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Generalized quantifier theory studies the semantics of quantifier expressions,
like, ‘every’, ‘some’, ‘most’, ‘infinitely many’, ‘uncountably many’, etc. The clas-
sical version was developed in the 1980s, at the interface of linguistics, mathemat-
ics, and philosophy. In logic, generalized quantifiers are often defined as classes
of models closed on isomorphism (topic neutral). For instance, the quantifier
‘infinitely many’ may be defined as a class of all infinite models. Equivalently,
in linguistics generalized quantifiers are formally treated as relations between
subsets of the universe. For example, in the sentence ‘Most of the students are
smart’, quantifier ‘most’ is a binary relation between the set of students and the
set of smart people. The sentence is true if and only if the cardinality of the set
of smart students is greater than the cardinality of the set of students who are
not smart. Generalized quantifiers turned out to be one of the crucial notions in
the development of formal semantics but also logic, theoretical computer science
and philosophy [11]. In this talks we survey recent results combining classical
generalized quantifier themes and a computational complexity perspective, with
an outlook toward applications in cognitive science and linguistics [16].

We focus on the complexity of meaning of natural language quantifiers. The
general question we aim to answer is why the meanings of some sentences are
more difficult than the meanings of others. For instance, why we will probably
all agree that it is easier to evaluate sentence (1) than to evaluate sentence (2)
and why sentence (3) seems hard while sentence (4) sounds odd.

(1) Every book on the shelf is yellow.
(2) Most of the books on the shelf are yellow.
(3) Less than half of the members of parliament refer to each other.
(4) Some book by every author is referred to in some essay by every critic.

The tools of logic and computability theory are useful in making such differences
precise. The complexity analysis of the quantifier sentences in natural language
allows drawing and testing empirical predictions about cognitive difficulty of
language processing, and about specific cognitive resources (working memory,
executive functions, etc.) involved in it.

We will start by introducing the notion of monadic quantifiers—the most
important class of generalized quantifiers that captures the meanings of natural
language simple determiners. In particular, we will introduce so-called seman-
tic automata theory that associates each quantifier with a simple computational
device. We will also discuss some classical definability results connecting express-
ibility with semantic automata, e.g., all quantifiers definable in the first-order
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logic are recognizable by acyclic finite-automata [1, 9, 4]. In doing that we will use
fundamental notions of automata theory and draw some connections with psy-
chology, for instance, we will show that the distinction between finite-automata
and push-down automata quantifiers matters for psycholinguistics [8, 13, 14, 17,
20, 18].

Next we will survey current literature concerned with polyadic quantifica-
tion. We will explain how polyadic quantifiers result from semantically natural
operations applied to monadic quantifiers, like iteration, cumulation, or Ramsey-
ification. In addition to discussing definability issues, we will also demonstrate
how the semantic automata framework can be extended to iterations, showing
that if Q1 and Q2 are recognizable by finite-automata (push-down automata)
then also their iteration must be recognizable by finite-automata (push-down
automata) [12]. Furthermore, we will discuss computational complexity results
on more kinds of polyadic quantifiers—among others—proving a dichotomy re-
sult for Ramsey quantifiers [15, 2], namely, we show that the Ramseyification of
polynomial-time and constant-log-bounded monadic quantifiers result in polyno-
mial time computable Ramsey quantifiers while assuming the Exponential Time
Hypothesis. Moreover, we will discuss how such complexity results correlate with
linguistic distributions [19, 3].

In the final, most technical part, we will show how the standard generalized
quantifier theory, originally designed to deal with distributive quantification, can
be extended to cover collective quantifiers. We will discuss type-lifting strategies
constructing collective readings from distributive readings. We will also introduce
the notion of second-order generalized quantifier that is a natural mathematical
extension of Lindström quantifiers to the collective setting. We will introduce
the definability theory for second-order generalized quantifiers [5] and discuss
related computational complexity results [6]. In particular, we will show that
the question whether a second-order generalized quantifier Q1 is definable in
terms of another quantifier Q2, the base logic being monadic second-order logic,
reduces to the question if a quantifier Q?

1 is definable in FO(Q?
2, <,+,×) for

certain first-order quantifiers Q?
1 and Q?

2. We use our characterization to show
new definability and non-definability results for second-order generalized quanti-
fiers [7]. We will conclude with a more general methodological discussions, using
definability and complexity results we will ask about the expressivity bounds of
everyday language [10].
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