
Reasoning Engines for
Rigorous System Engineering

Block 3: Quantified Boolean Formulas and DepQBF

1. Inside Search-based QBF Solvers

Uwe Egly Florian Lonsing

Knowledge-Based Systems Group
Institute of Information Systems
Vienna University of Technology

This work is supported by the Austrian Science Fund (FWF) under grant S11409-N23.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 1 / 61

Overview (1/2)

Success Story of SAT Solving:
Backtracking search, clause learning as systematic application of resolution: CDCL
Broad field of research: solver technology, theory, applications.
Solver development driven by applications and vice versa.

Quantified Boolean Formulae (QBF):
Explicit quantifiers (∀, ∃) over propositional variables.
NP-completeness of SAT vs. PSPACE-completeness of QBF.
Potentially more succinct QBF encodings of PSPACE-complete problems.

QBF Solving:
QCDCL: inspired by CDCL for SAT.
Alternative: variable elimination.
After peak in 2006/2007, renewed interest in QBF.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 2 / 61

Overview (1/2)

Success Story of SAT Solving:
Backtracking search, clause learning as systematic application of resolution: CDCL
Broad field of research: solver technology, theory, applications.
Solver development driven by applications and vice versa.

Quantified Boolean Formulae (QBF):
Explicit quantifiers (∀, ∃) over propositional variables.
NP-completeness of SAT vs. PSPACE-completeness of QBF.
Potentially more succinct QBF encodings of PSPACE-complete problems.

QBF Solving:
QCDCL: inspired by CDCL for SAT.
Alternative: variable elimination.
After peak in 2006/2007, renewed interest in QBF.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 2 / 61

Overview (1/2)

Success Story of SAT Solving:
Backtracking search, clause learning as systematic application of resolution: CDCL
Broad field of research: solver technology, theory, applications.
Solver development driven by applications and vice versa.

Quantified Boolean Formulae (QBF):
Explicit quantifiers (∀, ∃) over propositional variables.
NP-completeness of SAT vs. PSPACE-completeness of QBF.
Potentially more succinct QBF encodings of PSPACE-complete problems.

QBF Solving:
QCDCL: inspired by CDCL for SAT.
Alternative: variable elimination.
After peak in 2006/2007, renewed interest in QBF.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 2 / 61

Solver Performance in the QBF Gallery 2013

6 new formula sets, 150 formulas each.
At least one solver is good for a set (but it is not always the same).
http://www.kr.tuwien.ac.at/events/qbfgallery2013/

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 3 / 61

http://www.kr.tuwien.ac.at/events/qbfgallery2013/

Overview (2/2)

Our Focus:
Search-based QBF solving as a major approach (next to variable elimination).
Bottom-up approach: from basic building blocks to general view.
The role of Q-resolution in QBF solvers.

Lessons to be Learned:
(Q)CDCL is not just a combination of backtracking search and clause learning.
Implementation: QBF solvers are more complex than SAT solvers.
Pitfalls when porting SAT solver technology to QBF.

Example: DepQBF
Search-based QBF solver, under active development since 2010.
Open source: http://lonsing.github.io/depqbf/

Friday: API demo, examples of recent improvements (incremental solving).

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 4 / 61

http://lonsing.github.io/depqbf/

Overview (2/2)

Our Focus:
Search-based QBF solving as a major approach (next to variable elimination).
Bottom-up approach: from basic building blocks to general view.
The role of Q-resolution in QBF solvers.

Lessons to be Learned:
(Q)CDCL is not just a combination of backtracking search and clause learning.
Implementation: QBF solvers are more complex than SAT solvers.
Pitfalls when porting SAT solver technology to QBF.

Example: DepQBF
Search-based QBF solver, under active development since 2010.
Open source: http://lonsing.github.io/depqbf/

Friday: API demo, examples of recent improvements (incremental solving).

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 4 / 61

http://lonsing.github.io/depqbf/

Overview (2/2)

Our Focus:
Search-based QBF solving as a major approach (next to variable elimination).
Bottom-up approach: from basic building blocks to general view.
The role of Q-resolution in QBF solvers.

Lessons to be Learned:
(Q)CDCL is not just a combination of backtracking search and clause learning.
Implementation: QBF solvers are more complex than SAT solvers.
Pitfalls when porting SAT solver technology to QBF.

Example: DepQBF
Search-based QBF solver, under active development since 2010.
Open source: http://lonsing.github.io/depqbf/

Friday: API demo, examples of recent improvements (incremental solving).

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 4 / 61

http://lonsing.github.io/depqbf/

Syntax, Semantics, Notation

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 5 / 61

QBF Syntax

QBF in Prenex Conjunctive Normal Form:
Given a Boolean formula φ(x1, . . . , xm) in CNF.
Quantifier prefix Q1B1Q2B2 . . .QmBm.
Quantifiers Qi ∈ {∀, ∃}.
Quantifier block Bi ⊆ {x1, . . . , xm} containing variables.
QBF in prenex CNF (PCNF): Q1B1Q2B2 . . .QmBm.φ(x1, . . . , xm).
Bi ≤ Bi+1: quantifier blocks are linearly ordered (extended to variables, literals).

Example
Given the CNF φ := (x1 ∨ ¬x3) ∧ (x1 ∨ x4) ∧ (¬x2 ∨ ¬x3) ∧ (¬x3 ∨ x4).
Given the quantifier prefix ∀x1,x2∃x3,x4.
Prenex CNF: ∀x1,x2∃x3,x4.(x1 ∨ ¬x3) ∧ (x1 ∨ x4) ∧ (¬x2 ∨ ¬x3) ∧ (¬x3 ∨ x4).

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 6 / 61

QBF Syntax

QBF in Prenex Conjunctive Normal Form:
Given a Boolean formula φ(x1, . . . , xm) in CNF.
Quantifier prefix Q1B1Q2B2 . . .QmBm.
Quantifiers Qi ∈ {∀, ∃}.
Quantifier block Bi ⊆ {x1, . . . , xm} containing variables.
QBF in prenex CNF (PCNF): Q1B1Q2B2 . . .QmBm.φ(x1, . . . , xm).
Bi ≤ Bi+1: quantifier blocks are linearly ordered (extended to variables, literals).

Example
Given the CNF φ := (x1 ∨ ¬x3) ∧ (x1 ∨ x4) ∧ (¬x2 ∨ ¬x3) ∧ (¬x3 ∨ x4).
Given the quantifier prefix ∀x1,x2∃x3,x4.
Prenex CNF: ∀x1,x2∃x3,x4.(x1 ∨ ¬x3) ∧ (x1 ∨ x4) ∧ (¬x2 ∨ ¬x3) ∧ (¬x3 ∨ x4).

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 6 / 61

QBF Semantics (1/5)

Variable Assignments:
Mapping V → {>,⊥}, variables V = {x1, . . . , xm}, truth values > and ⊥.
Given a CNF φ(x1, . . . , xi , . . . , xm), assigning xi to v , where v ∈ {>,⊥}, produces
the CNF φ(x1, . . . , xm)[xi/v].
In φ(x1, . . . , xm)[xi/v], occurrences of xi are replaced by the value v .
Standard simplifications by Boolean algebra:
φ′ ∨ > ≡ >, φ′ ∨ ⊥ ≡ φ′, φ′ ∧ > ≡ φ′, φ′ ∧ ⊥ ≡ ⊥.
Write φ[xi] for φ[xi/>] and φ[¬xi] for φ[xi/⊥]: literals denote assignments.

Example
Given the CNF φ := (x1 ∨ ¬x2) ∧ (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3).
φ[x2/>] = (x1 ∨ ¬>) ∧ (> ∨ x3) ∧ (¬x1 ∨ ¬x3).
φ[x2/>] = (x1) ∧ (¬x1 ∨ ¬x3).

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 7 / 61

QBF Semantics (1/5)

Variable Assignments:
Mapping V → {>,⊥}, variables V = {x1, . . . , xm}, truth values > and ⊥.
Given a CNF φ(x1, . . . , xi , . . . , xm), assigning xi to v , where v ∈ {>,⊥}, produces
the CNF φ(x1, . . . , xm)[xi/v].
In φ(x1, . . . , xm)[xi/v], occurrences of xi are replaced by the value v .
Standard simplifications by Boolean algebra:
φ′ ∨ > ≡ >, φ′ ∨ ⊥ ≡ φ′, φ′ ∧ > ≡ φ′, φ′ ∧ ⊥ ≡ ⊥.
Write φ[xi] for φ[xi/>] and φ[¬xi] for φ[xi/⊥]: literals denote assignments.

Example
Given the CNF φ := (x1 ∨ ¬x2) ∧ (x2 ∨ x3) ∧ (¬x1 ∨ ¬x3).
φ[x2/>] = (x1 ∨ ¬>) ∧ (> ∨ x3) ∧ (¬x1 ∨ ¬x3).
φ[x2/>] = (x1) ∧ (¬x1 ∨ ¬x3).

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 7 / 61

QBF Semantics (2/5)

Recursive Definition:
Recursively assign the variables in prefix order (from left to right).
Base cases: the QBF > (⊥) is satisfiable (unsatisfiable).
ψ = ∀x . . . φ is satisfiable if ψ[¬x] and ψ[x] are satisfiable.
ψ = ∃x . . . φ is satisfiable if ψ[¬x] or ψ[x] is satisfiable.
Prerequisite: every variable is quantified in the prefix (no free variables).
Satisfiability-equivalence of two PCNFs ψ and ψ′: ψ ≡ ψ′.

Example
The PCNF ψ = ∀x∃y .(x ∨ ¬y) ∧ (¬x ∨ y) is satisfiable if

(1) ψ[x] = ∃y .(y) and
(2) ψ[¬x] = ∃y .(¬y) are satisfiable.

(1) ψ[x] = ∃y .(y) is satisfiable since ψ[x , y] = > is satisfiable.
(2) ψ[¬x] = ∃y .(¬y) is satisfiable since ψ[¬x ,¬y] = > is satisfiable.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 8 / 61

QBF Semantics (2/5)

Recursive Definition:
Recursively assign the variables in prefix order (from left to right).
Base cases: the QBF > (⊥) is satisfiable (unsatisfiable).
ψ = ∀x . . . φ is satisfiable if ψ[¬x] and ψ[x] are satisfiable.
ψ = ∃x . . . φ is satisfiable if ψ[¬x] or ψ[x] is satisfiable.
Prerequisite: every variable is quantified in the prefix (no free variables).
Satisfiability-equivalence of two PCNFs ψ and ψ′: ψ ≡ ψ′.

Example
The PCNF ψ = ∀x∃y .(x ∨ ¬y) ∧ (¬x ∨ y) is satisfiable if

(1) ψ[x] = ∃y .(y) and
(2) ψ[¬x] = ∃y .(¬y) are satisfiable.

(1) ψ[x] = ∃y .(y) is satisfiable since ψ[x , y] = > is satisfiable.
(2) ψ[¬x] = ∃y .(¬y) is satisfiable since ψ[¬x ,¬y] = > is satisfiable.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 8 / 61

QBF Semantics (2/5)

Recursive Definition:
Recursively assign the variables in prefix order (from left to right).
Base cases: the QBF > (⊥) is satisfiable (unsatisfiable).
ψ = ∀x . . . φ is satisfiable if ψ[¬x] and ψ[x] are satisfiable.
ψ = ∃x . . . φ is satisfiable if ψ[¬x] or ψ[x] is satisfiable.
Prerequisite: every variable is quantified in the prefix (no free variables).
Satisfiability-equivalence of two PCNFs ψ and ψ′: ψ ≡ ψ′.

Example
The PCNF ψ = ∀x∃y .(x ∨ ¬y) ∧ (¬x ∨ y) is satisfiable if

(1) ψ[x] = ∃y .(y) and
(2) ψ[¬x] = ∃y .(¬y) are satisfiable.

(1) ψ[x] = ∃y .(y) is satisfiable since ψ[x , y] = > is satisfiable.
(2) ψ[¬x] = ∃y .(¬y) is satisfiable since ψ[¬x ,¬y] = > is satisfiable.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 8 / 61

QBF Semantics (2/5)

Recursive Definition:
Recursively assign the variables in prefix order (from left to right).
Base cases: the QBF > (⊥) is satisfiable (unsatisfiable).
ψ = ∀x . . . φ is satisfiable if ψ[¬x] and ψ[x] are satisfiable.
ψ = ∃x . . . φ is satisfiable if ψ[¬x] or ψ[x] is satisfiable.
Prerequisite: every variable is quantified in the prefix (no free variables).
Satisfiability-equivalence of two PCNFs ψ and ψ′: ψ ≡ ψ′.

Example
The PCNF ψ = ∀x∃y .(x ∨ ¬y) ∧ (¬x ∨ y) is satisfiable if

(1) ψ[x] = ∃y .(y) and
(2) ψ[¬x] = ∃y .(¬y) are satisfiable.

(1) ψ[x] = ∃y .(y) is satisfiable since ψ[x , y] = > is satisfiable.
(2) ψ[¬x] = ∃y .(¬y) is satisfiable since ψ[¬x ,¬y] = > is satisfiable.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 8 / 61

QBF Semantics (3/5)

Example
The PCNF ψ = ∃y∀x .(x ∨ ¬y) ∧ (¬x ∨ y) is unsatisfiable because neither

(1) ψ[y] = ∀x .(x) nor
(2) ψ[¬y] = ∀x .(¬x) is satisfiable.

(1) ψ[y] = ∀x .(x) is unsatisfiable since ψ[y ,¬x] is unsatisfiable.
(2) ψ[¬y] = ∀x .(¬x) is unsatisfiable since ψ[¬y , x] is unsatisfiable.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 9 / 61

QBF Semantics (3/5)

Example
The PCNF ψ = ∃y∀x .(x ∨ ¬y) ∧ (¬x ∨ y) is unsatisfiable because neither

(1) ψ[y] = ∀x .(x) nor
(2) ψ[¬y] = ∀x .(¬x) is satisfiable.

