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First-Order Logic: Exercises

Which of the following statements are true?

1. First-order logic is an extension of propositional logic;
2. First-order logic is NP-complete.
3. First-order logic is PSPACE-complete.
4. First-order logic is decidable.
5. In first-order logic you can use quantifiers over sets.
6. One can axiomatise integers in first-order logic;
7. Compactness is the following property: a set of formulas having

arbitrarily large finite models has an infinite model;
8. Having proofs is good.
9. Vampire is a first-order theorem prover.
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Future and Our Motivation

1. Theorem proving will remain central in software verification and
program analysis. The role of theorem proving in these areas will
be growing.

2. Theorem provers will be used by a large number of users who do
not understand theorem proving and by users with very
elementary knowledge of logic.

3. Reasoning with both quantifiers and theories will remain the
main challenge in practical applications of theorem proving (at
least) for the next decade.

4. Theorem provers will be used in reasoning with very large
theories. These theories will appear in knowledge mining and
natural language processing.
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First-Order Theorem Proving. Example

Group theory theorem: if a group satisfies the identity x2 = 1, then it
is commutative.

More formally: in a group “assuming that x2 = 1 for all x prove that
x · y = y · x holds for all x , y .”
What is implicit: axioms of the group theory.

∀x(1 · x = x)
∀x(x−1 · x = 1)
∀x∀y∀z((x · y) · z = x · (y · z))
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Formulation in First-Order Logic

∀x(1 · x = x)
Axioms (of group theory): ∀x(x−1 · x = 1)

∀x∀y∀z((x · y) · z = x · (y · z))

Assumptions: ∀x(x · x = 1)
Conjecture: ∀x∀y(x · y = y · x)



In the TPTP Syntax
The TPTP library (Thousands of Problems for Theorem Provers),
http://www.tptp.org contains a large collection of first-order problems.
For representing these problems it uses the TPTP syntax, which is
understood by all modern theorem provers, including Vampire.

In the TPTP syntax this group theory problem can be written down as follows:

%---- 1 * x = 1
fof(left identity,axiom,

! [X] : mult(e,X) = X).
%---- i(x) * x = 1
fof(left inverse,axiom,

! [X] : mult(inverse(X),X) = e).
%---- (x * y) * z = x * (y * z)
fof(associativity,axiom,

! [X,Y,Z] : mult(mult(X,Y),Z) = mult(X,mult(Y,Z))).
%---- x * x = 1
fof(group of order 2,hypothesis,

! [X] : mult(X,X) = e).
%---- prove x * y = y * x
fof(commutativity,conjecture,

! [X] : mult(X,Y) = mult(Y,X)).

http://www.tptp.org
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Running Vampire of a TPTP file

is easy: simply use

vampire <filename>

One can also run Vampire with various options, some of them will be
explained later. For example, save the group theory problem in a file
group.tptp and try

vampire --thanks ReRiSE group.tptp
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First-Order Logic and TPTP
I Language: variables, function and predicate (relation) symbols. A

constant symbol is a special case of a function symbol.

Variable names
start with upper-case letters.

I Terms: variables, constants, and expressions f (t1, . . . , tn), where f is a
function symbol of arity n and t1, . . . , tn are terms. Terms denote domain
(universe) elements (objects).

I Atomic formula: expression p(t1, . . . , tn), where p is a predicate symbol
of arity n and t1, . . . , tn are terms. Formulas denote properties of domain
elements.

I All symbols are uninterpreted, apart from equality =.

FOL TPTP
⊥, > $false, $true
¬F ˜F

F1 ∧ . . . ∧ Fn F1 & ... & Fn
F1 ∨ . . . ∨ Fn F1 | ... | Fn

F1 → Fn F1 => Fn
(∀x1) . . . (∀xn)F ! [X1,...,Xn] : F
(∃x1) . . . (∃xn)F ? [X1,...,Xn] : F
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More on the TPTP Syntax

I Comments;
I Input formula names;
I Input formula roles (very important);
I Equality

%---- 1 * x = x
fof(left identity,axiom,(
! [X] : mult(e,X) = X )).

