Model Finding for Recursive
Functions in SMT

Andrew Reynolds
Jasmin Christian Blanchette
Cesare Tinelli
QUANTIFY August 3, 2015

Recursive Functions

e Recursive function definitions:
f(x:Int) := 1f x20 then 0 else f(x-1)+x

* Are useful in applications:
* Software verification
* Theorem Proving

e Often, interested in finding models for

e Conjectures (dx.) P (£, x) in the presence of recursive functions £
* This poses a challenge to current Satisfiability Modulo Theories (SMT) solvers

Recursive Functions

* Recursive function definitions:
f(x:Int) := 1if x20 then 0 else f(x-1)+x
e Can be expressed in SMT as quantified formulas (with theories):
Vx:Int. f(x)=ite (x20,0, f(x-1)+x)
* SMT solver must handle inputs of the form:
Vx.f, (x)=t,
A G
Vx.f (x)=t

n

Set of function definitions Conjecture

Recursive Functions

* In this talk:

e Existing techniques for quantified formulas in SMT
* Limited in their ability to find models when recursive functions are present

* A satisfiability-preserving translation A for function definitions
* Allows us to use existing techniques for model finding

» Evaluation of translation A on benchmarks from theorem proving/verification

Existing Techniques for Quantified Formulas in SMT

* Heuristic Techniques for UNSAT:
* E-matching [Detlefs et al 2003, Ge et al 2007, de Moura/Bjorner 2007]

* Limited Techniques for SAT:
 Local theory extensions [Sofronie-Stokkermans 2005]
* Array fragments [Bradley et al 2006, Alberti et al 2014]
 Complete Instantiation [Ge/de Moura 2009]

* Implemented in Z3

* Finite Model Finding [Reynolds et al 2013]
* Implemented in CVC4

Existing Techniques for Quantified Formulas in SMT

* Heuristic Techniques for UNSAT:
* E-matching [Detlefs et al 2003, Ge et al 2007, de Moura/Bjorner 2007]

* Limited Techniques for SAT:
 Local theory extensions [Sofronie-Stokkermans 2005]
* Array fragments [Bradley et al 2006, Alberti et al 2014]
* Complete Instantiation [Ge/de Moura 2009]

* Implemented in Z3

* Finite Model Finding [Reynolds et al 2013]
* Implemented in CVC4

Focus of next slides

Complete Instantiation in Z3

* Complete method for V in essentially uninterpreted fragment

Vx:Int. (f(x)=g(x)+5) A f(a)=qg(b)

All occurrences of x are children of UF

Complete Instantiation in Z3

Vx:Int. (f(x)=g(x)+5) A f(a)=qg(b)

R(f;)=R(g;)=R(x),aeR(f;),beR(g;)
. R(x)={a,b}

Relevant domain R (x) of variable xis {a, b}

Complete Instantiation in Z3

Vx:Int. (f(x)=g(x)+5) A f(a)=qg(b)

R(f,)=R(g;)=R(x),a€eR(f;),beR(g;)
equisatisfiable to S R(x)={a,b}

f(a)=g(a)+to A £(b)=g((b)+5 A f£(a)=g(b)

}

Finite Model Finding in CVC4

* Finite Model-complete method for finite/uninterpreted V¥
Vxy:U. (x#y=f (x)#f (y)) A a#b

All variables have finite/uninterpreted sort U

Finite Model Finding in CVC4

Vxy:U. (x#y=f (x)#f (y)) A a#b

M(U) := {a,b}

Model interprets Uas thesetM (U) ={a, b}

Finite Model Finding in CVC4

Vxy:U. (x#2y=TF (x) #f (y))

equisatisfiable to I

aFra—=>f
aFb—=f
b#a=f
b#b=f

A a¥b

...Both fail on most Recursive Function Definitions!

* Example:

Vx:Int. (f(x)=ite(x20,0,f(x-1)+x)) A f£(k)>100

...Both fail on most Recursive Function Definitions!

* Example:

Vx:Int. (f(x)=1te(x£0,0,f(x-1)+x)) A f£(k)>100

 Complete instantiation:

* Fails, since body has subterm £ (x-1) +x with unshielded variable x
e R(x)={k,k-1,k-2,k-3,..}

...Both fail on most Recursive Function Definitions!