(1) ψ[y] = ∀x .(x) is unsatisfiable since ψ[y ,¬x] is unsatisfiable.
(2) ψ[¬y] = ∀x .(¬x) is unsatisfiable since ψ[¬y , x] is unsatisfiable.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 9 / 61

QBF Semantics (3/5)

Example
The PCNF ψ = ∃y∀x .(x ∨ ¬y) ∧ (¬x ∨ y) is unsatisfiable because neither

(1) ψ[y] = ∀x .(x) nor
(2) ψ[¬y] = ∀x .(¬x) is satisfiable.

(1) ψ[y] = ∀x .(x) is unsatisfiable since ψ[y ,¬x] is unsatisfiable.
(2) ψ[¬y] = ∀x .(¬x) is unsatisfiable since ψ[¬y , x] is unsatisfiable.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 9 / 61

QBF Semantics (4/5)

Assignment Trees of a PCNF ψ:
Dedicated root node r .
Each path from root r to a leaf represents a variable assignment A.
The assignment sequence along each path follows the prefix order.
Leaf is labelled with > if the PCNF ψ[A] is satisfiable.
Leaf is labelled with ⊥ if the PCNF ψ[A] is unsatisfiable.

Example

Satisfiable PCNF ψ = ∀x∃y .(x ∨ ¬y) ∧ (¬x ∨ y).
The node “r” represents ψ.
The node “¬x” represents ψ[¬x] = ∃y .(¬y).
Leftmost path: ψ[¬x ,¬y] is satisfiable.
Rightmost path: ψ[x , y] is satisfiable.

r

¬x

¬y

⊤

y

⊥

x

¬y

⊥

y

⊤

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 10 / 61

QBF Semantics (4/5)

Assignment Trees of a PCNF ψ:
Dedicated root node r .
Each path from root r to a leaf represents a variable assignment A.
The assignment sequence along each path follows the prefix order.
Leaf is labelled with > if the PCNF ψ[A] is satisfiable.
Leaf is labelled with ⊥ if the PCNF ψ[A] is unsatisfiable.

Example

Satisfiable PCNF ψ = ∀x∃y .(x ∨ ¬y) ∧ (¬x ∨ y).
The node “r” represents ψ.
The node “¬x” represents ψ[¬x] = ∃y .(¬y).
Leftmost path: ψ[¬x ,¬y] is satisfiable.
Rightmost path: ψ[x , y] is satisfiable.

r

¬x

¬y

⊤

y

⊥

x

¬y

⊥

y

⊤

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 10 / 61

QBF Semantics (5/5)

Example (continued)

Satisfiable PCNF ψ = ∀x∃y .(x ∨ ¬y) ∧ (¬x ∨ y).
The node “r” represents ψ.
The node “¬x” represents ψ[¬x] = ∃y .(¬y).
Leftmost path: ψ[¬x ,¬y] is satisfiable.
Rightmost path: ψ[x , y] is satisfiable.

r

¬x

¬y

⊤

y

⊥

x

¬y

⊥

y

⊤

Assignment trees visualize the structure of recursive semantical evaluation.
∀x .ψ: both recursive subcases ψ[¬x] and ψ[x] (children) must be satisfiable.
∃x .ψ: one recursive subcase ψ[¬x] or ψ[x] (child) must be satisfiable.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 11 / 61

Basic Backtracking Search

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 12 / 61

Recursive QBF Semantics and Backtracking Search

Application of semantic rules: “splitting”, “decision making”, “branching”.
Backtracking: flip value of decision (wrt. quantifier type and base case).
Early termination if one subcase of ∃ (∀) is satisfiable (unsatisfiable).

bool bt_search (PCNF Qxψ, Assignment A)
/* 1. Simplify under given assignment. */

ψ′ := simplify(Qxψ[A]);
/* 2. Check base cases. */

if (ψ′ == ⊥)
return false;

if (ψ′ == >)
return true;

/* 3. Decision making, backtracking. */
if (Q == ∃)

return bt_search (ψ′, A ∪ {¬ x}) ||
bt_search (ψ′, A ∪ {x});

if (Q == ∀)
return bt_search (ψ′, A ∪ {¬ x}) &&

bt_search (ψ′, A ∪ {x});
M. Davis, G. Logemann, D. Loveland. A Machine Program for Theorem-Proving. Commun. ACM, 1962.

M. Cadoli, A. Giovanardi, M. Schaerf. An Algorithm to Evaluate Quantified Boolean Formulae. AAAI, 1998.
U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 13 / 61

Recursive QBF Semantics and Backtracking Search

Application of semantic rules: “splitting”, “decision making”, “branching”.
Backtracking: flip value of decision (wrt. quantifier type and base case).
Early termination if one subcase of ∃ (∀) is satisfiable (unsatisfiable).

bool bt_search (PCNF Qxψ, Assignment A)
/* 1. Simplify under given assignment. */

ψ′ := simplify(Qxψ[A]);
/* 2. Check base cases. */

if (ψ′ == ⊥)
return false;

if (ψ′ == >)
return true;

/* 3. Decision making, backtracking. */
if (Q == ∃)

return bt_search (ψ′, A ∪ {¬ x}) ||
bt_search (ψ′, A ∪ {x});

if (Q == ∀)
return bt_search (ψ′, A ∪ {¬ x}) &&

bt_search (ψ′, A ∪ {x});
M. Davis, G. Logemann, D. Loveland. A Machine Program for Theorem-Proving. Commun. ACM, 1962.

M. Cadoli, A. Giovanardi, M. Schaerf. An Algorithm to Evaluate Quantified Boolean Formulae. AAAI, 1998.
U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 13 / 61

Backtracking Search: Example

Example
ψ := ∀y∃x1, x2.(x2) ∧ (¬y ∨ ¬x2) ∧ (¬y ∨ x1).

Leftmost path: check ∀-subcase ψ[¬y].
∃-subcase ψ[¬y , x2] = > already, no need to try ψ[¬y ,¬x2].
Backtrack and check ψ[y].
∃-subcase ψ[y ,¬x1] = ⊥, flip x1 and check ψ[y , x1].
Both ∃-subcases ψ[y , x1,¬x2] = ⊥ and ψ[y , x1, x2] = ⊥,
hence ∃-subcase ψ[y , x1] unsat.
Since ∃-subcases ψ[y ,¬x1], ψ[y , x1] unsat., also ∀-subcase
ψ[y] and ψ unsat.

r

¬y

x2

⊤

y

¬x1

⊥

x1

¬x2

⊥

x2

⊥

Observation: the clause (x2) in ψ can only be satisfied by setting x2 to true.
Every subcase ψ[. . . ,¬x2, . . .] is unsatisfiable: consider ψ[. . . , x2, . . .] instead.
∀-subcase ψ[x2, y] = ⊥, hence ψ unsatisfiable: smaller assignment tree!

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 14 / 61

Backtracking Search: Example

Example
ψ := ∀y∃x1, x2.(x2) ∧ (¬y ∨ ¬x2) ∧ (¬y ∨ x1).

Leftmost path: check ∀-subcase ψ[¬y].
∃-subcase ψ[¬y , x2] = > already, no need to try ψ[¬y ,¬x2].
Backtrack and check ψ[y].
∃-subcase ψ[y ,¬x1] = ⊥, flip x1 and check ψ[y , x1].
Both ∃-subcases ψ[y , x1,¬x2] = ⊥ and ψ[y , x1, x2] = ⊥,
hence ∃-subcase ψ[y , x1] unsat.
Since ∃-subcases ψ[y ,¬x1], ψ[y , x1] unsat., also ∀-subcase
ψ[y] and ψ unsat.

r

¬y

x2

⊤

y

¬x1

⊥

x1

¬x2

⊥

x2

⊥

Observation: the clause (x2) in ψ can only be satisfied by setting x2 to true.
Every subcase ψ[. . . ,¬x2, . . .] is unsatisfiable: consider ψ[. . . , x2, . . .] instead.
∀-subcase ψ[x2, y] = ⊥, hence ψ unsatisfiable: smaller assignment tree!

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 14 / 61

Backtracking Search: Example

Example
ψ := ∀y∃x1, x2.(x2) ∧ (¬y ∨ ¬x2) ∧ (¬y ∨ x1).

Leftmost path: check ∀-subcase ψ[¬y].
∃-subcase ψ[¬y , x2] = > already, no need to try ψ[¬y ,¬x2].
Backtrack and check ψ[y].
∃-subcase ψ[y ,¬x1] = ⊥, flip x1 and check ψ[y , x1].
Both ∃-subcases ψ[y , x1,¬x2] = ⊥ and ψ[y , x1, x2] = ⊥,
hence ∃-subcase ψ[y , x1] unsat.
Since ∃-subcases ψ[y ,¬x1], ψ[y , x1] unsat., also ∀-subcase
ψ[y] and ψ unsat.

r

¬y

x2

⊤

y

¬x1

⊥

x1

¬x2

⊥

x2

⊥

Observation: the clause (x2) in ψ can only be satisfied by setting x2 to true.
Every subcase ψ[. . . ,¬x2, . . .] is unsatisfiable: consider ψ[. . . , x2, . . .] instead.
∀-subcase ψ[x2, y] = ⊥, hence ψ unsatisfiable: smaller assignment tree!

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 14 / 61

Backtracking Search: Example

Example
ψ := ∀y∃x1, x2.(x2) ∧ (¬y ∨ ¬x2) ∧ (¬y ∨ x1).

Leftmost path: check ∀-subcase ψ[¬y].
∃-subcase ψ[¬y , x2] = > already, no need to try ψ[¬y ,¬x2].
Backtrack and check ψ[y].
∃-subcase ψ[y ,¬x1] = ⊥, flip x1 and check ψ[y , x1].
Both ∃-subcases ψ[y , x1,¬x2] = ⊥ and ψ[y , x1, x2] = ⊥,
hence ∃-subcase ψ[y , x1] unsat.
Since ∃-subcases ψ[y ,¬x1], ψ[y , x1] unsat., also ∀-subcase
ψ[y] and ψ unsat.

r

¬y

x2

⊤

y

¬x1

⊥

x1

¬x2

⊥

x2

⊥

Observation: the clause (x2) in ψ can only be satisfied by setting x2 to true.
Every subcase ψ[. . . ,¬x2, . . .] is unsatisfiable: consider ψ[. . . , x2, . . .] instead.
∀-subcase ψ[x2, y] = ⊥, hence ψ unsatisfiable: smaller assignment tree!

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 14 / 61

Backtracking Search: Example

Example
ψ := ∀y∃x1, x2.(x2) ∧ (¬y ∨ ¬x2) ∧ (¬y ∨ x1).

Leftmost path: check ∀-subcase ψ[¬y].
∃-subcase ψ[¬y , x2] = > already, no need to try ψ[¬y ,¬x2].
Backtrack and check ψ[y].
∃-subcase ψ[y ,¬x1] = ⊥, flip x1 and check ψ[y , x1].
Both ∃-subcases ψ[y , x1,¬x2] = ⊥ and ψ[y , x1, x2] = ⊥,
hence ∃-subcase ψ[y , x1] unsat.
Since ∃-subcases ψ[y ,¬x1], ψ[y , x1] unsat., also ∀-subcase
ψ[y] and ψ unsat.

r

¬y

x2

⊤

y

¬x1

⊥

x1

¬x2

⊥

x2

⊥

Observation: the clause (x2) in ψ can only be satisfied by setting x2 to true.
Every subcase ψ[. . . ,¬x2, . . .] is unsatisfiable: consider ψ[. . . , x2, . . .] instead.
∀-subcase ψ[x2, y] = ⊥, hence ψ unsatisfiable: smaller assignment tree!

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 14 / 61

Backtracking Search: Example

Example
ψ := ∀y∃x1, x2.(x2) ∧ (¬y ∨ ¬x2) ∧ (¬y ∨ x1).

Leftmost path: check ∀-subcase ψ[¬y].
∃-subcase ψ[¬y , x2] = > already, no need to try ψ[¬y ,¬x2].
Backtrack and check ψ[y].
∃-subcase ψ[y ,¬x1] = ⊥, flip x1 and check ψ[y , x1].
Both ∃-subcases ψ[y , x1,¬x2] = ⊥ and ψ[y , x1, x2] = ⊥,
hence ∃-subcase ψ[y , x1] unsat.
Since ∃-subcases ψ[y ,¬x1], ψ[y , x1] unsat., also ∀-subcase
ψ[y] and ψ unsat.

r

¬y

x2

⊤

y

¬x1

⊥

x1

¬x2

⊥

x2

⊥

Observation: the clause (x2) in ψ can only be satisfied by setting x2 to true.
Every subcase ψ[. . . ,¬x2, . . .] is unsatisfiable: consider ψ[. . . , x2, . . .] instead.
∀-subcase ψ[x2, y] = ⊥, hence ψ unsatisfiable: smaller assignment tree!

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 14 / 61

Backtracking Search: Drawbacks

Assignments by decisions only (i.e. must be flipped during backtracking).
Generated assignment trees might contain irrelevant branches.
Goal: add rules to make assignments other than decisions which can be ignored
during backtracking.
Avoid irrelevant branches resulting from “wrong” decisions.

Example (continued)
ψ := ∀y∃x1, x2.(x2) ∧ (¬y ∨ ¬x2) ∧ (¬y ∨ x1).

r

¬y

x2

⊤

y

¬x1

⊥

x1

¬x2

⊥

x2

⊥

r

¬x2

⊥

x2

y

⊥

Observe: ∃x2 is not leftmost in prefix of ψ.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 15 / 61

Improvements to Backtracking Search:
Assignment Generation

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 16 / 61

Towards Modern Search-Based QBF Solving (1/5)

Definition (Unit Literal Detection)
Given a QBF ψ, a clause C ∈ ψ is unit if and only if C = (l) and q(l) = ∃.
The existential literal l in C is called a unit literal.
Unit literal detection UL(C) := {l} collects the assignment {l} from the unit clause
C = (l).
Unit literal detection on a QBF ψ: UL(ψ) :=

⋃
C∈ψ UL(C).