%---- i(x) * x = 1
fof(left inverse,axiom,(
! [X] : mult(inverse(X),X) = e )).

%---- (x * y) * z = x * (y * z)
fof(associativity,axiom,(

! [X,Y,Z] :
mult(mult(X,Y),Z) = mult(X,mult(Y,Z)) )).

%---- x * x = 1
fof(group of order 2,hypothesis,

! [X] : mult(X,X) = e ).
%---- prove x * y = y * x
fof(commutativity,conjecture,

! [X,Y] : mult(X,Y) = mult(Y,X) ).
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Proof by Vampire (Slightliy Modified)
Refutation found. Thanks to Tanya!
203. $false [subsumption resolution 202,14]
202. sP1(mult(sK,sK0)) [backward demodulation 188,15]
188. mult(X8,X9) = mult(X9,X8) [superposition 22,87]
87. mult(X2,mult(X1,X2)) = X1 [forward demodulation 71,27]
71. mult(inverse(X1),e) = mult(X2,mult(X1,X2)) [superposition 23,20]
27. mult(inverse(X2),e) = X2 [superposition 22,10]
23. mult(inverse(X4),mult(X4,X5)) = X5 [forward demodulation 18,9]
22. mult(X0,mult(X0,X1)) = X1 [forward demodulation 16,9]
20. e = mult(X0,mult(X1,mult(X0,X1))) [superposition 11,12]
18. mult(e,X5) = mult(inverse(X4),mult(X4,X5)) [superposition 11,10]
16. mult(e,X1) = mult(X0,mult(X0,X1)) [superposition 11,12]
15. sP1(mult(sK0,sK)) [inequality splitting 13,14]
14. ˜sP1(mult(sK,sK0)) [inequality splitting name introduction]
13. mult(sK,sK0) != mult(sK0,sK) [cnf transformation 8]
12. e = mult(X0,X0) (0:5) [cnf transformation 4]
11. mult(mult(X0,X1),X2)=mult(X0,mult(X1,X2))[cnf transformation 3]
10. e = mult(inverse(X0),X0) [cnf transformation 2]
9. mult(e,X0) = X0 [cnf transformation 1]
8. mult(sK,sK0) != mult(sK0,sK) [skolemisation 7]
7. ? [X0,X1] : mult(X0,X1) != mult(X1,X0) [ennf transformation 6]
6. ˜! [X0,X1] : mult(X0,X1) = mult(X1,X0) [negated conjecture 5]
5. ! [X0,X1] : mult(X0,X1) = mult(X1,X0) [input]
4. ! [X0] : e = mult(X0,X0)[input]
3. ! [X0,X1,X2] : mult(mult(X0,X1),X2) = mult(X0,mult(X1,X2)) [input]
2. ! [X0] : e = mult(inverse(X0),X0) [input]
1. ! [X0] : mult(e,X0) = X0 [input]

I Each inference derives a formula from zero or more other formulas;
I Input, preprocessing, new symbols introduction, superposition calculus
I Proof by refutation, generating and simplifying inferences, unused formulas . . .
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Statistics

Version: Vampire 3 (revision 2038)
Termination reason: Refutation

Active clauses: 14
Passive clauses: 28
Generated clauses: 124
Final active clauses: 8
Final passive clauses: 6
Input formulas: 5
Initial clauses: 6

Splitted inequalities: 1

Fw subsumption resolutions: 1
Fw demodulations: 32
Bw demodulations: 12

Forward subsumptions: 53
Backward subsumptions: 1
Fw demodulations to eq. taut.: 6
Bw demodulations to eq. taut.: 1

Forward superposition: 41
Backward superposition: 28
Self superposition: 4

Memory used [KB]: 255
Time elapsed: 0.005 s



Vampire

I Completely automatic: once you started a proof attempt, it can
only be interrupted by terminating the process.

