Reasoning Engines for Rigorous System Engineering

Block 3: Quantified Boolean Formulas and DepQBF

1. Inside Search-based QBF Solvers

Uwe Egly Florian Lonsing

Knowledge-Based Systems Group Institute of Information Systems Vienna University of Technology

This work is supported by the Austrian Science Fund (FWF) under grant S11409-N23.

Overview (1/2)

Success Story of SAT Solving:

- Backtracking search, clause learning as systematic application of resolution: CDCL
- Broad field of research: solver technology, theory, applications.
- Solver development driven by applications and vice versa.

Quantified Boolean Formulae (QBF):

- **Explicit quantifiers** (\forall, \exists) over propositional variables.
- NP-completeness of SAT vs. PSPACE-completeness of QBF.
- Potentially more succinct QBF encodings of PSPACE-complete problems.

QBF Solving:

- QCDCL: inspired by CDCL for SAT.
- Alternative: variable elimination.
- After peak in 2006/2007, renewed interest in QBF.

Overview (1/2)

Success Story of SAT Solving:

- Backtracking search, clause learning as systematic application of resolution: CDCL
- Broad field of research: solver technology, theory, applications.
- Solver development driven by applications and vice versa.

Quantified Boolean Formulae (QBF):

- **Explicit quantifiers** (\forall, \exists) over propositional variables.
- NP-completeness of SAT vs. PSPACE-completeness of QBF.
- Potentially more succinct QBF encodings of PSPACE-complete problems.

QBF Solving:

- QCDCL: inspired by CDCL for SAT.
- Alternative: variable elimination.
- After peak in 2006/2007, renewed interest in QBF.

Overview (1/2)

Success Story of SAT Solving:

- Backtracking search, clause learning as systematic application of resolution: CDCL
- Broad field of research: solver technology, theory, applications.
- Solver development driven by applications and vice versa.

Quantified Boolean Formulae (QBF):

- **Explicit quantifiers** (\forall, \exists) over propositional variables.
- NP-completeness of SAT vs. PSPACE-completeness of QBF.
- Potentially more succinct QBF encodings of PSPACE-complete problems.

QBF Solving:

- QCDCL: inspired by CDCL for SAT.
- Alternative: variable elimination.
- After peak in 2006/2007, renewed interest in QBF.

Solver Performance in the QBF Gallery 2013

- 6 new formula sets, 150 formulas each.
- At least one solver is good for a set (but it is not always the same).
- http://www.kr.tuwien.ac.at/events/qbfgallery2013/

Overview (2/2)

Our Focus:

- Search-based QBF solving as a major approach (next to variable elimination).
- Bottom-up approach: from basic building blocks to general view.
- The role of Q-resolution in QBF solvers.

Lessons to be Learned:

- (Q)CDCL is not just a combination of backtracking search and clause learning.
- Implementation: QBF solvers are more complex than SAT solvers.
- Pitfalls when porting SAT solver technology to QBF.

Example: DepQBF

- Search-based QBF solver, under active development since 2010.
- Open source: http://lonsing.github.io/depqbf/
- Friday: API demo, examples of recent improvements (incremental solving).

Overview (2/2)

Our Focus:

- Search-based QBF solving as a major approach (next to variable elimination).
- Bottom-up approach: from basic building blocks to general view.
- The role of Q-resolution in QBF solvers.

Lessons to be Learned:

- (Q)CDCL is not just a combination of backtracking search and clause learning.
- Implementation: QBF solvers are more complex than SAT solvers.
- Pitfalls when porting SAT solver technology to QBF.

Example: DepQBF

- Search-based QBF solver, under active development since 2010.
- Open source: http://lonsing.github.io/depqbf/
- Friday: API demo, examples of recent improvements (incremental solving).

Overview (2/2)

Our Focus:

- Search-based QBF solving as a major approach (next to variable elimination).
- Bottom-up approach: from basic building blocks to general view.
- The role of Q-resolution in QBF solvers.

Lessons to be Learned:

- (Q)CDCL is not just a combination of backtracking search and clause learning.
- Implementation: QBF solvers are more complex than SAT solvers.
- Pitfalls when porting SAT solver technology to QBF.

Example: DepQBF

- Search-based QBF solver, under active development since 2010.
- Open source: http://lonsing.github.io/depqbf/
- Friday: API demo, examples of recent improvements (incremental solving).