Example (continued)
The clause (x2) in ψ := ∀y∃x1, x2.(x2) ∧ (¬y ∨ ¬x2) ∧ (¬y ∨ x1) is unit: UL(ψ) = {x2}

M. Cadoli, A. Giovanardi, M. Schaerf. An Algorithm to Evaluate Quantified Boolean Formulae. AAAI, 1998.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 17 / 61

Towards Modern Search-Based QBF Solving (1/5)

Definition (Unit Literal Detection)
Given a QBF ψ, a clause C ∈ ψ is unit if and only if C = (l) and q(l) = ∃.
The existential literal l in C is called a unit literal.
Unit literal detection UL(C) := {l} collects the assignment {l} from the unit clause
C = (l).
Unit literal detection on a QBF ψ: UL(ψ) :=

⋃
C∈ψ UL(C).

Example (continued)
The clause (x2) in ψ := ∀y∃x1, x2.(x2) ∧ (¬y ∨ ¬x2) ∧ (¬y ∨ x1) is unit: UL(ψ) = {x2}

M. Cadoli, A. Giovanardi, M. Schaerf. An Algorithm to Evaluate Quantified Boolean Formulae. AAAI, 1998.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 17 / 61

Towards Modern Search-Based QBF Solving (2/5)

Definition (Pure Literal Detection)
A literal l is pure in a QBF ψ if there are clauses which contain l but no clauses
which contain ¬l .
Pure literal detection PL(ψ) :=

⋃
{l ′} collects the assignment {l ′} such that l is a

pure literal in ψ and l ′ := l if q(l) = ∃ and l ′ := ¬l if q(l) = ∀.
The variable of an existential (universal) pure literal is assigned so that clauses are
satisfied (not satisfied) by that assignment.

Example (continued)
The universal literal ¬y in ψ := ∀y∃x1, x2.(x2) ∧ (¬y ∨ ¬x2) ∧ (¬y ∨ x1) is pure.
PL(ψ) = {y} and ψ[y] := ∃x1, x2.(x2) ∧ (¬x2) ∧ (x1).

M. Cadoli, A. Giovanardi, M. Schaerf. An Algorithm to Evaluate Quantified Boolean Formulae. AAAI, 1998.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 18 / 61

Towards Modern Search-Based QBF Solving (2/5)

Definition (Pure Literal Detection)
A literal l is pure in a QBF ψ if there are clauses which contain l but no clauses
which contain ¬l .
Pure literal detection PL(ψ) :=

⋃
{l ′} collects the assignment {l ′} such that l is a

pure literal in ψ and l ′ := l if q(l) = ∃ and l ′ := ¬l if q(l) = ∀.
The variable of an existential (universal) pure literal is assigned so that clauses are
satisfied (not satisfied) by that assignment.

Example (continued)
The universal literal ¬y in ψ := ∀y∃x1, x2.(x2) ∧ (¬y ∨ ¬x2) ∧ (¬y ∨ x1) is pure.
PL(ψ) = {y} and ψ[y] := ∃x1, x2.(x2) ∧ (¬x2) ∧ (x1).

M. Cadoli, A. Giovanardi, M. Schaerf. An Algorithm to Evaluate Quantified Boolean Formulae. AAAI, 1998.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 18 / 61

Towards Modern Search-Based QBF Solving (3/5)

Definition
Given a clause C , universal reduction (UR) on C produces the clause

UR(C) := C \ {l ∈ C | q(l) = ∀ and ∀l ′ ∈ C with q(l ′) = ∃ : var(l ′) < var(l)},

where < is the linear variable ordering given by the quantifier prefix.

UR deletes “trailing” universal literals from clauses.
UR shortens clauses.

Example (continued)
Given ψ := ∀y∃x1, x2.(x2) ∧ (¬y ∨ ¬x2) ∧ (¬y ∨ x1).
By UL: ψ[x2] := ∀y∃x1.(¬y) ∧ (¬y ∨ x1).
UR((¬y)) = ∅ in ψ[x2].

H. Kleine Büning, M. Karpinski, A. Flögel. Resolution for Quantified Boolean Formulas. Inf. Comput., 1995.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 19 / 61

Towards Modern Search-Based QBF Solving (3/5)

Definition
Given a clause C , universal reduction (UR) on C produces the clause

UR(C) := C \ {l ∈ C | q(l) = ∀ and ∀l ′ ∈ C with q(l ′) = ∃ : var(l ′) < var(l)},

where < is the linear variable ordering given by the quantifier prefix.

UR deletes “trailing” universal literals from clauses.
UR shortens clauses.

Example (continued)
Given ψ := ∀y∃x1, x2.(x2) ∧ (¬y ∨ ¬x2) ∧ (¬y ∨ x1).
By UL: ψ[x2] := ∀y∃x1.(¬y) ∧ (¬y ∨ x1).
UR((¬y)) = ∅ in ψ[x2].

H. Kleine Büning, M. Karpinski, A. Flögel. Resolution for Quantified Boolean Formulas. Inf. Comput., 1995.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 19 / 61

Towards Modern Search-Based QBF Solving (4/5)

Definition
Boolean Constraint Propagation for QBF (QBCP):

Given a PCNF ψ and the empty assignment A = {}, i.e. ψ[A] = ψ.
1. Apply universal reduction to ψ[A].
2. Apply unit literal detection (UL) to ψ[A] to get new assignments by UL.
3. Apply pure literal detection (PL) to ψ[A] to find new assignments by PL.
Add assignments found by UL and PL to A, repeat steps 1-3.
Stop if A does not change anymore or if ψ[A] = > or ψ[A] = ⊥.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 20 / 61

Towards Modern Search-Based QBF Solving (5/5)

Properties of QBCP:
QBCP takes a PCNF ψ and an assignment A and produces an extended assignment
A′ and a new PCNF ψ′ = ψ[A′] by UL, PL, and UR.
Soundness: ψ ≡ ψ′ (satisfiability-equivalence).
No order restriction: QBCP assigns variables from any quantifier block.

QBCP in Practice:
Combine decision making and QBCP.
Successively apply QBCP starting with A = {x} where x is a decision.
No need to flip assignments by UL and PL in QBCP during backtracking.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 21 / 61

Towards Modern Search-Based QBF Solving (5/5)

Properties of QBCP:
QBCP takes a PCNF ψ and an assignment A and produces an extended assignment
A′ and a new PCNF ψ′ = ψ[A′] by UL, PL, and UR.
Soundness: ψ ≡ ψ′ (satisfiability-equivalence).
No order restriction: QBCP assigns variables from any quantifier block.

QBCP in Practice:
Combine decision making and QBCP.
Successively apply QBCP starting with A = {x} where x is a decision.
No need to flip assignments by UL and PL in QBCP during backtracking.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 21 / 61

QBCP Example

Example
ψ =
∀y5∃x1∀y2∃x3,x4.(¬y5∨x4)∧(y5∨¬x4)∧(x1∨y2∨¬x4)∧(¬x1∨x3∨¬x4)∧(¬y2∨¬x3).
No simplifications of ψ by QBCP possible.
Make decision: A = {y5}.
ψ[y5] = ∃x1∀y2∃x3,x4.(x4) ∧ (x1 ∨ y2 ∨ ¬x4) ∧ (¬x1 ∨ x3 ∨ ¬x4) ∧ (¬y2 ∨ ¬x3).
By UL: ψ[y5, x4] = ∃x1∀y2∃x3.(x1 ∨ y2) ∧ (¬x1 ∨ x3) ∧ (¬y2 ∨ ¬x3).
By UR: ψ[y5, x4] = ∃x1∀y2∃x3.(x1) ∧ (¬x1 ∨ x3) ∧ (¬y2 ∨ ¬x3).
By PL: ψ[y5, x4, y2] = ∃x1∃x3.(x1) ∧ (¬x1 ∨ x3) ∧ (¬x3).
By UL: ψ[y5, x4, y2, x1] = ∃x3.(x3) ∧ (¬x3).
By UL: ψ[y5, x4, y2, x1, x3] = ⊥.
By QBCP, we have shown: ψ[y5] ≡ ψ[y5, x4, y2, x1, x3] ≡ ⊥.
Since y5 is a universal decision: ψ[y5] ≡ ⊥ ≡ ψ, only one branch explored.
Worst case: search tree has 25 branches.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 22 / 61

QBCP Example

Example
ψ =
∀y5∃x1∀y2∃x3,x4.(¬y5∨x4)∧(y5∨¬x4)∧(x1∨y2∨¬x4)∧(¬x1∨x3∨¬x4)∧(¬y2∨¬x3).
No simplifications of ψ by QBCP possible.
Make decision: A = {y5}.
ψ[y5] = ∃x1∀y2∃x3,x4.(x4) ∧ (x1 ∨ y2 ∨ ¬x4) ∧ (¬x1 ∨ x3 ∨ ¬x4) ∧ (¬y2 ∨ ¬x3).
By UL: ψ[y5, x4] = ∃x1∀y2∃x3.(x1 ∨ y2) ∧ (¬x1 ∨ x3) ∧ (¬y2 ∨ ¬x3).
By UR: ψ[y5, x4] = ∃x1∀y2∃x3.(x1) ∧ (¬x1 ∨ x3) ∧ (¬y2 ∨ ¬x3).
By PL: ψ[y5, x4, y2] = ∃x1∃x3.(x1) ∧ (¬x1 ∨ x3) ∧ (¬x3).
By UL: ψ[y5, x4, y2, x1] = ∃x3.(x3) ∧ (¬x3).
By UL: ψ[y5, x4, y2, x1, x3] = ⊥.
By QBCP, we have shown: ψ[y5] ≡ ψ[y5, x4, y2, x1, x3] ≡ ⊥.
Since y5 is a universal decision: ψ[y5] ≡ ⊥ ≡ ψ, only one branch explored.
Worst case: search tree has 25 branches.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 22 / 61

QBCP Example

Example
ψ =
∀y5∃x1∀y2∃x3,x4.(¬y5∨x4)∧(y5∨¬x4)∧(x1∨y2∨¬x4)∧(¬x1∨x3∨¬x4)∧(¬y2∨¬x3).
No simplifications of ψ by QBCP possible.
Make decision: A = {y5}.
ψ[y5] = ∃x1∀y2∃x3,x4.(x4) ∧ (x1 ∨ y2 ∨ ¬x4) ∧ (¬x1 ∨ x3 ∨ ¬x4) ∧ (¬y2 ∨ ¬x3).
By UL: ψ[y5, x4] = ∃x1∀y2∃x3.(x1 ∨ y2) ∧ (¬x1 ∨ x3) ∧ (¬y2 ∨ ¬x3).
By UR: ψ[y5, x4] = ∃x1∀y2∃x3.(x1) ∧ (¬x1 ∨ x3) ∧ (¬y2 ∨ ¬x3).
By PL: ψ[y5, x4, y2] = ∃x1∃x3.(x1) ∧ (¬x1 ∨ x3) ∧ (¬x3).
By UL: ψ[y5, x4, y2, x1] = ∃x3.(x3) ∧ (¬x3).
By UL: ψ[y5, x4, y2, x1, x3] = ⊥.
By QBCP, we have shown: ψ[y5] ≡ ψ[y5, x4, y2, x1, x3] ≡ ⊥.
Since y5 is a universal decision: ψ[y5] ≡ ⊥ ≡ ψ, only one branch explored.
Worst case: search tree has 25 branches.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 22 / 61

QBCP Example

Example
ψ =
∀y5∃x1∀y2∃x3,x4.(¬y5∨x4)∧(y5∨¬x4)∧(x1∨y2∨¬x4)∧(¬x1∨x3∨¬x4)∧(¬y2∨¬x3).
No simplifications of ψ by QBCP possible.
Make decision: A = {y5}.
ψ[y5] = ∃x1∀y2∃x3,x4.(x4) ∧ (x1 ∨ y2 ∨ ¬x4) ∧ (¬x1 ∨ x3 ∨ ¬x4) ∧ (¬y2 ∨ ¬x3).
By UL: ψ[y5, x4] = ∃x1∀y2∃x3.(x1 ∨ y2) ∧ (¬x1 ∨ x3) ∧ (¬y2 ∨ ¬x3).
By UR: ψ[y5, x4] = ∃x1∀y2∃x3.(x1) ∧ (¬x1 ∨ x3) ∧ (¬y2 ∨ ¬x3).
By PL: ψ[y5, x4, y2] = ∃x1∃x3.(x1) ∧ (¬x1 ∨ x3) ∧ (¬x3).
By UL: ψ[y5, x4, y2, x1] = ∃x3.(x3) ∧ (¬x3).
By UL: ψ[y5, x4, y2, x1, x3] = ⊥.
By QBCP, we have shown: ψ[y5] ≡ ψ[y5, x4, y2, x1, x3] ≡ ⊥.
Since y5 is a universal decision: ψ[y5] ≡ ⊥ ≡ ψ, only one branch explored.
Worst case: search tree has 25 branches.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 22 / 61

QBCP Example

Example
ψ =
∀y5∃x1∀y2∃x3,x4.(¬y5∨x4)∧(y5∨¬x4)∧(x1∨y2∨¬x4)∧(¬x1∨x3∨¬x4)∧(¬y2∨¬x3).
No simplifications of ψ by QBCP possible.
Make decision: A = {y5}.
ψ[y5] = ∃x1∀y2∃x3,x4.(x4) ∧ (x1 ∨ y2 ∨ ¬x4) ∧ (¬x1 ∨ x3 ∨ ¬x4) ∧ (¬y2 ∨ ¬x3).
By UL: ψ[y5, x4] = ∃x1∀y2∃x3.(x1 ∨ y2) ∧ (¬x1 ∨ x3) ∧ (¬y2 ∨ ¬x3).
By UR: ψ[y5, x4] = ∃x1∀y2∃x3.(x1) ∧ (¬x1 ∨ x3) ∧ (¬y2 ∨ ¬x3).
By PL: ψ[y5, x4, y2] = ∃x1∃x3.(x1) ∧ (¬x1 ∨ x3) ∧ (¬x3).
By UL: ψ[y5, x4, y2, x1] = ∃x3.(x3) ∧ (¬x3).
By UL: ψ[y5, x4, y2, x1, x3] = ⊥.
By QBCP, we have shown: ψ[y5] ≡ ψ[y5, x4, y2, x1, x3] ≡ ⊥.
Since y5 is a universal decision: ψ[y5] ≡ ⊥ ≡ ψ, only one branch explored.
Worst case: search tree has 25 branches.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 22 / 61

