF solver is used. This approach is incomplete since it only
allows refutation of unsatisfiable formulas.



Based on the fact that Effectively Propositional Logic (EPR) is another logic
which is NExpTime-complete, we investigated how to adapt an instantiation-
based EPR solving approach, the Inst-Gen calculus [10, 11] to DQBF. We pub-
lished those results and proposed a new instantiation-based DQBF solver, iDQ
in [6]. As the experiments showed, iDQ turned out to be an efficient solver.

In [9], an elimination-based solving strategy is proposed and is implemented
in the DQBF solver called HQS. Besides the powerful elimination strategy, HQS
utilizes several optimizations, such as pure and unit literal detection, yields to
an even more efficient DQBF solver than iDQ.

Apart from the solving technique we use, preprocessing techniques can speed
up the solving significantly. Therefore it is worth to investigate if well-known
SAT and QBF preprocessing techniques can be adapted to DQBF.

References

1. V. Balabanov, H. K. Chiang, and J. R. Jiang. Henkin quantifiers and boolean
formulae. In Proc. SAT’12, 2012.

2. V. Balabanov, H. K. Chiang, and J. R. Jiang. Henkin quantifiers and boolean
formulae: A certification perspective of DQBF. Theoretical Computer Science,
2013.

3. B. Finkbeiner and L. Tentrup. Fast DQBF refutation. In Proc. SAT 2014, pages
243–251, 2014.

4. B. Finkbeiner and L. Tentrup. Fast DQBF refutation. In Proc. SAT’14, 2014.
5. A. Fröhlich, G. Kovásznai, and A. Biere. A DPLL algorithm for solving DQBF.

In Proc. POS’12, 2012.
6. A. Fröhlich, G. Kovásznai, A. Biere, and H. Veith. iDQ: Instantiation-based DQBF

solving. In Proc. POS 2014, aff. to SAT 2014, pages 103–116, 2014.
7. K. Gitina, S. Reimer, M. Sauer, R. Wimmer, C. Scholl, and B. Becker. Equivalence

checking for partial implementations revisited. In Proc. MBMV’13, pages 61–70,
2013.

8. K. Gitina, S. Reimer, M. Sauer, R. Wimmer, C. Scholl, and B. Becker. Equiva-
lence checking of partial designs using dependency quantified boolean formulae. In
Proc. ICCD’13, pages 396–403, 2013.

9. K. Gitina, R. Wimmer, S. Reimer, M. Sauer, C. Scholl, and B. Becker. Solving
DQBF through quantifier elimination. In Proc. DATE 2015, pages 1617–1622.
EDA Consortium, 2015.

10. K. Korovin. Instantiation-based automated reasoning: From theory to practice. In
Proc. CADE’09, pages 163–166, 2009.

11. K. Korovin. Inst-Gen - a modular approach to instantiation-based automated
reasoning. In Programming Logics, pages 239–270, 2013.

12. G. Kovásznai, A. Fröhlich, and A. Biere. On the complexity of fixed-size bit-vector
logics with binary encoded bit-width. In Proc. SMT’12, 2012.

13. G. Peterson, J. Reif, and S. Azhar. Lower bounds for multiplayer noncooperative
games of incomplete information, 2001.

14. G. L. Peterson and J. H. Reif. Multiple-person alternation. In Proc. FOCS’79,
pages 348–363, 1979.

15. C. M. Wintersteiger, Y. Hamadi, and L. de Moura. Efficiently solving quantified
bit-vector formulas. In Proc. FMCAD’10, 2010.


