
Old Challenges and New Solutions: a
Comprehensive Assessment of State-of-the-Art

QBF Solvers

P. Marin2, M. Narizzano1, L. Pulina3, A. Tacchella1, and E. Giunchiglia1

1 DIBRIS, Università di Genova, Via Opera Pia, 13 – 16145 Genova – Italy
{giunchiglia,narizzano,tacchella}@unige.it

2 Lehrstuhl für Rechnerarchitektur, Georges-Köhler-Allee 051 – 79110 Freiburg i.B. –
Germany marin@informatik.uni-freiburg.de

3 POLCOMING, Università di Sassari, Viale Mancini n. 5 – 07100 Sassari – Italy
lpulina@uniss.it

Since the first QBF Evaluation (QBFEVAL’03) [1], whose aim was to as-
sess the relatively young state of the art in the QBF reasoning field, almost
every year an evaluation event was organized. The purpose of that was to mea-
sure the progress in QBF reasoning techniques and encourage the submission of
new problems which could be encoded in QBF. A report of the last QBFEVAL
event in the series was published in [2]. After more than a decade of new solvers
being developed and new challenging problems being proposed, we believe that
QBFEVAL and, more recently, QBF Gallery [3] events offer a series of snapshots
about QBF solving and related aspects, but somehow fail to provide a long-term
picture about what has been achieved, which of the techniques proposed are
still worth considering, and which problems are still relevant for current QBF
solvers. In this work we gather numerous results which enable us to assess the
contributions of complete off-the-shelf QBF solving tools to the state-of-the-art
considering the whole course of QBFEVAL and QBF Gallery evaluations and
competitions, and exposing the result in a historical perspective. We are then
able to suggest potential research directions for solving older and actual chal-
lenging problems. In the following, we list the solvers and describe the problems
we used in our experiments, then we present the results, and conclude with some
final remarks.

To accomplish our task we considered some legacy solvers (s-legacy in the
following), i.e., tools that were proposed in the literature, but are not considered
in more recents comparative events and new solvers (s-new in the following), i.e.,
all the other tools that we consider and which are not legacy. In particular, out
of 8 solvers considered, the legacy ones are AIGSolve [4], the only AIG-based
QBF solver; aqme [5], a multi-engine tool whose back-end solvers were released
in 2006; quantor [6], QuBE [7], and sKizzo [8], which implement key QBF
solving techniques like resolution and expansion, DLL-search, and skolemization,
respectively; lastly, StruQS [9], which dynamically combines very different so-
lution techniques. These tools are chosen among winners of at least one category
in the past QBFEVAL events, conditioned to their maintenance ending before
2010. The set of new solvers is assembled by including the winners of the last
QBF Gallery 2014: depqbf [10], ghostq [11, 12] and rareqs [11]. We did not

consider hiqqer [13] because we could not find a version available for download.
We define the “state-of-the-art” (sota) solver abstraction, i.e., the ideal system
that always fares the best time among the systems in our portfolio. Likewise
sota-legacy and sota-new abstract from legacy and new solvers, to score the
global performace of solvers in s-legacy vs. those in s-new. As for problems,
we consider three pools assembled for previous evaluations. In particular, we
consider from [13] (i) QBF Gallery 2014 Track 1 (276 instances) and (ii) Track
2 (735 instances), and (iii) challenging formulas which are those classified as
“Hard” (unsolved) and “Medium-Hard” (solved by one tool only) in the QBFE-
VAL evaluations from 2004 to 2010. These are then split by year. Overall, the
testset is purposefully biased towards recently submitted instances, in order to
(try to) assess legacy solvers on problems that are probably “unseen” to them,
i.e., for which their developers did not have a chance to optimize the solver. On
the other hand, group (iii) lets us assess whether the progress advertised by
more recent evaluations is due to novel solving techniques, or to the fact that
some hard problems were no longer evaluated. The tools were fed with the QBF
formulas in their original format, i.e., we made no external preprocessing. Yet,
some tools apply preprocessing techniques before the complete solving phase.