QBCP Example

Example
ψ =
∀y5∃x1∀y2∃x3,x4.(¬y5∨x4)∧(y5∨¬x4)∧(x1∨y2∨¬x4)∧(¬x1∨x3∨¬x4)∧(¬y2∨¬x3).
No simplifications of ψ by QBCP possible.
Make decision: A = {y5}.
ψ[y5] = ∃x1∀y2∃x3,x4.(x4) ∧ (x1 ∨ y2 ∨ ¬x4) ∧ (¬x1 ∨ x3 ∨ ¬x4) ∧ (¬y2 ∨ ¬x3).
By UL: ψ[y5, x4] = ∃x1∀y2∃x3.(x1 ∨ y2) ∧ (¬x1 ∨ x3) ∧ (¬y2 ∨ ¬x3).
By UR: ψ[y5, x4] = ∃x1∀y2∃x3.(x1) ∧ (¬x1 ∨ x3) ∧ (¬y2 ∨ ¬x3).
By PL: ψ[y5, x4, y2] = ∃x1∃x3.(x1) ∧ (¬x1 ∨ x3) ∧ (¬x3).
By UL: ψ[y5, x4, y2, x1] = ∃x3.(x3) ∧ (¬x3).
By UL: ψ[y5, x4, y2, x1, x3] = ⊥.
By QBCP, we have shown: ψ[y5] ≡ ψ[y5, x4, y2, x1, x3] ≡ ⊥.
Since y5 is a universal decision: ψ[y5] ≡ ⊥ ≡ ψ, only one branch explored.
Worst case: search tree has 25 branches.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 22 / 61

QBCP Example

Example
ψ =
∀y5∃x1∀y2∃x3,x4.(¬y5∨x4)∧(y5∨¬x4)∧(x1∨y2∨¬x4)∧(¬x1∨x3∨¬x4)∧(¬y2∨¬x3).
No simplifications of ψ by QBCP possible.
Make decision: A = {y5}.
ψ[y5] = ∃x1∀y2∃x3,x4.(x4) ∧ (x1 ∨ y2 ∨ ¬x4) ∧ (¬x1 ∨ x3 ∨ ¬x4) ∧ (¬y2 ∨ ¬x3).
By UL: ψ[y5, x4] = ∃x1∀y2∃x3.(x1 ∨ y2) ∧ (¬x1 ∨ x3) ∧ (¬y2 ∨ ¬x3).
By UR: ψ[y5, x4] = ∃x1∀y2∃x3.(x1) ∧ (¬x1 ∨ x3) ∧ (¬y2 ∨ ¬x3).
By PL: ψ[y5, x4, y2] = ∃x1∃x3.(x1) ∧ (¬x1 ∨ x3) ∧ (¬x3).
By UL: ψ[y5, x4, y2, x1] = ∃x3.(x3) ∧ (¬x3).
By UL: ψ[y5, x4, y2, x1, x3] = ⊥.
By QBCP, we have shown: ψ[y5] ≡ ψ[y5, x4, y2, x1, x3] ≡ ⊥.
Since y5 is a universal decision: ψ[y5] ≡ ⊥ ≡ ψ, only one branch explored.
Worst case: search tree has 25 branches.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 22 / 61

QBCP Example

Example
ψ =
∀y5∃x1∀y2∃x3,x4.(¬y5∨x4)∧(y5∨¬x4)∧(x1∨y2∨¬x4)∧(¬x1∨x3∨¬x4)∧(¬y2∨¬x3).
No simplifications of ψ by QBCP possible.
Make decision: A = {y5}.
ψ[y5] = ∃x1∀y2∃x3,x4.(x4) ∧ (x1 ∨ y2 ∨ ¬x4) ∧ (¬x1 ∨ x3 ∨ ¬x4) ∧ (¬y2 ∨ ¬x3).
By UL: ψ[y5, x4] = ∃x1∀y2∃x3.(x1 ∨ y2) ∧ (¬x1 ∨ x3) ∧ (¬y2 ∨ ¬x3).
By UR: ψ[y5, x4] = ∃x1∀y2∃x3.(x1) ∧ (¬x1 ∨ x3) ∧ (¬y2 ∨ ¬x3).
By PL: ψ[y5, x4, y2] = ∃x1∃x3.(x1) ∧ (¬x1 ∨ x3) ∧ (¬x3).
By UL: ψ[y5, x4, y2, x1] = ∃x3.(x3) ∧ (¬x3).
By UL: ψ[y5, x4, y2, x1, x3] = ⊥.
By QBCP, we have shown: ψ[y5] ≡ ψ[y5, x4, y2, x1, x3] ≡ ⊥.
Since y5 is a universal decision: ψ[y5] ≡ ⊥ ≡ ψ, only one branch explored.
Worst case: search tree has 25 branches.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 22 / 61

QBCP Example

Example
ψ =
∀y5∃x1∀y2∃x3,x4.(¬y5∨x4)∧(y5∨¬x4)∧(x1∨y2∨¬x4)∧(¬x1∨x3∨¬x4)∧(¬y2∨¬x3).
No simplifications of ψ by QBCP possible.
Make decision: A = {y5}.
ψ[y5] = ∃x1∀y2∃x3,x4.(x4) ∧ (x1 ∨ y2 ∨ ¬x4) ∧ (¬x1 ∨ x3 ∨ ¬x4) ∧ (¬y2 ∨ ¬x3).
By UL: ψ[y5, x4] = ∃x1∀y2∃x3.(x1 ∨ y2) ∧ (¬x1 ∨ x3) ∧ (¬y2 ∨ ¬x3).
By UR: ψ[y5, x4] = ∃x1∀y2∃x3.(x1) ∧ (¬x1 ∨ x3) ∧ (¬y2 ∨ ¬x3).
By PL: ψ[y5, x4, y2] = ∃x1∃x3.(x1) ∧ (¬x1 ∨ x3) ∧ (¬x3).
By UL: ψ[y5, x4, y2, x1] = ∃x3.(x3) ∧ (¬x3).
By UL: ψ[y5, x4, y2, x1, x3] = ⊥.
By QBCP, we have shown: ψ[y5] ≡ ψ[y5, x4, y2, x1, x3] ≡ ⊥.
Since y5 is a universal decision: ψ[y5] ≡ ⊥ ≡ ψ, only one branch explored.
Worst case: search tree has 25 branches.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 22 / 61

Iterative Search-Based QBF Solving (QDPLL)

QDPLL:
QBF-specific variant of the DPLL
algorithm for propositional logic [DLL62].
Original descriptions [GNT01, CGS98] both
recursive and iterative.
Start with empty assignment.
Decisions open a new ∃/∀-subcase.
Function qbcp applies UL, PL, UR and
simplifications to extend the assignment
corresponding to the current ∃/∀-subcase.
Function analyze: retraction of
assignments, flipping a decision variable by
backtracking.

Result qdpll (PCNF f)
Result r = UNDEF;
Assignment a = {};
while (true)

/* Simplify. */
(r,a) = qbcp (f,a);
if (r == UNDET)

/* Decision making. */
a = assign_dec_var (f,a);

else
/* Backtracking. */
/* r == UNSAT or r == SAT */
btlevel = analyze (r,a);
if (btlevel == INVALID)

return r;
else

a = backtrack (btlevel);

M. Cadoli, A. Giovanardi, M. Schaerf. An Algorithm to Evaluate Quantified Boolean Formulae. AAAI, 1998.

E. Giunchiglia, M. Narizzano, A. Tacchella. QUBE: A System for Deciding Quantified Boolean Formulas Satisfiability. IJCAR,

2001.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 23 / 61

Search-Based QBF Solving: Iterative vs. Recursive

Result qdpll (PCNF f)
Result r = UNDEF;
Assignment a = {};
while (true)

/* Simplify. */
(r,a) = qbcp (f,a);
if (r == UNDET)

/* Decision making. */
a = assign_dec_var (f,a);

else
/* Backtracking. */
/* r == UNSAT or r == SAT */
btlevel = analyze (r,a);
if (btlevel == INVALID)

return r;
else

a = backtrack (btlevel);

bool bt_search (PCNF Qxψ, Assignment A)
/* 1. Simplify under given assignment. */

ψ′ := simplify(Qxψ[A]);
/* 2. Check base cases. */

if (ψ′ == ⊥)
return false;

if (ψ′ == >)
return true;

/* 3. Decision making, backtracking. */
if (Q == ∃)

return bt_search (ψ′, A ∪ {¬ x}) ||
bt_search (ψ′, A ∪ {x});

if (Q == ∀)
return bt_search (ψ′, A ∪ {¬ x}) &&

bt_search (ψ′, A ∪ {x});

Comparison:
bt_search very close to recursive semantics.
qdpll explicitly enumerates paths (i.e. assignments) in assignment trees.
QBCP makes the difference between qdpll and bt_search.
Structure of qdpll is close to implementations of modern QBF solvers.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 24 / 61

Search-Based QBF Solving: Iterative vs. Recursive

Result qdpll (PCNF f)
Result r = UNDEF;
Assignment a = {};
while (true)

/* Simplify. */
(r,a) = qbcp (f,a);
if (r == UNDET)

/* Decision making. */
a = assign_dec_var (f,a);

else
/* Backtracking. */
/* r == UNSAT or r == SAT */
btlevel = analyze (r,a);
if (btlevel == INVALID)

return r;
else

a = backtrack (btlevel);

bool bt_search (PCNF Qxψ, Assignment A)
/* 1. Simplify under given assignment. */

ψ′ := simplify(Qxψ[A]);
/* 2. Check base cases. */

if (ψ′ == ⊥)
return false;

if (ψ′ == >)
return true;

/* 3. Decision making, backtracking. */
if (Q == ∃)

return bt_search (ψ′, A ∪ {¬ x}) ||
bt_search (ψ′, A ∪ {x});

if (Q == ∀)
return bt_search (ψ′, A ∪ {¬ x}) &&

bt_search (ψ′, A ∪ {x});

Comparison:
bt_search very close to recursive semantics.
qdpll explicitly enumerates paths (i.e. assignments) in assignment trees.
QBCP makes the difference between qdpll and bt_search.
Structure of qdpll is close to implementations of modern QBF solvers.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 24 / 61

Search-Based QBF Solving: Iterative vs. Recursive

Result qdpll (PCNF f)
Result r = UNDEF;
Assignment a = {};
while (true)

/* Simplify. */
(r,a) = qbcp (f,a);
if (r == UNDET)

/* Decision making. */
a = assign_dec_var (f,a);

else
/* Backtracking. */
/* r == UNSAT or r == SAT */
btlevel = analyze (r,a);
if (btlevel == INVALID)

return r;
else

a = backtrack (btlevel);

bool bt_search (PCNF Qxψ, Assignment A)
/* 1. Simplify under given assignment. */

ψ′ := simplify(Qxψ[A]);
/* 2. Check base cases. */

if (ψ′ == ⊥)
return false;

if (ψ′ == >)
return true;

/* 3. Decision making, backtracking. */
if (Q == ∃)

return bt_search (ψ′, A ∪ {¬ x}) ||
bt_search (ψ′, A ∪ {x});

if (Q == ∀)
return bt_search (ψ′, A ∪ {¬ x}) &&

bt_search (ψ′, A ∪ {x});

Comparison:
bt_search very close to recursive semantics.
qdpll explicitly enumerates paths (i.e. assignments) in assignment trees.
QBCP makes the difference between qdpll and bt_search.
Structure of qdpll is close to implementations of modern QBF solvers.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 24 / 61

Search-Based QBF Solving: Iterative vs. Recursive

Result qdpll (PCNF f)
Result r = UNDEF;
Assignment a = {};
while (true)

/* Simplify. */
(r,a) = qbcp (f,a);
if (r == UNDET)

/* Decision making. */
a = assign_dec_var (f,a);

else
/* Backtracking. */
/* r == UNSAT or r == SAT */
btlevel = analyze (r,a);
if (btlevel == INVALID)

return r;
else

a = backtrack (btlevel);

bool bt_search (PCNF Qxψ, Assignment A)
/* 1. Simplify under given assignment. */

ψ′ := simplify(Qxψ[A]);
/* 2. Check base cases. */

if (ψ′ == ⊥)
return false;

if (ψ′ == >)
return true;

/* 3. Decision making, backtracking. */
if (Q == ∃)

return bt_search (ψ′, A ∪ {¬ x}) ||
bt_search (ψ′, A ∪ {x});

if (Q == ∀)
return bt_search (ψ′, A ∪ {¬ x}) &&

bt_search (ψ′, A ∪ {x});

Comparison:
bt_search very close to recursive semantics.
qdpll explicitly enumerates paths (i.e. assignments) in assignment trees.
QBCP makes the difference between qdpll and bt_search.
Structure of qdpll is close to implementations of modern QBF solvers.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 24 / 61

Search-Based QBF Solving: Iterative vs. Recursive

Result qdpll (PCNF f)
Result r = UNDEF;
Assignment a = {};
while (true)

/* Simplify. */
(r,a) = qbcp (f,a);
if (r == UNDET)

/* Decision making. */
a = assign_dec_var (f,a);

else
/* Backtracking. */
/* r == UNSAT or r == SAT */
btlevel = analyze (r,a);
if (btlevel == INVALID)

return r;
else

a = backtrack (btlevel);

bool bt_search (PCNF Qxψ, Assignment A)
/* 1. Simplify under given assignment. */

ψ′ := simplify(Qxψ[A]);
/* 2. Check base cases. */

if (ψ′ == ⊥)
return false;

if (ψ′ == >)
return true;

/* 3. Decision making, backtracking. */
if (Q == ∃)

return bt_search (ψ′, A ∪ {¬ x}) ||
bt_search (ψ′, A ∪ {x});

if (Q == ∀)
return bt_search (ψ′, A ∪ {¬ x}) &&

bt_search (ψ′, A ∪ {x});

Comparison:
bt_search very close to recursive semantics.
qdpll explicitly enumerates paths (i.e. assignments) in assignment trees.
QBCP makes the difference between qdpll and bt_search.
Structure of qdpll is close to implementations of modern QBF solvers.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 24 / 61

Improvements to Backtracking Search:
Backtracking is not optimal

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 25 / 61

A Closer Look on Backtracking (1/2)

Assignments:
Represented as sequence A = {l1, l2, . . . , ln} of literals.
Assignments due to decisions and QBCP (UL, PL).
Literals li are ordered chronologically as they were assigned.
Conflict: assignment A such that ψ[A] = ⊥.
Solution: assignment A such that ψ[A] = >.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 26 / 61

A Closer Look on Backtracking (2/2)

Chronological Backtracking:
Given a conflict A = {. . . , d , . . . , ln} where d is the
most-recent unflipped existential decision.
Given a solution A = {. . . , d , . . . , ln} where d is the
most-recent unflipped universal decision.
No such d : formula solved.
Retract decision d and later assignments:
A′ = A \ {d , . . . , ln}.
Set the variable of d to the opposite value (flip):
A′ = A′ ∪ {¬d}.
Continue with A = A′.