* Example:

Vx:Int. (f(x)=ite(x20,0,f(x-1)+x)) A f£(k)>100

 Complete instantiation:
* Fails, since body has subterm £ (x-1) +x with unshielded variable x
* R(x)={k,k-1,k-2,k-3,..}
* Finite Model Finding:

* Fails, since quantification is over infinite type Int
e M(Int)={..,, -3, -2, -1, 0, 1, 2, 3, ..}

Running example

Vx:Int. (f(x)=1ite (x20,0,f(x-1)+x)) A
f(k)>100

* Function £
e Returns the sum of all positive integers up to x, when x is non-negative

* Formula is satisfiable
* By models interpreting k as an integer >14

Can we make the problem easier?

Vx:Int. (f(x)=1ite (x20,0,f(x-1)+x)) A

f(k)>100 ®

e What if we assume function definitions in ® are well-behaved?
* E.g. we know that £ is terminating

* Introduce translation A, which:
e Restricts quantification to subset of the domain of function definitions
* Under right assumptions, preserves satisfiability

* Use existing techniques for model finding in Z3, CVC4 on A (D)

Translation A

Translation A: Part 1

Vx:o.ite (y(x) =0
£ (y(x))
£ (y(x))

4

0,
f(y(x)-1)+y(x))A

f(k)>100

* Introduce uninterpreted sort a

e Conceptually, a represents the set of relevant arguments of £
e Restrict the domain of function definition quantification to a

* Introduce uninterpreted functiony: o —>Int
* Maps between abstract and concrete domains

Translation A: Part 2

Vx:a.ite (y(x) =0,
£ (y(x))
)

0
f(y(x))=f(y(x)-1)+Hy(x)A(dz:a.y(z)=y(x)-1))A
f(k)>100 A (dz:a.y(z)=k)

* Add appropriate constraints regarding a., y
e Each relevant concrete value must be mapped to by some abstract value

Translation A

x)-1)+y(x)A(dz:a.y(z) =y(x)-1)) A
) =k)

* VYV is essentially uninterpreted

Translation A

x)-1)+y(x)A(dz:a.y(z) =y(x)-1)) A
) =k)

* V is essentially uninterpreted, and over finite/uninterpreted sorts

Translation A

V(%) -1) +y(x)A(dz:o.y(z) =y(x)-1)) A
) =k)

* V is essentially uninterpreted, and over finite/uninterpreted sorts
—>Both Z3 (complete instantiation) and CVC4 (finite model finding)
find model for this benchmark in <.1 second

Translation A

Vx:a.ite (y(x) =0,

x)=-1)+ty(x)A(dz:a.y(z)=y(x) -1)) A
) =k)

* Formula is satisfied by a model M where:
e M(k):=14,M(f):=Ax.1ite(x=14,105,1ite (x=13,91,.. ite(x=1,1,0)..))

=M s correct only for relevant inputs of original formula, and note.qg. £ (15) =0
* Nevertheless, A is satisfiability-preserving under right assumptions

Translation A : Properties

* Translation A is:
e Refutation sound
e When A (D) is unsatisfiable, @ is unsatisfiable

* Model sound, when function definitions are admissible
e When A (D) is satisfiable, @ is satisfiable

Translation A : Properties

* Translation A is:
e Refutation sound
e When A (D) is unsatisfiable, @ is unsatisfiable

* Model sound, when function definitions are admissible
e When A (D) is satisfiable, @ is satisfiable

Focus of next slides

Admissible Function Definitions

* Given a function definition Vx. f (x) =t [x]

Foreach £ (k) eterms (G),
expand f (k) =t [k]
Set of ground until fixed point is reached
formulas

* The definition Vx . f (x) =t is admissible if:

G’ hasmodel = G’ AVx.f (x)=t[x] is also has model

Admissible Function Definitions

* Examples of admissible definitions:
* Terminating functions: Vx. f (x)=1ite (x=0,0, £ (x-1) +x)
 ..fis well-founded (terminating)
* Even non-terminating, tail recursive: Vx. f (x)=f (x-1) +1