Considering the pool QBF Gallery Track 1, only 6 solvers out of 9 were
able to solve at least 25% of the test set. By ranking the solvers according to
the number of problems solved, the first is AIGSolve, which can solve about
42% of the test set, followed by QuBE and aqme, closely followed by ghostq.
Taking the above cited abstractions, sota was able to cope with about 73%
of qbfg-t1. Its main contributors are AIGSolve, depqbf, and rareqs.We
also report that sota-legacy solves about 31% more problems than sota-
new. Considering the pool QBF Gallery 2014 Track 2, which was partitioned
into 6 families, AIGSolve, rareqs, and quantorshow 3 times into the top-
three ranking, aqme, depqbf, ghostq, and StruQS twice, and QuBE once.
rareqs and StruQS can uniquely solve 16 problems, AIGSolve 12. Each of
the remaining solvers less than 4. Lastly, we consider the challenging formulas
from the past (6) QBFEVAL events: AIGSolve is always in the top-three and
can solve uniquely 114 formulas, ghostq and QuBE get the best rankings 5
times and can uniquely solve resp. 114 and 47 instances. Notice that rareqs
appears only once, but can solve uniquely 71 formulas. Overall, 2 out of 3 systems
are always s-legacy, only in 2006 and 2010 the best solver is ghostq. sota is
able to solve 83% of the 2006 dataset, in other cases no more than 75%. With
the notable exception of 2010, sota-legacy outperforms sota-new for each
year. More details of this analysis are listed in the Appendix.

In the paper we have shown the results of a massive evaluation of QBF solvers
and benchmarks from an historical perspective, and what emerges is that new
systems are the main contributors of a SOTA solvers, yet comparing the sota-
legacy and sota-new abstractions we have also shown that legacy systems
still outperform the new ones in many problem categories. Therefore, we believe
that it would be interesting to fuse legacy techniques into new systems in order
to really push forward the state of the art in the QBF arena.

2

References

1. Berre, D.L., Simon, L., Tacchella, A.: Challenges in the QBF arena: the SAT’03
evaluation of QBF solvers. In: Sixth International Conference on Theory and
Applications of Satisfiability Testing (SAT 2003). Volume 2919 of Lecture Notes
in Computer Science., Springer Verlag (2003) 468–485

2. Peschiera, C., Pulina, L., Tacchella, A., Bubeck, U., Kullmann, O., Lynce, I.: The
seventh qbf solvers evaluation (qbfeval10). In: Theory and Applications of Satisfi-
ability Testing–SAT 2010, Springer Berlin Heidelberg (2010) 237–250

3. F. Lonsing, M. Seidl, A.V.G.: QBF gallery 2013 (2013) http://www.kr.tuwien.

ac.at/events/qbfgallery2013/.
4. Pigorsch, F., Scholl, C.: An aig-based qbf-solver using sat for preprocessing. In:

Design Automation Conference (DAC), 2010 47th ACM/IEEE, IEEE (2010) 170–
175

5. Pulina, L., Tacchella, A.: A self-adaptive multi-engine solver for quantified Boolean
formulas. Constraints 14(1) (2009) 80–116

6. Biere, A.: Resolve and Expand. In: Seventh Intl. Conference on Theory and
Applications of Satisfiability Testing (SAT’04). Volume 3542 of LNCS., Springer
Verlag (2005) 59–70

7. Giunchiglia, E., Marin, P., Narizzano, M.: Qube7.0. JSAT 7(2-3) (2010) 83–88
8. Benedetti, M.: Evaluating QBFs via Symbolic Skolemization. In: Eleventh Interna-

tional Conference on Logic for Programming, Artificial Intelligence and Reasoning
(LPAR 2004). Volume 3452 of Lecture Notes in Computer Science., Springer Verlag
(2004)

9. Pulina, L., Tacchella, A.: A structural approach to reasoning with quantified
Boolean formulas. In: 21st International Joint Conference on Artificial Intelligence
(IJCAI 2009). (2009) 596–602

10. Lonsing, F., Biere, A.: Depqbf: A dependency-aware QBF solver. JSAT 7(2-3)
(2010) 71–76

11. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving qbf with counterex-
ample guided refinement. In: Theory and Applications of Satisfiability Testing–
SAT 2012, Springer Berlin Heidelberg (2012) 114–128

12. Klieber, W., Sapra, S., Gao, S., Clarke, E.: A non-prenex, non-clausal qbf solver
with game-state learning. In: Theory and Applications of Satisfiability Testing–
SAT 2010. Springer (2010) 128–142

13. Jordan, C., Seidl, M.: The QBF Gallery 2014 (2014)

3

Appendix

This Appendix shows the detailed results of our empirical analysis. We ran all
the experiments on a cluster of Intel Xeon E31245 PCs at 3.30 GHz equipped
with 64 bit Ubuntu 12.04. Each solver was limited to 600s of CPU time and 4GB
of memory.