Snippet of qdpll:
/* Backtracking. */
/* r == UNSAT or r == SAT */

btlevel = analyze (r,a);
if (btlevel == INVALID)

return r;
else

a = backtrack (btlevel);

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 27 / 61

QDPLL with Chronological Backtracking (1/2)

Example
ψ = ∃x1,x2,x3,x4∀y5∃x6.(¬x3 ∨ x4) ∧ (x3 ∨ x4) ∧ (¬x4 ∨ x6) ∧ (¬x1 ∨ y5 ∨ ¬x6) ∧ φ.

1 Assume that φ contains further clauses.
2 Decision on x1: A = A ∪ {x1}.
3 Decision on x2: A = A ∪ {x2}.
4 Decision on x3: A = A ∪ {x3}.
5 ψ[x1, x2, x3] = ∃x4∀y5∃x6.(x4) ∧ (¬x4 ∨ x6) ∧ (y5 ∨ ¬x6).
6 By QBCP (UL): A = A ∪ {x4, x6}.
7 By QBCP (UR): conflict A = {x1, x2, x3, x4, x6}, ψ[A] = ⊥.
8 Flip x3, get conflict A = {x1, x2,¬x3, x4, x6}, where again x4, x6 by UL.
9 Flip x2, assume that no conflict/solution is found with A = {x1,¬x2}.
10 Continue with a decision on x3: A = {x1,¬x2, x3} or A = {x1,¬x2,¬x3}.
11 In any case, get a conflict by {x1,¬x2, x3, x4, x6} and {x1,¬x2,¬x3, x4, x6}.
12 Repeated subassignments {x3, x4, x6}, {¬x3, x4, x6} of conflicts (steps 7,8).
13 Flipping x2 did not resolve the conflict, redundant work in steps 9-11.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 28 / 61

QDPLL with Chronological Backtracking (1/2)

Example
ψ = ∃x1,x2,x3,x4∀y5∃x6.(¬x3 ∨ x4) ∧ (x3 ∨ x4) ∧ (¬x4 ∨ x6) ∧ (¬x1 ∨ y5 ∨ ¬x6) ∧ φ.

1 Assume that φ contains further clauses.
2 Decision on x1: A = A ∪ {x1}.
3 Decision on x2: A = A ∪ {x2}.
4 Decision on x3: A = A ∪ {x3}.
5 ψ[x1, x2, x3] = ∃x4∀y5∃x6.(x4) ∧ (¬x4 ∨ x6) ∧ (y5 ∨ ¬x6).
6 By QBCP (UL): A = A ∪ {x4, x6}.
7 By QBCP (UR): conflict A = {x1, x2, x3, x4, x6}, ψ[A] = ⊥.
8 Flip x3, get conflict A = {x1, x2,¬x3, x4, x6}, where again x4, x6 by UL.
9 Flip x2, assume that no conflict/solution is found with A = {x1,¬x2}.
10 Continue with a decision on x3: A = {x1,¬x2, x3} or A = {x1,¬x2,¬x3}.
11 In any case, get a conflict by {x1,¬x2, x3, x4, x6} and {x1,¬x2,¬x3, x4, x6}.
12 Repeated subassignments {x3, x4, x6}, {¬x3, x4, x6} of conflicts (steps 7,8).
13 Flipping x2 did not resolve the conflict, redundant work in steps 9-11.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 28 / 61

QDPLL with Chronological Backtracking (1/2)

Example
ψ = ∃x1,x2,x3,x4∀y5∃x6.(¬x3 ∨ x4) ∧ (x3 ∨ x4) ∧ (¬x4 ∨ x6) ∧ (¬x1 ∨ y5 ∨ ¬x6) ∧ φ.

1 Assume that φ contains further clauses.
2 Decision on x1: A = A ∪ {x1}.
3 Decision on x2: A = A ∪ {x2}.
4 Decision on x3: A = A ∪ {x3}.
5 ψ[x1, x2, x3] = ∃x4∀y5∃x6.(x4) ∧ (¬x4 ∨ x6) ∧ (y5 ∨ ¬x6).
6 By QBCP (UL): A = A ∪ {x4, x6}.
7 By QBCP (UR): conflict A = {x1, x2, x3, x4, x6}, ψ[A] = ⊥.
8 Flip x3, get conflict A = {x1, x2,¬x3, x4, x6}, where again x4, x6 by UL.
9 Flip x2, assume that no conflict/solution is found with A = {x1,¬x2}.
10 Continue with a decision on x3: A = {x1,¬x2, x3} or A = {x1,¬x2,¬x3}.
11 In any case, get a conflict by {x1,¬x2, x3, x4, x6} and {x1,¬x2,¬x3, x4, x6}.
12 Repeated subassignments {x3, x4, x6}, {¬x3, x4, x6} of conflicts (steps 7,8).
13 Flipping x2 did not resolve the conflict, redundant work in steps 9-11.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 28 / 61

QDPLL with Chronological Backtracking (1/2)

Example
ψ = ∃x1,x2,x3,x4∀y5∃x6.(¬x3 ∨ x4) ∧ (x3 ∨ x4) ∧ (¬x4 ∨ x6) ∧ (¬x1 ∨ y5 ∨ ¬x6) ∧ φ.

1 Assume that φ contains further clauses.
2 Decision on x1: A = A ∪ {x1}.
3 Decision on x2: A = A ∪ {x2}.
4 Decision on x3: A = A ∪ {x3}.
5 ψ[x1, x2, x3] = ∃x4∀y5∃x6.(x4) ∧ (¬x4 ∨ x6) ∧ (y5 ∨ ¬x6).
6 By QBCP (UL): A = A ∪ {x4, x6}.
7 By QBCP (UR): conflict A = {x1, x2, x3, x4, x6}, ψ[A] = ⊥.
8 Flip x3, get conflict A = {x1, x2,¬x3, x4, x6}, where again x4, x6 by UL.
9 Flip x2, assume that no conflict/solution is found with A = {x1,¬x2}.
10 Continue with a decision on x3: A = {x1,¬x2, x3} or A = {x1,¬x2,¬x3}.
11 In any case, get a conflict by {x1,¬x2, x3, x4, x6} and {x1,¬x2,¬x3, x4, x6}.
12 Repeated subassignments {x3, x4, x6}, {¬x3, x4, x6} of conflicts (steps 7,8).
13 Flipping x2 did not resolve the conflict, redundant work in steps 9-11.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 28 / 61

QDPLL with Chronological Backtracking (1/2)

Example
ψ = ∃x1,x2,x3,x4∀y5∃x6.(¬x3 ∨ x4) ∧ (x3 ∨ x4) ∧ (¬x4 ∨ x6) ∧ (¬x1 ∨ y5 ∨ ¬x6) ∧ φ.

1 Assume that φ contains further clauses.
2 Decision on x1: A = A ∪ {x1}.
3 Decision on x2: A = A ∪ {x2}.
4 Decision on x3: A = A ∪ {x3}.
5 ψ[x1, x2, x3] = ∃x4∀y5∃x6.(x4) ∧ (¬x4 ∨ x6) ∧ (y5 ∨ ¬x6).
6 By QBCP (UL): A = A ∪ {x4, x6}.
7 By QBCP (UR): conflict A = {x1, x2, x3, x4, x6}, ψ[A] = ⊥.
8 Flip x3, get conflict A = {x1, x2,¬x3, x4, x6}, where again x4, x6 by UL.
9 Flip x2, assume that no conflict/solution is found with A = {x1,¬x2}.
10 Continue with a decision on x3: A = {x1,¬x2, x3} or A = {x1,¬x2,¬x3}.
11 In any case, get a conflict by {x1,¬x2, x3, x4, x6} and {x1,¬x2,¬x3, x4, x6}.
12 Repeated subassignments {x3, x4, x6}, {¬x3, x4, x6} of conflicts (steps 7,8).
13 Flipping x2 did not resolve the conflict, redundant work in steps 9-11.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 28 / 61

QDPLL with Chronological Backtracking (1/2)

Example
ψ = ∃x1,x2,x3,x4∀y5∃x6.(¬x3 ∨ x4) ∧ (x3 ∨ x4) ∧ (¬x4 ∨ x6) ∧ (¬x1 ∨ y5 ∨ ¬x6) ∧ φ.

1 Assume that φ contains further clauses.
2 Decision on x1: A = A ∪ {x1}.
3 Decision on x2: A = A ∪ {x2}.
4 Decision on x3: A = A ∪ {x3}.
5 ψ[x1, x2, x3] = ∃x4∀y5∃x6.(x4) ∧ (¬x4 ∨ x6) ∧ (y5 ∨ ¬x6).
6 By QBCP (UL): A = A ∪ {x4, x6}.
7 By QBCP (UR): conflict A = {x1, x2, x3, x4, x6}, ψ[A] = ⊥.
8 Flip x3, get conflict A = {x1, x2,¬x3, x4, x6}, where again x4, x6 by UL.
9 Flip x2, assume that no conflict/solution is found with A = {x1,¬x2}.
10 Continue with a decision on x3: A = {x1,¬x2, x3} or A = {x1,¬x2,¬x3}.
11 In any case, get a conflict by {x1,¬x2, x3, x4, x6} and {x1,¬x2,¬x3, x4, x6}.
12 Repeated subassignments {x3, x4, x6}, {¬x3, x4, x6} of conflicts (steps 7,8).
13 Flipping x2 did not resolve the conflict, redundant work in steps 9-11.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 28 / 61

QDPLL with Chronological Backtracking (1/2)

Example
ψ = ∃x1,x2,x3,x4∀y5∃x6.(¬x3 ∨ x4) ∧ (x3 ∨ x4) ∧ (¬x4 ∨ x6) ∧ (¬x1 ∨ y5 ∨ ¬x6) ∧ φ.

1 Assume that φ contains further clauses.
2 Decision on x1: A = A ∪ {x1}.
3 Decision on x2: A = A ∪ {x2}.
4 Decision on x3: A = A ∪ {x3}.
5 ψ[x1, x2, x3] = ∃x4∀y5∃x6.(x4) ∧ (¬x4 ∨ x6) ∧ (y5 ∨ ¬x6).
6 By QBCP (UL): A = A ∪ {x4, x6}.
7 By QBCP (UR): conflict A = {x1, x2, x3, x4, x6}, ψ[A] = ⊥.
8 Flip x3, get conflict A = {x1, x2,¬x3, x4, x6}, where again x4, x6 by UL.
9 Flip x2, assume that no conflict/solution is found with A = {x1,¬x2}.
10 Continue with a decision on x3: A = {x1,¬x2, x3} or A = {x1,¬x2,¬x3}.
11 In any case, get a conflict by {x1,¬x2, x3, x4, x6} and {x1,¬x2,¬x3, x4, x6}.
12 Repeated subassignments {x3, x4, x6}, {¬x3, x4, x6} of conflicts (steps 7,8).
13 Flipping x2 did not resolve the conflict, redundant work in steps 9-11.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 28 / 61

QDPLL with Chronological Backtracking (1/2)

Example
ψ = ∃x1,x2,x3,x4∀y5∃x6.(¬x3 ∨ x4) ∧ (x3 ∨ x4) ∧ (¬x4 ∨ x6) ∧ (¬x1 ∨ y5 ∨ ¬x6) ∧ φ.

1 Assume that φ contains further clauses.
2 Decision on x1: A = A ∪ {x1}.
3 Decision on x2: A = A ∪ {x2}.
4 Decision on x3: A = A ∪ {x3}.
5 ψ[x1, x2, x3] = ∃x4∀y5∃x6.(x4) ∧ (¬x4 ∨ x6) ∧ (y5 ∨ ¬x6).
6 By QBCP (UL): A = A ∪ {x4, x6}.
7 By QBCP (UR): conflict A = {x1, x2, x3, x4, x6}, ψ[A] = ⊥.
8 Flip x3, get conflict A = {x1, x2,¬x3, x4, x6}, where again x4, x6 by UL.
9 Flip x2, assume that no conflict/solution is found with A = {x1,¬x2}.
10 Continue with a decision on x3: A = {x1,¬x2, x3} or A = {x1,¬x2,¬x3}.
11 In any case, get a conflict by {x1,¬x2, x3, x4, x6} and {x1,¬x2,¬x3, x4, x6}.
12 Repeated subassignments {x3, x4, x6}, {¬x3, x4, x6} of conflicts (steps 7,8).
13 Flipping x2 did not resolve the conflict, redundant work in steps 9-11.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 28 / 61

QDPLL with Chronological Backtracking (1/2)

Example
ψ = ∃x1,x2,x3,x4∀y5∃x6.(¬x3 ∨ x4) ∧ (x3 ∨ x4) ∧ (¬x4 ∨ x6) ∧ (¬x1 ∨ y5 ∨ ¬x6) ∧ φ.