Syntax, Semantics, Notation

QBF Syntax

QBF in Prenex Conjunctive Normal Form:

- Given a Boolean formula $\phi(x_1, \ldots, x_m)$ in CNF.
- Quantifier prefix $Q_1B_1Q_2B_2...Q_mB_m$.
- Quantifiers $Q_i \in \{\forall, \exists\}$.
- Quantifier block $B_i \subseteq \{x_1, \ldots, x_m\}$ containing variables.
- QBF in prenex CNF (PCNF): $Q_1B_1Q_2B_2...Q_mB_m.\phi(x_1,...,x_m)$.
- $B_i \leq B_{i+1}$: quantifier blocks are linearly ordered (extended to variables, literals).

- Given the CNF $\phi := (x_1 \vee \neg x_3) \land (x_1 \vee x_4) \land (\neg x_2 \vee \neg x_3) \land (\neg x_3 \vee x_4).$
- Given the quantifier prefix $\forall x_1, x_2 \exists x_3, x_4$.
- Prenex CNF: $\forall x_1, x_2 \exists x_3, x_4. (x_1 \lor \neg x_3) \land (x_1 \lor x_4) \land (\neg x_2 \lor \neg x_3) \land (\neg x_3 \lor x_4).$

QBF Syntax

QBF in Prenex Conjunctive Normal Form:

- Given a Boolean formula $\phi(x_1, \ldots, x_m)$ in CNF.
- Quantifier prefix $Q_1B_1Q_2B_2...Q_mB_m$.
- Quantifiers $Q_i \in \{\forall, \exists\}$.
- Quantifier block $B_i \subseteq \{x_1, \ldots, x_m\}$ containing variables.
- QBF in prenex CNF (PCNF): $Q_1B_1Q_2B_2...Q_mB_m.\phi(x_1,...,x_m)$.
- $B_i \leq B_{i+1}$: quantifier blocks are linearly ordered (extended to variables, literals).

- Given the CNF $\phi := (x_1 \vee \neg x_3) \land (x_1 \vee x_4) \land (\neg x_2 \vee \neg x_3) \land (\neg x_3 \vee x_4).$
- Given the quantifier prefix $\forall x_1, x_2 \exists x_3, x_4$.
- Prenex CNF: $\forall x_1, x_2 \exists x_3, x_4. (x_1 \lor \neg x_3) \land (x_1 \lor x_4) \land (\neg x_2 \lor \neg x_3) \land (\neg x_3 \lor x_4).$

Variable Assignments:

- Mapping $V \to \{\top, \bot\}$, variables $V = \{x_1, \ldots, x_m\}$, truth values \top and \bot .
- Given a CNF $\phi(x_1, \ldots, x_i, \ldots, x_m)$, assigning x_i to v, where $v \in \{\top, \bot\}$, produces the CNF $\phi(x_1, \ldots, x_m)[x_i/v]$.
- In $\phi(x_1, \ldots, x_m)[x_i/v]$, occurrences of x_i are replaced by the value v.
- Standard simplifications by Boolean algebra: $\phi' \lor \top \equiv \top, \phi' \lor \bot \equiv \phi', \phi' \land \top \equiv \phi', \phi' \land \bot \equiv \bot.$
- Write $\phi[x_i]$ for $\phi[x_i/\top]$ and $\phi[\neg x_i]$ for $\phi[x_i/\bot]$: literals denote assignments.

- Given the CNF $\phi := (x_1 \vee \neg x_2) \land (x_2 \vee x_3) \land (\neg x_1 \vee \neg x_3).$
- $\bullet \phi[x_2/\top] = (x_1 \vee \neg \top) \land (\top \vee x_3) \land (\neg x_1 \vee \neg x_3).$
- $\bullet \phi[x_2/\top] = (x_1) \land (\neg x_1 \lor \neg x_3).$

Variable Assignments:

- Mapping $V \to \{\top, \bot\}$, variables $V = \{x_1, \ldots, x_m\}$, truth values \top and \bot .
- Given a CNF $\phi(x_1, \ldots, x_i, \ldots, x_m)$, assigning x_i to v, where $v \in \{\top, \bot\}$, produces the CNF $\phi(x_1, \ldots, x_m)[x_i/v]$.
- In $\phi(x_1, \ldots, x_m)[x_i/v]$, occurrences of x_i are replaced by the value v.
- Standard simplifications by Boolean algebra: $\phi' \lor \top \equiv \top, \phi' \lor \bot \equiv \phi', \phi' \land \top \equiv \phi', \phi' \land \bot \equiv \bot.$
- Write $\phi[x_i]$ for $\phi[x_i/\top]$ and $\phi[\neg x_i]$ for $\phi[x_i/\bot]$: literals denote assignments.