I Champion of the CASC world-cup in first-order theorem proving:
won CASC 28 times.
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Main applications

I Software and hardware verification;
I Static analysis of programs;
I Query answering in first-order knowledge bases (ontologies);
I Theorem proving in mathematics, especially in algebra;

I Verification of cryptographic protocols;
I Retrieval of software components;
I Reasoning in non-classical logics;
I Program synthesis;
I Writing papers and giving talks at various conferences and

schools . . .
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What an Automatic Theorem Prover is Expected to Do

Input:

I a set of axioms (first order formulas) or clauses;
I a conjecture (first-order formula or set of clauses).

Output:

I proof (hopefully).



Proof by Refutation

Given a problem with axioms and assumptions F1, . . . ,Fn and
conjecture G,

1. negate the conjecture;
2. establish unsatisfiability of the set of formulas F1, . . . ,Fn,¬G.

Thus, we reduce the theorem proving problem to the problem of
checking unsatisfiability.

In this formulation the negation of the conjecture ¬G is treated like
any other formula. In fact, Vampire (and other provers) internally treat
conjectures differently, to make proof search more goal-oriented.
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General Scheme (simplified)

I Read a problem;
I Determine proof-search options to be used for this problem;
I Preprocess the problem;
I Convert it into CNF;
I Run a saturation algorithm on it, try to derive ⊥.
I If ⊥ is derived, report the result, maybe including a refutation.

Trying to derive ⊥ using a saturation algorithm is the hardest part,
which in practice may not terminate or run out of memory.
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Inference System

I inference has the form

F1 . . . Fn

G
,

where n ≥ 0 and F1, . . . ,Fn,G are formulas.
I The formula G is called the conclusion of the inference;
I The formulas F1, . . . ,Fn are called its premises.
I An inference rule R is a set of inferences.
I Every inference I ∈ R is called an instance of R.
I An Inference system I is a set of inference rules.
I Axiom: inference rule with no premises.



Inference System: Example

Represent the natural number n by the string | . . . |︸︷︷︸
n times

ε.

The following inference system contains 6 inference rules for deriving
equalities between expressions containing natural numbers, addition
+ and multiplication ·.

ε = ε (ε)
x = y
|x = |y

(|)

ε+ x = x (+1)
x + y = z
|x + y = |z

(+2)

ε · x = ε (·1)
x · y = u y + u = z

|x · y = z
(·2)



Derivation, Proof

I Derivation in an inference system I: a tree built from inferences
in I.

I If the root of this derivation is E , then we say it is a derivation of
E .

I Proof of E : a finite derivation whose leaves are axioms.
I Derivation of E from E1, . . . ,Em: a finite derivation of E whose

every leaf is either an axiom or one of the expressions
E1, . . . ,Em.



Examples
For example,

||ε+ |ε = |||ε
|||ε+ |ε = ||||ε

(+2)

is an inference that is an instance (special case) of the inference rule

x + y = z
|x + y = |z

(+2)

It has one premise ||ε+ |ε = |||ε and the conclusion |||ε+ |ε = ||||ε.

The axiom

ε+ |||ε = |||ε
(+1)

is an instance of the rule

ε+ x = x (+1)
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Proof in this Inference System

Proof of ||ε · ||ε = ||||ε (that is, 2 · 2 = 4).
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Derivation in this Inference System
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0 + 2 = 3).

ε · ||ε = ε
(·1)

ε+ ε = ε
(+1)

|ε+ ε = |ε
(+2)

||ε+ ε = ||ε
(+2)

|ε · ||ε = ||ε
(·2)

ε+ ||ε = |||ε
|ε+ ||ε = ||||ε

(+2)

||ε+ ||ε = |||||ε
(+2)

||ε · ||ε = ||||ε
(·2).



Arbitrary First-Order Formulas

I A first-order signature (vocabulary): function symbols (including
constants), predicate symbols. Equality is part of the language.

I A set of variables.
I Terms are built using variables and function symbols. For

example, f (x) + g(x).
I Atoms, or atomic formulas are obtained by applying a predicate

symbol to a sequence of terms. For example, p(a, x) or
f (x) + g(x) ≥ 2.