1 Assume that φ contains further clauses.
2 Decision on x1: A = A ∪ {x1}.
3 Decision on x2: A = A ∪ {x2}.
4 Decision on x3: A = A ∪ {x3}.
5 ψ[x1, x2, x3] = ∃x4∀y5∃x6.(x4) ∧ (¬x4 ∨ x6) ∧ (y5 ∨ ¬x6).
6 By QBCP (UL): A = A ∪ {x4, x6}.
7 By QBCP (UR): conflict A = {x1, x2, x3, x4, x6}, ψ[A] = ⊥.
8 Flip x3, get conflict A = {x1, x2,¬x3, x4, x6}, where again x4, x6 by UL.
9 Flip x2, assume that no conflict/solution is found with A = {x1,¬x2}.
10 Continue with a decision on x3: A = {x1,¬x2, x3} or A = {x1,¬x2,¬x3}.
11 In any case, get a conflict by {x1,¬x2, x3, x4, x6} and {x1,¬x2,¬x3, x4, x6}.
12 Repeated subassignments {x3, x4, x6}, {¬x3, x4, x6} of conflicts (steps 7,8).
13 Flipping x2 did not resolve the conflict, redundant work in steps 9-11.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 28 / 61

QDPLL with Chronological Backtracking (1/2)

Example
ψ = ∃x1,x2,x3,x4∀y5∃x6.(¬x3 ∨ x4) ∧ (x3 ∨ x4) ∧ (¬x4 ∨ x6) ∧ (¬x1 ∨ y5 ∨ ¬x6) ∧ φ.

1 Assume that φ contains further clauses.
2 Decision on x1: A = A ∪ {x1}.
3 Decision on x2: A = A ∪ {x2}.
4 Decision on x3: A = A ∪ {x3}.
5 ψ[x1, x2, x3] = ∃x4∀y5∃x6.(x4) ∧ (¬x4 ∨ x6) ∧ (y5 ∨ ¬x6).
6 By QBCP (UL): A = A ∪ {x4, x6}.
7 By QBCP (UR): conflict A = {x1, x2, x3, x4, x6}, ψ[A] = ⊥.
8 Flip x3, get conflict A = {x1, x2,¬x3, x4, x6}, where again x4, x6 by UL.
9 Flip x2, assume that no conflict/solution is found with A = {x1,¬x2}.
10 Continue with a decision on x3: A = {x1,¬x2, x3} or A = {x1,¬x2,¬x3}.
11 In any case, get a conflict by {x1,¬x2, x3, x4, x6} and {x1,¬x2,¬x3, x4, x6}.
12 Repeated subassignments {x3, x4, x6}, {¬x3, x4, x6} of conflicts (steps 7,8).
13 Flipping x2 did not resolve the conflict, redundant work in steps 9-11.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 28 / 61

QDPLL with Chronological Backtracking (2/2)

Example (continued)
ψ = ∃x1,x2,x3,x4∀y5∃x6.(¬x3 ∨ x4) ∧ (x3 ∨ x4) ∧ (¬x4 ∨ x6) ∧ (¬x1 ∨ y5 ∨ ¬x6) ∧ φ.

Conflicts generated by QDPLL:
A = {x1, x2, x3, x4, x6}.
A = {x1, x2,¬x3, x4, x6}.
A = {x1,¬x2, x3, x4, x6}.
A = {x1,¬x2,¬x3, x4, x6}.
Same conflicting subtrees after flipping x2.
Decision x2 is irrelevant in this context.

r

x1

x2

x3

x4,x6

⊥

¬x3

x4,x6

⊥

¬x2

x3

x4,x6

⊥

¬x3

x4,x6

⊥

¬x1

. . .

Drawback of Chronological Backtracking:
Flipping variables which are irrelevant for the current conflict/solution.
Repeating subassignments of previous conflicts: redundant work, needless branches.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 29 / 61

QDPLL with Chronological Backtracking (2/2)

Example (continued)
ψ = ∃x1,x2,x3,x4∀y5∃x6.(¬x3 ∨ x4) ∧ (x3 ∨ x4) ∧ (¬x4 ∨ x6) ∧ (¬x1 ∨ y5 ∨ ¬x6) ∧ φ.

Conflicts generated by QDPLL:
A = {x1, x2, x3, x4, x6}.
A = {x1, x2,¬x3, x4, x6}.
A = {x1,¬x2, x3, x4, x6}.
A = {x1,¬x2,¬x3, x4, x6}.
Same conflicting subtrees after flipping x2.
Decision x2 is irrelevant in this context.

r

x1

x2

x3

x4,x6

⊥

¬x3

x4,x6

⊥

¬x2

x3

x4,x6

⊥

¬x3

x4,x6

⊥

¬x1

. . .

Drawback of Chronological Backtracking:
Flipping variables which are irrelevant for the current conflict/solution.
Repeating subassignments of previous conflicts: redundant work, needless branches.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 29 / 61

QBCP and Implication Graphs

Definition (implication graph as a levelized graph)
Vertices: literals in A (variable assignments), special vertex ∅ denoting a clause
C ∈ ψ such that C [A] = ⊥ (conflicting clause).
For assignments {l} by UL from a unit clause C [A]: the clause ante(l) := C is the
antecedent clause of the assignment {l}.
Define ante(∅) = C , for a clause C ∈ ψ such that C [A] = ⊥.
Edges: (x , y) ∈ E if y assigned by UL and literal ¬x ∈ ante(y).

Example (continued)
ψ = ∃x1,x2,x3,x4∀y5∃x6.(¬x3 ∨ x4) ∧ (x3 ∨ x4) ∧ (¬x4 ∨ x6) ∧ (¬x1 ∨ y5 ∨ ¬x6) ∧ φ.

Implication graph for conflict
A = {x1, x2, x3, x4, x6}
where x1,x2, and x3 are decisions.
Note: UR applied to get ∅.

x1

x2

x3 x4 x6 ∅

Implication graph is implicitly constructed during QBCP.
Similar to BCP in SAT solvers, but QBCP includes additional rules PL, UR.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 30 / 61

QBCP and Implication Graphs

Definition (implication graph as a levelized graph)
Vertices: literals in A (variable assignments), special vertex ∅ denoting a clause
C ∈ ψ such that C [A] = ⊥ (conflicting clause).
For assignments {l} by UL from a unit clause C [A]: the clause ante(l) := C is the
antecedent clause of the assignment {l}.
Define ante(∅) = C , for a clause C ∈ ψ such that C [A] = ⊥.
Edges: (x , y) ∈ E if y assigned by UL and literal ¬x ∈ ante(y).

Example (continued)
ψ = ∃x1,x2,x3,x4∀y5∃x6.(¬x3 ∨ x4) ∧ (x3 ∨ x4) ∧ (¬x4 ∨ x6) ∧ (¬x1 ∨ y5 ∨ ¬x6) ∧ φ.

Implication graph for conflict
A = {x1, x2, x3, x4, x6}
where x1,x2, and x3 are decisions.
Note: UR applied to get ∅.

x1

x2

x3 x4 x6 ∅

Implication graph is implicitly constructed during QBCP.
Similar to BCP in SAT solvers, but QBCP includes additional rules PL, UR.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 30 / 61

Non-Chronological Backtracking — Backjumping (1/3)

Idea: given a conflict A and the implication graph.
1 Start at the conflicting clause ∅ and traverse the implication graph backwards.
2 Collect all decisions reachable from ∅: conflict set.
3 Retract all assignments made after the second most recent existential decision in the

conflict set.
4 Flip the most recent unflipped existential decision in the conflict set.

Example (continued)
ψ = ∃x1,x2,x3,x4∀y5∃x6.(¬x3 ∨ x4) ∧ (x3 ∨ x4) ∧ (¬x4 ∨ x6) ∧ (¬x1 ∨ y5 ∨ ¬x6) ∧ φ.

Conflict A = {x1, x2, x3, x4, x6},
decisions x1,x2,x3.
Steps 1,2: conflict set {x1, x3}.
Step 3: retract {x2, x3, x4, x6} from A.
Step 4: flip x3, A ∪ {¬x3} = {x1,¬x3}.
“Jump over” irrelevant, non-reachable x2.

x1

x2

x3 x4 x6 ∅

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 31 / 61

Non-Chronological Backtracking — Backjumping (1/3)

Idea: given a conflict A and the implication graph.
1 Start at the conflicting clause ∅ and traverse the implication graph backwards.
2 Collect all decisions reachable from ∅: conflict set.
3 Retract all assignments made after the second most recent existential decision in the

conflict set.
4 Flip the most recent unflipped existential decision in the conflict set.

Example (continued)
ψ = ∃x1,x2,x3,x4∀y5∃x6.(¬x3 ∨ x4) ∧ (x3 ∨ x4) ∧ (¬x4 ∨ x6) ∧ (¬x1 ∨ y5 ∨ ¬x6) ∧ φ.

Conflict A = {x1, x2, x3, x4, x6},
decisions x1,x2,x3.
Steps 1,2: conflict set {x1, x3}.
Step 3: retract {x2, x3, x4, x6} from A.
Step 4: flip x3, A ∪ {¬x3} = {x1,¬x3}.
“Jump over” irrelevant, non-reachable x2.

x1

x2

x3 x4 x6 ∅

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 31 / 61

Non-Chronological Backtracking — Backjumping (2/3)

Example (continued)
ψ = ∃x1,x2,x3,x4∀y5∃x6.(¬x3 ∨ x4) ∧ (x3 ∨ x4) ∧ (¬x4 ∨ x6) ∧ (¬x1 ∨ y5 ∨ ¬x6) ∧ φ.

After flipping x3, get conflict
A = {x1,¬x3, x4, x6}, decisions x1,¬x3.
Conflict set {x1,¬x3}.
Retract {¬x3, x4, x6} from A.
Flip x1, A ∪ {¬x1} = {¬x1}.

x1

¬x3 x4 x6 ∅

Chronological backtracking:
r

x1

x2

x3

x4,x6

⊥

¬x3

x4,x6

⊥

¬x2

x3

x4,x6

⊥

¬x3

x4,x6

⊥

¬x1

. . .

Non-chronological backtracking:
r

x1

x2

x3

x4,x6

⊥

¬x3

x4,x6

⊥

¬x1

. . .

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 32 / 61

Non-Chronological Backtracking — Backjumping (3/3)

Properties of Backjumping:
“backtracking” = “chronological backtracking”.
“backjumping” = “non-chronological backtracking”.
Potential retraction of irrelevant decisions, exponential
reduction of branches in assignment trees.
Children of nodes in assignment trees might have different
labels: x2,¬x3 in the example.
Similar approaches to backjump from solutions, i.e. ψ[A] = >.
Fundamentally different from traditional recursive
backtracking search.

Example
(continued)

r

x1

x2

x3

x4,x6

⊥

¬x3

x4,x6

⊥

¬x1

. . .

Snippet of bt_search:
/* 3. Decision making, backtracking. */

if (Q == ∃)
return bt_search (ψ′, A ∪ {¬ x}) ||

bt_search (ψ′, A ∪ {x});
if (Q == ∀)

return bt_search (ψ′, A ∪ {¬ x}) &&
bt_search (ψ′, A ∪ {x});

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 33 / 61

Backtracking and Backjumping in QDPLL

Implementation:
Function analyze must be adapted.
Stop if there is no decision to be flipped
in the conflict set.
Think of backtracking like a variant of
backjumping where the conflict set
always contains all decisions made.

Result qdpll (PCNF f)
Result r = UNDEF;
Assignment a = {};
while (true)

/* Simplify. */
(r,a) = qbcp (f,a);
if (r == UNDET)

/* Decision making. */
a = assign_dec_var (f,a);

else
/* Backtracking. */
/* r == UNSAT or r == SAT */
btlevel = analyze (r,a);
if (btlevel == INVALID)

return r;
else

a = backtrack (btlevel);

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 34 / 61

Drawback of Backjumping

Example (continued)
ψ = ∃x1,x2,x3,x4∀y5∃x6.(¬x3 ∨ x4) ∧ (x3 ∨ x4) ∧ (¬x4 ∨ x6) ∧ (¬x1 ∨ y5 ∨ ¬x6) ∧ φ.

Assume that the assignment tree on the right is a
subtree of a bigger tree.
Observe: every assignment A with {x1, x4} ⊆ A is a
conflict (under QBCP).
QBCP extends {x1, x4} to {x1, x4, x6} by UL.
Clause (¬x1 ∨ y5 ∨ ¬x6)[x1, x4, x6] = ⊥.
The subassignment {x1, x4} can be repeated in other
branches, the same clause is conflicting.
Backjumping cannot avoid this problem.

. . .

. . .

x1

x2

x3

x4,x6

⊥

¬x3

x4,x6

⊥

¬x1

. . .

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 35 / 61

Improvements to Backtracking Search:
Backjumping is not optimal

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 36 / 61

Clause Learning (1/9)

Idea:
A clause (l1 ∨ l2 ∨ . . . ∨ lk) is conflicting under the assignment {¬l1, . . .¬lk}.
QDPLL tries to satisfy clauses by unit literal detection in QBCP.
Clauses in a PCNF guide QDPLL away from conflicts.
Intuition(!): if a subassignment A = {l1, l2, . . . , lk} is responsible for a conflict then
add the clause (¬l1 ∨ ¬l2 ∨ . . . ∨ ¬lk) to the PCNF.
QDPLL tries to satisfy the added clause by assigning ¬li for at least one li .
QDPLL will not enumerate assignments A′ such that A ⊆ A′.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 37 / 61

Clause Learning (2/9)

Example (continued)
ψ = ∃x1,x2,x3,x4∀y5∃x6.(¬x3 ∨ x4) ∧ (x3 ∨ x4) ∧ (¬x4 ∨ x6) ∧ (¬x1 ∨ y5 ∨ ¬x6) ∧ φ.