Inadmissible Function Definitions

* Examples of inadmissible definitions:
* Inconsistent definitions: Vx. f (x)=f (x) +1
e ...nomodel for Vx.f (x)=f (x)+1
e Others: {Vx.f (x)=f(x)+g(x), VX.g(x)=g(x)}
e ...some ground formulas are inconsistent wrt these definitions
* Such cases are subtle, but rarely occur in practice

Evaluation

e Considered two sets of benchmarks:

* |Isa
* Challenge problems for inductive theorem provers
* Purely datatypes + recursive functions

* Leon
e Taken from Leon verification tool (EPFL)
* Many theories: datatypes + recursive functions + bitvectors + arrays + sets + arithmetic

e Consider mutated forms of these benchmarks (Isa-mut, Leon-mut)
* Obtained by swapping subterms in conjectures
* High likelihood to have models

* All benchmarks considered with/without translation A

Evaluation : solved SAT benchmarks

/3 CVC4t
¢ Ap) ¢ Alp) Total
Isa 0 0 0 0 79
Leon 0 2 0 9 166
[sa-Mut 0 35 0 153 213
Leon-Mut 11 75 6 169 427
Total 11T 112 6 331 885

* Translation increases ability of SMT solvers for finding models:
e /3:11->112
* CVC4:6->331

* Finds counterexamples to verification conditions of interest in Leon

Evaluation : solved UNSAT benchmarks

/3 CVC4t
¢ Alp) ¢ Alg) Total
[sa 14 15 15 15 /9
Leon 73 78 80 76 166
[sa-Mut 17 18 18 18 213
Leon-Mut 83 O8 104 95 427
Total 187 209 217 204 885

* Translation has mixed impact on UNSAT benchmarks:
/3 :187 -> 209
e CVC4:217->204

Translation as Preprocessor in CVC4

* CVC4 supports SMT LIB version 2.5 command:

(define-fun-rec £ ((x Int)) Int

(ite (<= x 0) 0 (+ (£ (- x 1)) x)))
(assert (> (f k) 100))
(check—-sat)

Translation as Preprocessor in CVC4

* Input (without 2) is equivalent to:

(assert (forall ((x Int))

(= (f x) (1te (<= x 0) O (+ (£ (- x 1))
(assert (> (f k) 100))
(check—-sat)

Translation as Preprocessor in CVC4

 Input (with 2) is equivalent to:

(declare-sort a 0)
(declare-fun g (a) Int
)

)
(assert (forall ((x a))
(1te (<= (g x) 0)
(= (£ (g x)) 0)
(and (= (£ (g x)) (+ (£ (= (g x) 1)) (g x))
(exists ((z a)) (= (g z) (= (g x) 1)))))))
(assert (and (> (£ k) 100) (exists ((z a)) (= (g z) k)))

(check-sat)

—> Enabled as preprocessor by command line parameter “--fmf-fun”

Translation as Preprocessor in CVC4

 Model (with 2) outputted is:

(model

(define-fun £ ((Sx1 Int)) Int
(ite (= $x1 14) 105 (ite (= S$x1 13) 91 (ite (= Sx1 12) 78
(ite (= $x1 11) o606 (ite (= $x1 10) 55 (ite (= $x1 4) 10
(ite (= $x1 9) 45 (ite (= $Sx1 8) 36 (ite (= Sx1 7) 28
(ite (= $x1 ©6) 21 (ite (= $x1 3) 6 (ite (= $x1 5) 15
(ite (= Sx1 2) 3 (ite (= 5Sx1 1) 1 .0)))))))))))))))

(

(define—-fun k () Int 14))

* Gives model that is correct for relevant inputs of function £

summary

* Translation A:

* Increases ability of SMT solvers for model finding recursive functions

* Complete instantiation in Z3
* Finite Model Finding in CVC4

e |Is model-sound for admissible function definitions

* Implemented as a preprocessor in CVC4 “—-fmf-fun”
* Responsibility on user to show function definitions are admissible

Future Work

* Increase scope of evaluation
e Comparison against existing counterexample generators (Leon, Nitpick, ...)

e Use of CVC4 as backend

* To Leon verification system
* To Isabelle proof assistant

* |dentify additional sufficient conditions for admissibility
e E.g. productive corecursive functions

Thanks!

* CVC4:
* Available at http://cvc4.cs.nyu.edu/downloads/

* To use translation A as a preprocessor:
* Use command line option “——fmf-fun”