Example

• Given the CNF $\phi := (x_1 \vee \neg x_2) \land (x_2 \vee x_3) \land (\neg x_1 \vee \neg x_3).$

$$\bullet \phi[x_2/\top] = (x_1 \vee \neg \top) \land (\top \vee x_3) \land (\neg x_1 \vee \neg x_3).$$

• $\phi[x_2/\top] = (x_1) \land (\neg x_1 \lor \neg x_3).$

Recursive Definition:

- Recursively assign the variables in prefix order (from left to right).
- Base cases: the QBF \top (\perp) is satisfiable (unsatisfiable).
- $\psi = \forall x \dots \phi$ is satisfiable if $\psi[\neg x]$ and $\psi[x]$ are satisfiable.
- $\psi = \exists x \dots \phi$ is satisfiable if $\psi[\neg x]$ or $\psi[x]$ is satisfiable.
- Prerequisite: every variable is quantified in the prefix (no free variables).
- Satisfiability-equivalence of two PCNFs ψ and $\psi' \colon \psi \equiv \psi'.$

Example

```
The PCNF \psi = \forall x \exists y . (x \lor \neg y) \land (\neg x \lor y) is satisfiable if
```

(1) $\psi[x] = \exists y.(y)$ and

(2) $\psi[\neg x] = \exists y.(\neg y)$ are satisfiable.

(1) ψ[x] = ∃y.(y) is satisfiable since ψ[x, y] = ⊤ is satisfiable.
(2) ψ[¬x] = ∃y.(¬y) is satisfiable since ψ[¬x, ¬y] = ⊤ is satisfiable.

Recursive Definition:

- Recursively assign the variables in prefix order (from left to right).
- Base cases: the QBF \top (\perp) is satisfiable (unsatisfiable).
- $\psi = \forall x \dots \phi$ is satisfiable if $\psi[\neg x]$ and $\psi[x]$ are satisfiable.
- $\psi = \exists x \dots \phi$ is satisfiable if $\psi[\neg x]$ or $\psi[x]$ is satisfiable.
- Prerequisite: every variable is quantified in the prefix (no free variables).
- Satisfiability-equivalence of two PCNFs ψ and ψ' : $\psi \equiv \psi'$.

Example

The PCNF $\psi = \forall x \exists y . (x \lor \neg y) \land (\neg x \lor y)$ is satisfiable if

(1) $\psi[x] = \exists y.(y)$ and (2) $\psi[\neg x] = \exists y.(\neg y)$ are satisfiable.

(1) ψ[x] = ∃y.(y) is satisfiable since ψ[x, y] = ⊤ is satisfiable.
(2) ψ[¬x] = ∃y.(¬y) is satisfiable since ψ[¬x, ¬y] = ⊤ is satisfiable.

Recursive Definition:

- Recursively assign the variables in prefix order (from left to right).
- Base cases: the QBF \top (\perp) is satisfiable (unsatisfiable).
- $\psi = \forall x \dots \phi$ is satisfiable if $\psi[\neg x]$ and $\psi[x]$ are satisfiable.
- $\psi = \exists x \dots \phi$ is satisfiable if $\psi[\neg x]$ or $\psi[x]$ is satisfiable.
- Prerequisite: every variable is quantified in the prefix (no free variables).
- Satisfiability-equivalence of two PCNFs ψ and ψ' : $\psi \equiv \psi'$.

Example

The PCNF
$$\psi = \forall x \exists y . (x \lor \neg y) \land (\neg x \lor y)$$
 is satisfiable if

(1)
$$\psi[x] = \exists y.(y)$$
 and
(2) $\psi[\neg x] = \exists y.(\neg y)$ are satisfiable

ψ[x] = ∃y.(y) is satisfiable since ψ[x, y] = ⊤ is satisfiable.
 ψ[¬x] = ∃y.(¬y) is satisfiable since ψ[¬x, ¬y] = ⊤ is satisfiable.