Solver Total True False Unique
Time # Time # Time # Time

AIGSolve 116 5333.01 56 2177.45 60 3155.56 22 1458.26
QuBE 106 8764.73 53 3997.78 53 4766.95 8 1195.58
aqme 97 3287.20 39 1098.00 58 2189.20 – –
ghostq 91 4814.73 48 2912.38 43 1902.17 4 158.97
depqbf 88 2388.32 39 1163.15 49 1225.17 5 454.77
rareqs 79 2588.64 32 1593.25 47 995.39 6 787.33
sKizzo 51 948.81 18 556.76 33 392.06 – –
quantor 50 1498.37 28 911.72 22 586.65 2 161.67
StruQS 43 6092.64 31 4052.98 12 2039.66 1 16.53

Table 1. Performance of the involved solvers on qbfg-t1. The table consists of nine
columns that for each solver reports its name (column “Solver”), the total number of
instances solved and the cumulative time to solve them (columns “#” and “Time”,
group “Total”), the number of instances found satisfiable and the time to solve them
(columns “#” and “Time”, group “True”), the number of instances found unsatisfiable
and the time to solve them (columns “#” and “Time”, group “False”), and, finally,
the number of instances uniquely solved and the time to solve them (columns “#”
and “Time”, group “Unique”); a “–” (dash) means that the solver did not solve any
instance. Finally, the table is sorted in descending order, according to the number of
instances solved, and, in case of a tie, in ascending order according to the cumulative
time taken to solve them.

4

Family Solver Total True False Unique
Time # Time # Time # Time

AIGSolve 83 1003.23 40 165.20 43 838.03 – –
rareqs 83 1420.61 34 165.41 49 1255.19 6 1094.71
quantor 82 923.25 53 217.92 29 705.33 – –
aqme 80 674.38 53 345.02 27 329.36 – –

bomb depqbf 67 2410.16 40 1693.36 27 716.79 – –
(132) sKizzo 57 609.41 31 2.39 26 607.03 – –

ghostq 56 532.47 29 42.66 27 489.81 – –
QuBE 47 1168.86 23 470.47 24 698.39 – –
StruQS 36 1051.46 19 813.58 17 237.88 – –

rareqs 75 1559.65 29 466.77 46 1092.88 15 1148.51
depqbf 49 1553.73 22 1086.35 27 467.38 – –
ghostq 42 1791.86 11 499.21 27 467.38 – –
QuBE 39 1273.95 19 277.87 20 996.09 – –

complexity aqme 33 528.28 15 188.76 18 339.52 – –
(104) quantor 26 170.44 11 11.29 15 159.14 – –

StruQS 21 1855.53 13 1677.81 8 177.72 – –
AIGSolve 15 70.26 7 12.24 8 58.02 – –
sKizzo 9 316.60 4 315.82 5 0.78 – –

quantor 104 525.30 18 54.81 86 470.48 – –
aqme 104 1121.43 18 86.11 86 1035.32 – –
AIGSolve 87 1220.22 17 417.12 70 803.10 – –
rareqs 57 1870.73 18 54.89 39 1815.85 – –

dungeon depqbf 44 535.22 18 300.44 26 234.77 – –
(107) QuBE 34 1429.60 7 212.89 27 1216.71 – –

ghostq 7 385.11 4 4.62 3 380.49 – –
sKizzo 2 0.99 – – 2 0.99 – –
StruQS 1 21.96 1 21.96 – – – –

StruQS 88 7826.42 1 372.74 87 7453.68 12 3033.19
QuBE 76 1346.11 – – 76 1346.11 2 328.75
ghostq 51 2649.30 2 239.56 49 2409.74 1 224.22
aqme 50 265.14 – – 50 265.14 – –

hardness rareqs 14 1431.05 – – 14 1431.05 – –
(114) AIGSolve 12 2038.84 – – 12 2038.84 – –

depqbf 8 617.99 – – 8 617.99 – –
quantor – – – – – – – –
sKizzo – – – – – – – –

AIGSolve 147 2371.36 38 114.02 109 2257.34 10 861.70
rareqs 137 1093.01 38 125.66 99 967.35 – –
quantor 131 6750.13 37 122.68 94 6627.44 – –
aqme 123 9263.25 37 464.97 86 8798.28 – –

planning sKizzo 74 71.57 34 24.02 40 47.55 – –
(147) depqbf 57 5134.24 29 1876.90 28 3257.34 – –

QuBE 14 1270.35 12 743.61 2 526.74 – –
ghostq 11 2155.26 8 1420.71 3 734.55 – –
StruQS 4 1229.67 4 1229.67 – – – –

aqme 71 2675.64 64 2339.68 7 335.95 1 3.00
StruQS 65 1770.09 63 1488.09 2 282.00 4 236.18
depqbf 57 692.38 46 672.96 11 19.42 2 359.15
AIGSolve 51 4194.44 46 4163.65 5 30.79 2 11.88

testing QuBE 41 765.08 31 734.85 10 30.23 1 1.24
(131) rareqs 34 428.00 22 317.04 12 110.95 1 0.53

ghostq 32 269.13 29 66.10 3 203.03 – –
quantor 26 121.15 25 110.52 1 10.63 – –
sKizzo 1 0.02 1 0.02 – – – –

Table 2. Performances of QBF solvers on qbfg-t2: The table is split in six horizontal
parts, one for each family. The first column contains families names, as well as its total
amount of instances. The rest of the table is organized as Table 1.