I Formulas: built from atoms using logical connectives ¬, ∧, ∨,→,
↔ and quantifiers ∀, ∃. For example, (∀x)x = 0 ∨ (∃y)y > x .



Clauses

I Literal: either an atom A or its negation ¬A.
I Clause: a disjunction L1 ∨ . . . ∨ Ln of literals, where n ≥ 0.

I Empty clause, denoted by �: clause with 0 literals, that is, when
n = 0.

I A formula in Clausal Normal Form (CNF): a conjunction of
clauses.

I A clause is ground if it contains no variables.
I If a clause contains variables, we assume that it implicitly

universally quantified. That is, we treat p(x) ∨ q(x) as
∀x(p(x) ∨ q(x)).
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Binary Resolution Inference System

The binary resolution inference system, denoted by BR is an
inference system on propositional clauses (or ground clauses).
It consists of two inference rules:

I Binary resolution, denoted by BR:

p ∨ C1 ¬p ∨ C2

C1 ∨ C2
(BR).

I Factoring, denoted by Fact:

L ∨ L ∨ C
L ∨ C

(Fact).



Soundness

I An inference is sound if the conclusion of this inference is a
logical consequence of its premises.

I An inference system is sound if every inference rule in this
system is sound.

BR is sound.

Consequence of soundness: let S be a set of clauses. If � can be
derived from S in BR, then S is unsatisfiable.
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Example

Consider the following set of clauses

{¬p ∨ ¬q, ¬p ∨ q, p ∨ ¬q, p ∨ q}.

The following derivation derives the empty clause from this set:

p ∨ q p ∨ ¬q
p ∨ p (BR)

p (Fact)

¬p ∨ q ¬p ∨ ¬q
¬p ∨ ¬p (BR)

¬p (Fact)

�
(BR)

Hence, this set of clauses is unsatisfiable.



Can this be used for checking (un)satisfiability

1. What happens when the empty clause cannot be derived from
S?

2. How can one search for possible derivations of the empty
clause?



Can this be used for checking (un)satisfiability

1. Completeness.
Let S be an unsatisfiable set of clauses. Then there
exists a derivation of � from S in BR.

2. We have to formalize search for derivations.

However, before doing this we will introduce a slightly more refined
inference system.
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Selection Function

A literal selection function selects literals in a clause.

I If C is non-empty, then at least one literal is selected in C.

We denote selected literals by underlining them, e.g.,

p ∨ ¬q

Note: selection function does not have to be a function. It can be any
oracle that selects literals.
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Binary Resolution with Selection

We introduce a family of inference systems, parametrised by a literal
selection function σ.
The binary resolution inference system, denoted by BRσ, consists of
two inference rules:

I Binary resolution, denoted by BR

p ∨ C1 ¬p ∨ C2

C1 ∨ C2
(BR).

I Positive factoring, denoted by Fact:

p ∨ p ∨ C

p ∨ C
(Fact).
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Completeness?

Binary resolution with selection may be incomplete, even when
factoring is unrestricted (also applied to negative literals).

Consider this set of clauses:

(1) ¬q ∨ r
(2) ¬p ∨ q
(3) ¬r ∨ ¬q
(4) ¬q ∨ ¬p
(5) ¬p ∨ ¬r
(6) ¬r ∨ p
(7) r ∨ q ∨ p

It is unsatisfiable:

(8) q ∨ p (6,7)
(9) q (2,8)
(10) r (1,9)
(11) ¬q (3,10)
(12) � (9,11)

Note the linear representation of
derivations (used by Vampire and
many other provers).

However, any inference with selection applied to this set of clauses
give either a clause in this set, or a clause containing a clause in this
set.
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Literal Orderings

Take any well-founded ordering � on atoms, that is, an ordering such
that there is no infinite decreasing chain of atoms:

A0 � A1 � A2 � · · ·

In the sequel � will always denote a well-founded ordering.