Every assignment A with {x1, x4} ⊆ A is a conflict (under QBCP).
Adding the clause (¬x1 ∨ ¬x4) to ψ prevents QDPLL from repeating the
subassignment {x1, x4} in other branches.
Assigning x1 (x4) triggers the assignment of ¬x4 (¬x1) by unit literal detection in
QBCP.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 38 / 61

Clause Learning (3/9)

Properties:
“clause learning” = adding clauses obtained from analyzing a conflict.
“learned clause” = added clause.
In general, adding arbitrary clauses to a PCNF ψ can make ψ unsatisfiable.
Correctness of clause learning: ψ ≡ ψ ∧ C .

In Practice:
Checking if ψ ≡ ψ ∧ C is PSPACE-complete.
How to efficiently find clauses C which can safely be added to ψ?

Resolution:
Given the PCNF ψ′ = ψ ∧ C1 ∧ C2, the resolution operation produces a new clause
Cr (resolvent) from C1 and C2 such that ψ′ ≡ ψ′ ∧ Cr .
By construction, a resolvent can safely be added to a PCNF.
Idea: use resolution to produce learned clauses.

J.A. Robinson. A Machine-Oriented Logic Based on the Resolution Principle. J. ACM, 1965.
H. Kleine Büning, M. Karpinski, A. Flögel. Resolution for Quantified Boolean Formulas. Inf. Comput., 1995.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 39 / 61

Clause Learning (3/9)

Properties:
“clause learning” = adding clauses obtained from analyzing a conflict.
“learned clause” = added clause.
In general, adding arbitrary clauses to a PCNF ψ can make ψ unsatisfiable.
Correctness of clause learning: ψ ≡ ψ ∧ C .

In Practice:
Checking if ψ ≡ ψ ∧ C is PSPACE-complete.
How to efficiently find clauses C which can safely be added to ψ?

Resolution:
Given the PCNF ψ′ = ψ ∧ C1 ∧ C2, the resolution operation produces a new clause
Cr (resolvent) from C1 and C2 such that ψ′ ≡ ψ′ ∧ Cr .
By construction, a resolvent can safely be added to a PCNF.
Idea: use resolution to produce learned clauses.

J.A. Robinson. A Machine-Oriented Logic Based on the Resolution Principle. J. ACM, 1965.
H. Kleine Büning, M. Karpinski, A. Flögel. Resolution for Quantified Boolean Formulas. Inf. Comput., 1995.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 39 / 61

Clause Learning (3/9)

Properties:
“clause learning” = adding clauses obtained from analyzing a conflict.
“learned clause” = added clause.
In general, adding arbitrary clauses to a PCNF ψ can make ψ unsatisfiable.
Correctness of clause learning: ψ ≡ ψ ∧ C .

In Practice:
Checking if ψ ≡ ψ ∧ C is PSPACE-complete.
How to efficiently find clauses C which can safely be added to ψ?

Resolution:
Given the PCNF ψ′ = ψ ∧ C1 ∧ C2, the resolution operation produces a new clause
Cr (resolvent) from C1 and C2 such that ψ′ ≡ ψ′ ∧ Cr .
By construction, a resolvent can safely be added to a PCNF.
Idea: use resolution to produce learned clauses.

J.A. Robinson. A Machine-Oriented Logic Based on the Resolution Principle. J. ACM, 1965.
H. Kleine Büning, M. Karpinski, A. Flögel. Resolution for Quantified Boolean Formulas. Inf. Comput., 1995.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 39 / 61

Clause Learning (4/9)

Q-Resolution:
Combination of universal reduction and resolution for propositional logic.
Q-resolvents C can safely be added to a PCNF because ψ ≡ ψ ∧ C .

Definition (Q-Resolution)
Let C1, C2 be non-tautological clauses where v ∈ C1,¬v ∈ C2 for an ∃-variable v .
Variable v is the pivot of the Q-resolution step.
Tentative Q-resolvent of C1 and C2: C1 ⊗ C2 := (UR(C1) \ {v}) ∪ (UR(C2) \ {¬v}).
If {x ,¬x} ⊆ C1 ⊗ C2 for some variable x , then no Q-resolvent exists.
Otherwise, the non-tautological Q-resolvent is C := UR(C1 ⊗ C2).

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 40 / 61

Clause Learning (4/9)

Q-Resolution:
Combination of universal reduction and resolution for propositional logic.
Q-resolvents C can safely be added to a PCNF because ψ ≡ ψ ∧ C .

Definition (Q-Resolution)
Let C1, C2 be non-tautological clauses where v ∈ C1,¬v ∈ C2 for an ∃-variable v .
Variable v is the pivot of the Q-resolution step.
Tentative Q-resolvent of C1 and C2: C1 ⊗ C2 := (UR(C1) \ {v}) ∪ (UR(C2) \ {¬v}).
If {x ,¬x} ⊆ C1 ⊗ C2 for some variable x , then no Q-resolvent exists.
Otherwise, the non-tautological Q-resolvent is C := UR(C1 ⊗ C2).

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 40 / 61

Clause Learning (5/9)

Example (continued)
ψ = ∃x1,x2,x3,x4∀y5∃x6.(¬x3 ∨ x4) ∧ (x3 ∨ x4) ∧ (¬x4 ∨ x6) ∧ (¬x1 ∨ y5 ∨ ¬x6) ∧ φ.

Conflict A = {x1, x2, x3, x4, x6},
decisions x1,x2,x3.
Idea: consider antecedent clauses by unit literal
detection and the conflicting clause for possible
Q-resolutions, in reverse assignment order.
Resolve ante(∅) = (¬x1 ∨ y5 ∨ ¬x6) and
ante(x6) = (¬x4 ∨ x6), get tentative Q-resolvent
(¬x1 ∨ ¬x4 ∨ y5) and finally the Q-resolvent
(¬x1 ∨ ¬x4) by UR.
Add (¬x1 ∨ ¬x4) as a learned clause.

x1

x2

x3 x4 x6 ∅

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 41 / 61

Clause Learning (6/9)

Example (continued)
ψ = ∃x1,x2,x3,x4∀y5∃x6.(¬x3 ∨ x4) ∧ (x3 ∨ x4) ∧ (¬x4 ∨ x6) ∧ (¬x1 ∨ y5 ∨ ¬x6) ∧ φ.

Add (¬x1 ∨ ¬x4) as a learned clause.
Retract {x2, x3, x4, x6}, continue with A = {x1}.
By QBCP the learned clause (¬x1 ∨ ¬x4) is unit
and A = {x1,¬x4}.
Further, clause (x3 ∨ x4) is unit and
A = {x1,¬x4, x3}.
Conflict A = {x1,¬x4, x3}, clause
(¬x3 ∨ x4)[A] = ⊥ conflicting.
Resolve ante(∅) = (¬x3 ∨ x4) and
ante(x3) = (x3 ∨ x4), get Q-resolvent (x4).

After learning (¬x1 ∨ ¬x4),
continue with A = {x1}:

x1 ¬x4 x3 ∅

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 42 / 61

Clause Learning (7/9)

Example (continued)
ψ = ∃x1,x2,x3,x4∀y5∃x6.(¬x3 ∨ x4) ∧ (x3 ∨ x4) ∧ (¬x4 ∨ x6) ∧ (¬x1 ∨ y5 ∨ ¬x6) ∧ φ.

Resolve ante(∅) = (¬x3 ∨ x4) and
ante(x3) = (x3 ∨ x4), get Q-resolvent (x4).
Add (x4) as a learned clause.
Retract {x1,¬x4, x3}, continue with A = {}.
By QBCP, get A = {x4,¬x1, x6} since the two
learned clauses became unit.
. . .

After learning (¬x1∨¬x4) and (x4),
continue with A = {}:

x4 ¬x1 x6

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 43 / 61

Clause Learning (8/9)

Example (continued)
ψ = ∃x1,x2,x3,x4∀y5∃x6.(¬x3 ∨ x4) ∧ (x3 ∨ x4) ∧ (¬x4 ∨ x6) ∧ (¬x1 ∨ y5 ∨ ¬x6) ∧ φ.

Only three decisions in left branch:
x1, x2, x3.
Other branches due to learned clauses
which become unit after backtracking.
Right branch: assignments x4,¬x1,x6
by unit literal detection due to learned
clauses without decisions.
Note: we never flipped decision
variables explicitly.

r

x1

x2

x3

x4,x6

⊥

¬x4,x3

⊥

x4,¬x1,x6

. . .

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 44 / 61

Clause Learning (9/9)

Properties:
Decisions are not explicitly flipped (unlike in backjumping).
Our focus: learned clauses always become unit in QBCP after retracting
assignments.
Fundamentally different from backjumping and traditional backtracking.
More powerful than backjumping: learned clauses prune search space.
QDPLL learns the empty clause if and only if ψ is unsatisfiable.

Novel View on Search-Based Solving with Clause Learning:
Assignment-driven engines searching for a Q-resolution proof (of unsatisfiable QBFs).
Traditional backtracking view does not fit any more (also applies to SAT solvers).
More appropriate name: conflict-driven clause learning (CDCL) for QBF (QCDCL).

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 45 / 61

Clause Learning (9/9)

Properties:
Decisions are not explicitly flipped (unlike in backjumping).
Our focus: learned clauses always become unit in QBCP after retracting
assignments.
Fundamentally different from backjumping and traditional backtracking.
More powerful than backjumping: learned clauses prune search space.
QDPLL learns the empty clause if and only if ψ is unsatisfiable.

Novel View on Search-Based Solving with Clause Learning:
Assignment-driven engines searching for a Q-resolution proof (of unsatisfiable QBFs).
Traditional backtracking view does not fit any more (also applies to SAT solvers).
More appropriate name: conflict-driven clause learning (CDCL) for QBF (QCDCL).

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 45 / 61

Combining QDPLL and Clause Learning

Modern Search-Based QBF Solving:
Implementation: analyze must be
adapted.
Clause learning in analyze.
Backtracking based on learned clause.
No explicit flipping of decisions.
Challenges: efficient implementation.

Result qdpll (PCNF f)
Result r = UNDEF;
Assignment a = {};
while (true)

/* Simplify. */
(r,a) = qbcp (f,a);
if (r == UNDET)

/* Decision making. */
a = assign_dec_var (f,a);

else
/* Backtracking. */
/* r == UNSAT or r == SAT */
btlevel = analyze (r,a);
if (btlevel == INVALID)

return r;
else

a = backtrack (btlevel);

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 46 / 61

Pitfall (Implementation): Traditional Clause Learning for QBF (1/2)

In reverse assignment order, resolve on existential variables which were assigned as
unit literals, using clauses (i.e. antecedents) which became unit during QBCP.
Tautological resolvents by universal literals might occur but must be avoided:
deviate from strict reverse assignment order [GNT06].
Worst case exponential number of intermediate resolvents [VG12].

Example

∃x1, x3, x4∀y5∃x2
(¬x1 ∨ x2)∧

(x3 ∨ y5 ∨ ¬x2)∧
(x4 ∨ ¬y5 ∨ ¬x2)∧

(¬x3 ∨ ¬x4)

Assignment A = {x1, x2, x3, x4}
Assignment order: x1, x2, x3, x4
Can we resolve in reverse assignment order?

Clause (¬x3 ∨ ¬x4) conflicting:

x1 x2 x3 ∅

x4

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 47 / 61

Pitfall (Implementation): Traditional Clause Learning for QBF (2/2)

Example

∃x1, x3, x4∀y5∃x2
(¬x1 ∨ x2)∧

(x3 ∨ y5 ∨ ¬x2)∧
(x4 ∨ ¬y5 ∨ ¬x2)∧

(¬x3 ∨ ¬x4)

Clause (¬x3 ∨ ¬x4) conflicting:

x1 x2 x3 ∅

x4

Assignment A = {x1, x2, x3, x4}
Assignment order: x1, x2, x3, x4
Resolve on: x4, x2 (!), x3, x2
Derivation of learned clause (¬x1):

(¬x1)

(¬x1 ∨ y5 ∨ ¬x2)

(¬x1 ∨ ¬x3)

(¬x3 ∨ ¬y5 ∨ ¬x2)

(¬x3 ∨ ¬x4) (x4 ∨ ¬y5 ∨ ¬x2)

(¬x1 ∨ x2)

(x3 ∨ y5 ∨ ¬x2)

(¬x1 ∨ x2)

Linear-time procedure: resolve in assignment order [LEVG13].

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 48 / 61

Towards a Proof System for PCNFs

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 49 / 61

Learning from Solutions (1/4)

Cube Learning:
Given a solution A, i.e. ψ[A] = >.
Solution A is a branch in the assignment tree with a >-leaf.
All clauses in ψ are satisfied under A.
Idea: record A as a conjunction of literals: learned cube.
Dual to clauses, learned cubes become unit in QBCP after backtracking and prevent
the solver from enumerating the same subassignment.

Example

Satisfiable PCNF ψ = ∀x∃y .(x ∨ ¬y) ∧ (¬x ∨ y).

r

¬x

¬y

⊤

y

⊥

x

¬y

⊥

y

⊤

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 50 / 61

Learning from Solutions (2/4)

Definition (model generation rule [GNT06])

Given a PCNF ψ := Q̂.φ and a solution A, i.e. ψ[A] = >. An initial cube C = (
∧

li ∈A li)
is a conjunction over the literals of a solution A.

Example
ψ := ∃x1∀y8∃x5, x2, x6, x4. (y8∨¬x5)∧(x2∨¬x6)∧(¬x1∨x4)∧(¬y8∨¬x4)∧(x1∨x6)∧(x4∨x5).
Solution A1 := {x6, x2,¬y8,¬x5, x4}, initial cube C1 := (x6 ∧ x2 ∧ ¬y8 ∧ ¬x5 ∧ x4).
Solution A2 := {y8,¬x4,¬x1, x5, x6, x2}, initial cube C2 := (y8 ∧ ¬x4 ∧ ¬x1 ∧ x5 ∧ x6 ∧ x2).