5

Year Solver Total True False Unique
Time # Time # Time # Time

AIGSolve 62 2658.96 46 1781.89 16 877.07 15 1401.38
ghostq 51 541.62 36 370.74 15 170.88 18 194.05
QuBE 28 4783.92 23 3566.83 5 1217.09 6 626.75

2004 sKizzo 23 749.18 16 691.76 7 57.42 – –
(167) StruQS 14 1081.04 9 885.70 5 195.34 – –

quantor 13 916.32 11 905.49 2 10.83 – –
depqbf 2 192.64 – – 2 192.64 – –
rareqs 1 0.24 – – 1 0.24 1 0.24

AIGSolve 43 3386.36 32 2119.95 11 1266.41 18 1861.10
ghostq 27 217.17 17 46.44 10 170.43 13 190.25
QuBE 19 2653.56 16 2365.20 3 288.37 4 359.28

2005 rareqs 8 5.57 – – 8 5.57 3 0.54
(168) StruQS 8 921.27 6 687.03 2 234.24 – –

sKizzo 7 595.39 7 595.39 – – – –
quantor 5 144.64 4 137.29 1 7.34 – –
depqbf 1 243.79 – – 1 243.79 – –

ghostq 80 1577.10 80 1577.10 – – 5 15.33
AIGSolve 71 608.62 63 432.35 8 176.27 6 40.29
QuBE 61 1108.04 57 506.54 4 601.49 1 190.78

2006 StruQS 37 373.31 36 298.82 1 74.48 – –
(103) rareqs 4 277.89 1 102.27 3 175.62 – –

depqbf 1 22.85 – – 1 22.85 – –
quantor – – – – – – – –
sKizzo – – – – – – – –

QuBE 88 7239.68 13 2729.53 75 4510.16 13 643.41
rareqs 83 2706.28 10 1905.49 73 800.79 31 1741.36
AIGSolve 61 765.34 36 547.74 25 217.61 34 445.93

2007 depqbf 50 2902.71 6 378.32 44 2524.39 5 264.06
(281) ghostq 49 1699.99 41 360.23 8 1339.76 19 275.34

quantor 14 1302.44 11 1225.27 3 77.17 6 517.17
StruQS 11 2051.88 11 2051.88 – – – –
sKizzo 5 953.55 1 50.44 4 903.11 – –

AIGSolve 335 13128.70 237 8439.00 98 4689.70 135 8250.56
ghostq 304 8299.71 257 5325.55 47 2974.16 49 1493.92
QuBE 198 19753.10 71 13501.39 127 6251.71 21 2320.72

2008 rareqs 126 4220.58 16 2744.06 110 1476.52 36 2255.13
(961) depqbf 96 4626.18 7 495.77 89 4130.41 4 261.53

sKizzo 57 3599.21 26 1664.18 31 1935.02 1 275.69
StruQS 50 5458.74 47 4844.87 3 613.87 – –
quantor 19 1646.95 18 1621.94 1 25.02 15 1166.44

ghostq 29 591.60 25 281.30 4 309.76 10 342.94
AIGSolve 22 282.18 20 262.94 2 19.24 5 208.02
sKizzo 8 564.39 8 564.39 – – – –

2010 QuBE 4 210.40 1 19.08 3 191.32 2 50.80
(96) rareqs 2 17.41 – – 2 17.41 1 0.50

depqbf 1 22.85 – – 1 22.85 – –
quantor – – – – – – – –
StruQS – – – – – – – –

Table 3. Performances of QBF solvers on challenging instances: The table is split in six
horizontal parts, one for each family. The first column contains the QBFEVAL-related
year families names, as well as its total amount of instances. The rest of the table is
organized as Table 1.

6

2004 2005 2006 2007 2008 2010

sota 88 65 85 207 601 37

sota-new 53 34 75 148 393 30

sota-legacy 69 49 77 150 492 26

Table 4. Performance of state-of-the-art solvers on challenging formulas. The table
is organized as follows. The first column reports considered sota(s), while the remain-
ing columns denote the pool of challenging formulas. In cells is shown the total amount
of solved instances by the related sota. In bold we denote the best performance be-
tween sota-new and sota-legacy.

7