Extend it to an ordering on literals by:

I If p � q, then p � ¬q and ¬p � q;
I ¬p � p.

Exercise: prove that the induced ordering on literals is well-founded
too.
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Orderings and Well-Behaved Selections

Fix an ordering �. A literal selection function is well-behaved if

I If all selected literals are positive, then all maximal (w.r.t. �)
literals in C are selected.

In other words, either a negative literal is selected, or all maximal
literals must be selected.

To be well-behaved, we sometimes must select more than one
different literal in a clause. Example: p ∨ p or p(x) ∨ p(y).
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Completeness of Binary Resolution with Selection

Binary resolution with selection is complete for every well-behaved
selection function.

Consider our previous example:

(1) ¬q ∨ r
(2) ¬p ∨ q
(3) ¬r ∨ ¬q
(4) ¬q ∨ ¬p
(5) ¬p ∨ ¬r
(6) ¬r ∨ p
(7) r ∨ q ∨ p

A well-behave selection function
must satisfy:

1. r � q, because of (1)
2. q � p, because of (2)
3. p � r , because of (6)

There is no ordering that satisfies
these conditions.
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How to Establish Unsatisfiability?

Completess is formulated in terms of derivability of the empty clause
� from a set S0 of clauses in an inference system I. However, this
formulations gives no hint on how to search for such a derivation.

Idea:

I Take a set of clauses S (the search space), initially S = S0.
Repeatedly apply inferences in I to clauses in S and add their
conclusions to S, unless these conclusions are already in S.

I If, at any stage, we obtain �, we terminate and report
unsatisfiability of S0.



How to Establish Unsatisfiability?

Completess is formulated in terms of derivability of the empty clause
� from a set S0 of clauses in an inference system I. However, this
formulations gives no hint on how to search for such a derivation.

Idea:

I Take a set of clauses S (the search space), initially S = S0.
Repeatedly apply inferences in I to clauses in S and add their
conclusions to S, unless these conclusions are already in S.

I If, at any stage, we obtain �, we terminate and report
unsatisfiability of S0.



How to Establish Satisfiability?

When can we report satisfiability?

When we build a set S such that any inference applied to clauses in S
is already a member of S. Any such set of clauses is called saturated
(with respect to I).

In first-order logic it is often the case that all saturated sets are infinite
(due to undecidability), so in practice we can never build a saturated
set.

The process of trying to build one is referred to as saturation.
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Saturated Set of Clauses

Let I be an inference system on formulas and S be a set of formulas.

I S is called saturated with respect to I, or simply I-saturated, if for
every inference of I with premises in S, the conclusion of this
inference also belongs to S.

I The closure of S with respect to I, or simply I-closure, is the
smallest set S′ containing S and saturated with respect to I.



Inference Process

Inference process: sequence of sets of formulas S0,S1, . . ., denoted
by

S0 ⇒ S1 ⇒ S2 ⇒ . . .

(Si ⇒ Si+1) is a step of this process.

We say that this step is an I-step if

1. there exists an inference

F1 . . . Fn

F

in I such that {F1, . . . ,Fn} ⊆ Si ;
2. Si+1 = Si ∪ {F}.

An I-inference process is an inference process whose every step is
an I-step.
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Property

Let S0 ⇒ S1 ⇒ S2 ⇒ . . . be an I-inference process and a formula F
belongs to some Si . Then Si is derivable in I from S0. In particular,
every Si is a subset of the I-closure of S0.



Limit of a Process

The limit of an inference process S0 ⇒ S1 ⇒ S2 ⇒ . . . is the set of
formulas

⋃
i Si .

In other words, the limit is the set of all derived formulas.

Suppose that we have an infinite inference process such that S0 is
unsatisfiable and we use a sound and complete inference system.

Question: does completeness imply that the limit of the process
contains the empty clause?
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Fairness

Let S0 ⇒ S1 ⇒ S2 ⇒ . . . be an inference process with the limit S∞.
The process is called fair if for every I-inference

F1 . . . Fn

F
,

if {F1, . . . ,Fn} ⊆ S∞, then there exists i such that F ∈ Si .