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 51 / 61

Learning from Solutions (3/4)

Definition
Given a cube C , existential reduction (ER) on C produces the cube

ER(C) := C \ {l ∈ C | q(l) = ∃ and ∀l ′ ∈ C with q(l ′) = ∀ : var(l ′) < var(l)},

where < is the linear variable ordering given by the quantifier prefix.

ER is dual to universal reduction, deletes “trailing” existential literals from cubes.
ER shortens cubes.

Example (continued)
ψ := ∃x1∀y8∃x5, x2, x6, x4. (y8∨¬x5)∧(x2∨¬x6)∧(¬x1∨x4)∧(¬y8∨¬x4)∧(x1∨x6)∧(x4∨x5).
Initial cube C1 := (x6 ∧ x2 ∧ ¬y8 ∧ ¬x5 ∧ x4).
C3 := ER(C1) = (¬y8)
Initial cube C2 := (y8 ∧ ¬x4 ∧ ¬x1 ∧ x5 ∧ x6 ∧ x2).
C4 := ER(C2) = (y8 ∧ ¬x1)

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 52 / 61

Learning from Solutions (4/4)

Definition (cube resolution [GNT06, ZM02])
Given two non-contradictory cubes C1 and C2, cube resolution is defined analogously to
Q-resolution for clauses, except:

existential reduction.
universal variables as pivots.

The cube resolvent of C1 and C2 (if it exists) is denoted by C := C1 ⊗ C2.

Example (continued)
ψ := ∃x1∀y8∃x5, x2, x6, x4. (y8∨¬x5)∧(x2∨¬x6)∧(¬x1∨x4)∧(¬y8∨¬x4)∧(x1∨x6)∧(x4∨x5).
Initial cube C1 := (x6 ∧ x2 ∧ ¬y8 ∧ ¬x5 ∧ x4).
C3 := ER(C1) = (¬y8)
Initial cube C2 := (y8 ∧ ¬x4 ∧ ¬x1 ∧ x5 ∧ x6 ∧ x2).
C4 := ER(C2) = (y8 ∧ ¬x1)
C5 := C3 ⊗ C4 = (¬x1), ER(C5) = ∅.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 53 / 61

QCDCL as a Proof System

Cube Learning:
Model generation, existential reduction, cube resolution.
The empty cube is derived if and only if the PCNF satisfiable.
Dual to clause learning: driven by assignment generation, implication graphs.

Clause Learning:
Universal reduction, Q-resolution.
The empty clause is derived if and only if the PCNF unsatisfiable.

Definition
PCNF ψ := Q̂. φ with quantifier prefix Q̂ and CNF φ.
Augmented CNF of ψ: ψ′ := Q̂. (φ ∧ θ ∨ γ).
Original clauses φ.
Learned clauses θ, filled during clause learning.
Learned cubes γ, filled during cube learning.
Properties: Q̂. φ ≡ Q̂. (φ ∧ θ) and Q̂. φ ≡ Q̂. (φ ∨ γ).

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 54 / 61

Final View: QCDCL 6= QDPLL + Learning

QCDCL generates proofs.
Proof generation is driven by
assignments.
QCDCL does not flip decision variables
explicitly.
Backtracking is driven by learned clauses
and cubes.
Problem: CNF is bad for cube learning.

Result qdpll (PCNF f)
Result r = UNDEF;
Assignment a = {};
while (true)

/* Simplify. */
(r,a) = qbcp (f,a);
if (r == UNDET)

/* Decision making. */
a = assign_dec_var (f,a);

else
/* Backtracking. */
/* r == UNSAT or r == SAT */
btlevel = analyze (r,a);
if (btlevel == INVALID)

return r;
else

a = backtrack (btlevel);

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 55 / 61

Optimizations

Inspired by efficient solvers for propositional logic (SAT).

Restarts:
Periodically retract all assignments and start over with A = {}.
Makes the solver incomplete unless restart period grows sufficiently large.
Idea: getting out of “bad” regions in the search space.

Assignment Caching:
Store assigned values other than decisions in a per-variable cache.
If variable x is selected to make a decision, then assign cached value of x .
Idea: re-use previous assignments in similar parts of the formula.

Deletion of Learned Clauses and Cubes:
Formula grows steadily by addition of learned clauses and cubes.
QBCP will be slowed down.
Idea: heuristically discard unimportant clauses and cubes.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 56 / 61

Optimizations

Inspired by efficient solvers for propositional logic (SAT).

Restarts:
Periodically retract all assignments and start over with A = {}.
Makes the solver incomplete unless restart period grows sufficiently large.
Idea: getting out of “bad” regions in the search space.

Assignment Caching:
Store assigned values other than decisions in a per-variable cache.
If variable x is selected to make a decision, then assign cached value of x .
Idea: re-use previous assignments in similar parts of the formula.

Deletion of Learned Clauses and Cubes:
Formula grows steadily by addition of learned clauses and cubes.
QBCP will be slowed down.
Idea: heuristically discard unimportant clauses and cubes.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 56 / 61

Optimizations

Inspired by efficient solvers for propositional logic (SAT).

Restarts:
Periodically retract all assignments and start over with A = {}.
Makes the solver incomplete unless restart period grows sufficiently large.
Idea: getting out of “bad” regions in the search space.

Assignment Caching:
Store assigned values other than decisions in a per-variable cache.
If variable x is selected to make a decision, then assign cached value of x .
Idea: re-use previous assignments in similar parts of the formula.

Deletion of Learned Clauses and Cubes:
Formula grows steadily by addition of learned clauses and cubes.
QBCP will be slowed down.
Idea: heuristically discard unimportant clauses and cubes.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 56 / 61

Optimizations

Inspired by efficient solvers for propositional logic (SAT).

Restarts:
Periodically retract all assignments and start over with A = {}.
Makes the solver incomplete unless restart period grows sufficiently large.
Idea: getting out of “bad” regions in the search space.

Assignment Caching:
Store assigned values other than decisions in a per-variable cache.
If variable x is selected to make a decision, then assign cached value of x .
Idea: re-use previous assignments in similar parts of the formula.

Deletion of Learned Clauses and Cubes:
Formula grows steadily by addition of learned clauses and cubes.
QBCP will be slowed down.
Idea: heuristically discard unimportant clauses and cubes.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 56 / 61

Challenge: Variants of Clause/Cube Learning

Traditional Q-Resolution:
Tautological resolvents C , i.e. where {v ,¬v} ⊆ C , are disallowed.
In general, tautological resolvents might produce unsound results.

Long-Distance (LD) Resolution:
Allow to produce certain tautological resolvents: soundness.
Can produce exponentially shorter proofs than Q-resolution.
Implemented in yQuaffle, DepQBF for clause learning.

QU-Resolution:
Allow to resolve over universally quantified variables.
Can produce exponentially shorter proofs than Q-resolution.

Future Work:
How to integrate QU-resolution systematically into QCDCL?

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 57 / 61

Challenge: Variants of Clause/Cube Learning

Traditional Q-Resolution:
Tautological resolvents C , i.e. where {v ,¬v} ⊆ C , are disallowed.
In general, tautological resolvents might produce unsound results.

Long-Distance (LD) Resolution:
Allow to produce certain tautological resolvents: soundness.
Can produce exponentially shorter proofs than Q-resolution.
Implemented in yQuaffle, DepQBF for clause learning.

QU-Resolution:
Allow to resolve over universally quantified variables.
Can produce exponentially shorter proofs than Q-resolution.

Future Work:
How to integrate QU-resolution systematically into QCDCL?

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 57 / 61

Challenge: Variants of Clause/Cube Learning

Traditional Q-Resolution:
Tautological resolvents C , i.e. where {v ,¬v} ⊆ C , are disallowed.
In general, tautological resolvents might produce unsound results.

Long-Distance (LD) Resolution:
Allow to produce certain tautological resolvents: soundness.
Can produce exponentially shorter proofs than Q-resolution.
Implemented in yQuaffle, DepQBF for clause learning.

QU-Resolution:
Allow to resolve over universally quantified variables.
Can produce exponentially shorter proofs than Q-resolution.

Future Work:
How to integrate QU-resolution systematically into QCDCL?

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 57 / 61

Challenge: Variants of Clause/Cube Learning

Traditional Q-Resolution:
Tautological resolvents C , i.e. where {v ,¬v} ⊆ C , are disallowed.
In general, tautological resolvents might produce unsound results.

Long-Distance (LD) Resolution:
Allow to produce certain tautological resolvents: soundness.
Can produce exponentially shorter proofs than Q-resolution.
Implemented in yQuaffle, DepQBF for clause learning.

QU-Resolution:
Allow to resolve over universally quantified variables.
Can produce exponentially shorter proofs than Q-resolution.

Future Work:
How to integrate QU-resolution systematically into QCDCL?

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 57 / 61

Challenge: Variable Dependencies (1/2)

Order of Assignments:
Given the PCNF Q1B1Q2B2 . . .QmBm.φ, QDPLL in general must only assign
variables as decisions starting from B1 to ensure soundness.

Example
The PCNF ψ = ∀x∃y .(x ∨ ¬y) ∧ (¬x ∨ y) is satisfiable.
The PCNF ψ = ∃y∀x .(x ∨ ¬y) ∧ (¬x ∨ y) is unsatisfiable.

This linear ordering limits the freedom to select decision variables.

Example
ψ = Q1B1 . . .QnBn.φ ∧ φ′(Bn).

φ: hard formula.
φ′(Bn): easy formula over variables in Bn.
QDPLL tends to assign variables in Bn late (except in QBCP).
QDPLL attempts to solve hard φ first.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 58 / 61

Challenge: Variable Dependencies (2/2)

Dependency Analysis:
Are there variables which can be moved to the left end in the quantifier prefix
without changing the satisfiability of ψ?
Related work: quantifier shifting / miniscoping in theorem proving.
PSPACE-complete problem.

Dependency Schemes:
Binary relation D ⊆ V × V over variables in a PCNF.
If (x , y) ∈ D then must assign x before y to ensure soundness.
If (x , y) 6∈ D then can assign x before y or vice versa.
D computed by a syntactic analysis of the PCNF.
Tradeoff: efficiency of computation and precision.
Dependency Schemes in DepQBF: efficient integration as compact graphs.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 59 / 61

Challenge: Variable Dependencies (2/2)

Dependency Analysis:
Are there variables which can be moved to the left end in the quantifier prefix
without changing the satisfiability of ψ?
Related work: quantifier shifting / miniscoping in theorem proving.
PSPACE-complete problem.

Dependency Schemes:
Binary relation D ⊆ V × V over variables in a PCNF.
If (x , y) ∈ D then must assign x before y to ensure soundness.
If (x , y) 6∈ D then can assign x before y or vice versa.
D computed by a syntactic analysis of the PCNF.
Tradeoff: efficiency of computation and precision.
Dependency Schemes in DepQBF: efficient integration as compact graphs.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 59 / 61

Recent Trends

Preprocessing:
Impressive reduction in formula size and solving time.
Can be harmful for solvers relying on formula structure.
Applications: preprocessing can destroy the original encoding (certificates).

CNF-based Solving and Structure Reconstruction:
Dedicated non-PCNF solvers operating on e.g. circuit structure.
Recent focus on CNF data structures due to efficiency.
Structure reconstruction to extract circuit information from a CNF.
Can improve cube learning: shorter cubes, exponential gap.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 60 / 61

Recent Trends

Preprocessing:
Impressive reduction in formula size and solving time.
Can be harmful for solvers relying on formula structure.
Applications: preprocessing can destroy the original encoding (certificates).

CNF-based Solving and Structure Reconstruction:
Dedicated non-PCNF solvers operating on e.g. circuit structure.
Recent focus on CNF data structures due to efficiency.
Structure reconstruction to extract circuit information from a CNF.
Can improve cube learning: shorter cubes, exponential gap.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 60 / 61

Summary

Search-Based QBF Solving (QDPLL):
Originates from backtracking search (1960s), like SAT solvers.
Modern implementations: fundamentally different.

QCDCL: Assignment Generation + Clause/Cube Learning:
More powerful than backtracking/backjumping.
No explicit flipping of decision variables.
Generation of resolution proofs guided by assignments.
State-of-the-art approach, crucial implementation details.
Future work: safely relax the quantifier ordering.
Future work: integrate preprocessing, certificate generation.

http://lonsing.github.io/depqbf/

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 61 / 61

http://lonsing.github.io/depqbf/

M. Cadoli, A. Giovanardi, and M. Schaerf.
An Algorithm to Evaluate Quantified Boolean Formulae.
In AAAI/IAAI, pages 262–267, 1998.

M. Davis, G. Logemann, and D. Loveland.
A Machine Program for Theorem-proving.
Commun. ACM, 5(7):394–397, 1962.

E. Giunchiglia, M. Narizzano, and A. Tacchella.
QUBE: A System for Deciding Quantified Boolean Formulas Satisfiability.
In R. Goré, A. Leitsch, and T. Nipkow, editors, IJCAR, volume 2083 of LNCS, pages
364–369. Springer, 2001.

E. Giunchiglia, M. Narizzano, and A. Tacchella.
Clause/Term Resolution and Learning in the Evaluation of Quantified Boolean
Formulas.
J. Artif. Intell. Res. (JAIR), 26:371–416, 2006.

F. Lonsing, U. Egly, and Allen Van Gelder.
Efficient Clause Learning for Quantified Boolean Formulas via QBF Pseudo Unit
Propagation.
In Matti Järvisalo and Allen Van Gelder, editors, SAT, volume 7962 of Lecture
Notes in Computer Science, pages 100–115. Springer, 2013.

Allen Van Gelder.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 61 / 61

Contributions to the Theory of Practical Quantified Boolean Formula Solving.
In Michela Milano, editor, CP, volume 7514 of LNCS, pages 647–663. Springer,
2012.
L. Zhang and S. Malik.
Towards a Symmetric Treatment of Satisfaction and Conflicts in Quantified Boolean
Formula Evaluation.
In P. Van Hentenryck, editor, CP, volume 2470 of LNCS, pages 200–215. Springer,
2002.

U. Egly and F. Lonsing (TU Wien) QBFs and DepQBF : Inside QBF Solvers 61 / 61