Completeness, reformulated

Theorem Let I be an inference system. The following conditions are
equivalent.

1. I is complete.
2. For every unsatisfiable set of formulas S0 and any fair I-inference

process with the initial set S0, the limit of this inference process
contains �.
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Clause Selection
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Saturation Algorithm

A saturation algorithm tries to saturate a set of clauses with respect to
a given inference system.
In theory there are three possible scenarios:

1. At some moment the empty clause � is generated, in this case
the input set of clauses is unsatisfiable.

2. Saturation will terminate without ever generating �, in this case
the input set of clauses in satisfiable.

3. Saturation will run forever, but without generating �. In this case
the input set of clauses is satisfiable.



Saturation Algorithm in Practice

In practice there are three possible scenarios:

1. At some moment the empty clause � is generated, in this case
the input set of clauses is unsatisfiable.

2. Saturation will terminate without ever generating �, in this case
the input set of clauses in satisfiable.

3. Saturation will run until we run out of resources, but without
generating �. In this case it is unknown whether the input set is
unsatisfiable.



Saturation Algorithm

Even when we implement inference selection by clause selection,
there are too many inferences, especially when the search space
grows.

Solution: only apply inferences to the selected clause and the
previously selected clauses.
Thus, the search space is divided in two parts:

I active clauses, that participate in inferences;
I passive clauses, that do not participate in inferences.

Observation: the set of passive clauses is usually considerably larger
than the set of active clauses, often by 2-4 orders of magnitude
(depending on the saturation algorithm and the problem).
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Subsumption and Tautology Deletion

A clause is a propositional tautology if it is of the form A ∨ ¬A ∨ C,
that is, it contains a pair of complementary literals.
There are also equational tautologies, for example
a 6' b ∨ b 6' c ∨ f (c, c) ' f (a,a).

A clause C subsumes any clause C ∨ D, where D is non-empty.

It was known since 1965 that subsumed clauses and propositional
tautologies can be removed from the search space.
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Problem

How can we prove that completeness is preserved if we remove
subsumed clauses and tautologies from the search space?

Solution: general theory of redundancy.
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Bag Extension of an Ordering

Bag = finite multiset.
Let > be any ordering on a set X . The bag extension of > is a binary
relation >bag , on bags over X , defined as the smallest transitive
relation on bags such that

{x , y1, . . . , yn} >bag {x1, . . . , xm, y1, . . . , yn}
if x > xi for all i ∈ {1 . . .m},

where m ≥ 0.

Idea: a bag becomes smaller if we replace an element by any finite
number of smaller elements.
The following results are known about the bag extensions of
orderings:

1. >bag is an ordering;
2. If > is total, then so is >bag ;
3. If > is well-founded, then so is >bag .
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Clause Orderings

From now on consider clauses also as bags of literals. Note:

I we have an ordering � for comparing literals;
I a clause is a bag of literals.

Hence

I we can compare clauses using the bag extension �bag of �.

For simpicity we denote the multiset ordering also by �.
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From now on consider clauses also as bags of literals. Note:

I we have an ordering � for comparing literals;
I a clause is a bag of literals.

Hence

I we can compare clauses using the bag extension �bag of �.

For simpicity we denote the multiset ordering also by �.



Redundancy

A clause C ∈ S is called redundant in S if it is a logical consequence
of clauses in S strictly smaller than C.



Examples

A tautology A ∨ ¬A ∨ C is a logical consequence of the empty set of
formulas:

|= A ∨ ¬A ∨ C,

therefore it is redundant.

We know that C subsumes C ∨ D. Note

C ∨ D � C
C |= C ∨ D

therefore subsumed clauses are redundant.

If � ∈ S, then all non-empty other clauses in S are redundant.
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Redundant Clauses Can be Removed

In BRσ (and in all calculi we will consider later) redundant clauses
can be removed from the search space.
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Inference Process with Redundancy

Let I be an inference system. Consider an inference process with two
kinds of step Si ⇒ Si+1:

1. Adding the conclusion of an I-inference with premises in Si .
2. Deletion of a clause redundant in Si , that is

Si+1 = Si − {C},

where C is redundant in Si .



Fairness: Persistent Clauses and Limit

Consider an inference process

S0 ⇒ S1 ⇒ S2 ⇒ . . .

A clause C is called persistent if

∃i∀j ≥ i(C ∈ Sj).

The limit Sω of the inference process is the set of all persistent
clauses:

Sω =
⋃

i=0,1,...

⋂
j≥i

Sj .



Fairness

The process is called I-fair if every inference with persistent premises
in Sω has been applied, that is, if

C1 . . . Cn

C

is an inference in I and {C1, . . . ,Cn} ⊆ Sω, then C ∈ Si for some i .



Completeness of BR�,σ

Completeness Theorem. Let � be a simplification ordering and σ a
well-behaved selection function. Let also

1. S0 be a set of clauses;
2. S0 ⇒ S1 ⇒ S2 ⇒ . . . be a fair BR�,σ-inference process.

Then S0 is unsatisfiable if and only if � ∈ Si for some i .



Saturation up to Redundancy

A set S of clauses is called saturated up to redundancy if for every
I-inference

C1 . . . Cn

C

with premises in S, either

1. C ∈ S; or
2. C is redundant w.r.t. S, that is, S≺C |= C.



End of Lecture 2

Slides for lecture 2 ended here . . .



Proof of Completeness

A trace of a clause C: a set of clauses {C1, . . . ,Cn} ⊆ Sω such that

1. C � Ci for all i = 1, . . . ,n;
2. C1, . . . ,Cn |= C.

Lemma 1. Every removed clause has a trace.
Lemma 2. The limit Sω is saturated up to redundancy.
Lemma 3. The limit Sω is logically equivalent to the initial set S0.
Lemma 4. A set S of clauses saturated up to redundancy in BR�,σ is
unsatisfiable if and only if � ∈ S.

Interestingly, only the last lemma uses rules of BR�,σ.
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Binary Resolution with Selection

One of the key properties to satisfy this lemma is the following: the
conclusion of every rule is strictly smaller that the rightmost premise
of this rule.

I Binary resolution,

p ∨ C1 ¬p ∨ C2

C1 ∨ C2
(BR).

I Positive factoring,

p ∨ p ∨ C

p ∨ C
(Fact).



Saturation up to Redundancy and Satisfiability
Checking

Lemma 4. A set S of clauses saturated up to redundancy in BR�,σ is
unsatisfiable if and only if � ∈ S.

Therefore, if we built a set saturated up to redundancy, then the initial
set S0 is satisfiable. This is a powerful way of checking redundancy:
one can even check satisfiability of formulas having only infinite
models.

The only problem with this characterisation is that there is no obvious
way to build a model of S0 out of a saturated set.
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First-order logic with equality

I Equality predicate: =.
I Equality: l = r .

The order of literals in equalities does not matter, that is, we consider
an equality l = r as a multiset consisting of two terms l , r , and so
consider l = r and r = l equal.



Equality. An Axiomatisation

I reflexivity axiom: x = x ;
I symmetry axiom: x = y → y = x ;
I transitivity axiom: x = y ∧ y = z → x = z;
I function substitution axioms:

x1 = y1 ∧ . . . ∧ xn = yn → f (x1, . . . , xn) = f (y1, . . . , yn), for every
function symbol f ;

I predicate substitution axioms:
x1 = y1 ∧ . . . ∧ xn = yn ∧ P(x1, . . . , xn)→ P(y1, . . . , yn) for every
predicate symbol P.



Inference systems for logic with equality

We will define a resolution and superposition inference system. This
system is complete. One can eliminate redundancy (but the literal
ordering needs to satisfy additional properties).

Moreover, we will first define it only for ground clauses. On the
theoretical side,

I Completeness is first proved for ground clauses only.
I It is then “lifted” to arbitrary clauses using a technique called

lifting.
I Moreover, this way some notions (ordering, selection function)

can first be defined for ground clauses only and then it is
relatively easy to see how to generalise them for non-ground
clauses.
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Simple Ground Superposition Inference System

Superposition: (right and left)

l = r ∨ C s[l] = t ∨ D
s[r ] = t ∨ C ∨ D

(Sup),
l = r ∨ C s[l] 6' t ∨ D

s[r ] 6' t ∨ C ∨ D
(Sup),

Equality Resolution:

s 6' s ∨ C
C

(ER),

Equality Factoring:

s = t ∨ s = t ′ ∨ C
s = t ∨ t 6' t ′ ∨ C

(EF),
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Example

f (a) = a ∨ g(a) = a
f (f (a)) = a ∨ g(g(a)) 6' a
f (f (a)) 6' a



Can this system be used for efficient theorem proving?

Not really. It has too many inferences. For example, from the clause
f (a) = a we can derive any clause of the form

f m(a) = f n(a)

where m,n ≥ 0.

Worst of all, the derived clauses can be much larger than the original
clause f (a) = a.
The recipe is to use the previously introduced ingredients:

1. Ordering;
2. Literal selection;
3. Redundancy elimination.
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Atom and literal orderings on equalities

Equality atom comparison treats an equality s = t as the multiset
{̇s, t }̇.

I (s′ = t ′) �lit (s = t) if {̇s′, t ′}̇ � {̇s, t }̇.
I (s′ 6' t ′) �lit (s 6' t) if {̇s′, t ′}̇ � {̇s, t }̇.

Finally, we assert that all non-equality literals be greater than all
equality literals.



Ground Superposition Inference System Sup�,σ

Let σ be a literal selection function.
Superposition: (right and left)

l = r ∨ C s[l] = t ∨ D

s[r ] = t ∨ C ∨ D
(Sup),

l = r ∨ C s[l] 6' t ∨ D

s[r ] 6' t ∨ C ∨ D
(Sup),

where (i) l � r , (ii) s[l] � t , (iii) l = r is strictly greater than any literal in C, (iv)
s[l] = t is greater than or equal to any literal in D.

Equality Resolution:

s 6' s ∨ C

C
(ER),

Equality Factoring:

s = t ∨ s = t ′ ∨ C
s = t ∨ t 6' t ′ ∨ C

(EF),

where (i) s � t � t ′; (ii) s = t is greater than or equal to any literal in C.
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Extension to arbitrary (non-equality) literals

I Consider a two-sorted logic in which equality is the only
predicate symbol.

I Interpret terms as terms of the first sort and non-equality atoms
as terms of the second sort.

I Add a constant > of the second sort.
I Replace non-equality atoms p(t1, . . . , tn) by equalities of the

second sort p(t1, . . . , tn) = >.

For example, the clause

p(a,b) ∨ ¬q(a) ∨ a 6= b

becomes

p(a,b) = > ∨ q(a) 6' > ∨ a 6= b.
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Binary resolution inferences can be represented by
inferences in the superposition system

We ignore selection functions.

A ∨ C1 ¬A ∨ C2

C1 ∨ C2
(BR)

A = > ∨ C1 A 6' > ∨ C2

> 6' > ∨ C1 ∨ C2
(Sup)

C1 ∨ C2
(ER)



Exercise

Positive factoring can also be represented by inferences in the
superposition system.



Simplification Ordering

The only restriction we imposed on term orderings was
well-foundedness and stability under substitutions. When we deal
with equality, these two properties are insufficient. We need a third
property, called monotonicity.
An ordering � on terms is called a simplification ordering if

1. � is well-founded;
2. � is monotonic: if l � r , then s[l] � s[r ];
3. � is stable under substitutions: if l � r , then lθ � rθ.

One can combine the last two properties into one:

2a. If l � r , then s[lθ] � s[rθ].
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