Recursive Definition:

- Recursively assign the variables in prefix order (from left to right).
- Base cases: the QBF \top (\perp) is satisfiable (unsatisfiable).
- $\psi = \forall x \dots \phi$ is satisfiable if $\psi[\neg x]$ and $\psi[x]$ are satisfiable.
- $\psi = \exists x \dots \phi$ is satisfiable if $\psi[\neg x]$ or $\psi[x]$ is satisfiable.
- Prerequisite: every variable is quantified in the prefix (no free variables).
- Satisfiability-equivalence of two PCNFs ψ and $\psi' \colon \psi \equiv \psi'.$

Example

The PCNF
$$\psi = \forall x \exists y. (x \lor \neg y) \land (\neg x \lor y)$$
 is satisfiable if

(1)
$$\psi[x] = \exists y.(y)$$
 and
(2) $\psi[\neg x] = \exists y.(\neg y)$ are satisfiable.

ψ[x] = ∃y.(y) is satisfiable since ψ[x, y] = ⊤ is satisfiable.
 ψ[¬x] = ∃y.(¬y) is satisfiable since ψ[¬x, ¬y] = ⊤ is satisfiable.

Example

The PCNF $\psi = \exists y \forall x. (x \lor \neg y) \land (\neg x \lor y)$ is unsatisfiable because neither

(1) $\psi[y] = \forall x.(x)$ nor (2) $\psi[\neg y] = \forall x.(\neg x)$ is satisfiable.

(1) $\psi[y] = \forall x.(x)$ is unsatisfiable since $\psi[y, \neg x]$ is unsatisfiable. (2) $\psi[\neg y] = \forall x.(\neg x)$ is unsatisfiable since $\psi[\neg y, x]$ is unsatisfiable.

Example

The PCNF $\psi = \exists y \forall x. (x \lor \neg y) \land (\neg x \lor y)$ is unsatisfiable because neither

(1) $\psi[y] = \forall x.(x)$ nor (2) $\psi[\neg y] = \forall x.(\neg x)$ is satisfiable.

(1) $\psi[y] = \forall x.(x)$ is unsatisfiable since $\psi[y, \neg x]$ is unsatisfiable. (2) $\psi[\neg y] = \forall x.(\neg x)$ is unsatisfiable since $\psi[\neg y, x]$ is unsatisfiable

Example

The PCNF $\psi = \exists y \forall x. (x \lor \neg y) \land (\neg x \lor y)$ is unsatisfiable because neither

(1)
$$\psi[y] = \forall x.(x)$$
 nor
(2) $\psi[\neg y] = \forall x.(\neg x)$ is satisfiable.

ψ[y] = ∀x.(x) is unsatisfiable since ψ[y, ¬x] is unsatisfiable.
 ψ[¬y] = ∀x.(¬x) is unsatisfiable since ψ[¬y, x] is unsatisfiable.

Assignment Trees of a PCNF ψ :

- Dedicated root node r.
- Each path from root r to a leaf represents a variable assignment A.
- The assignment sequence along each path follows the prefix order.
- Leaf is labelled with \top if the PCNF $\psi[A]$ is satisfiable.
- Leaf is labelled with \perp if the PCNF $\psi[{\it A}]$ is unsatisfiable.

- Satisfiable PCNF $\psi = \forall x \exists y. (x \lor \neg y) \land (\neg x \lor y).$
- The node "r" represents ψ .
- The node " $\neg x$ " represents $\psi[\neg x] = \exists y.(\neg y)$
- Leftmost path: $\psi[\neg x, \neg y]$ is satisfiable.
- **Rightmost path**: $\psi[x, y]$ is satisfiable.

Assignment Trees of a PCNF ψ :

- Dedicated root node r.
- Each path from root r to a leaf represents a variable assignment A.
- The assignment sequence along each path follows the prefix order.
- Leaf is labelled with \top if the PCNF $\psi[A]$ is satisfiable.
- Leaf is labelled with \perp if the PCNF $\psi[{\it A}]$ is unsatisfiable.

- Satisfiable PCNF $\psi = \forall x \exists y. (x \lor \neg y) \land (\neg x \lor y).$
- The node "r" represents ψ .
- The node " $\neg x$ " represents $\psi[\neg x] = \exists y.(\neg y)$.
- Leftmost path: $\psi[\neg x, \neg y]$ is satisfiable.
- **Rightmost path**: $\psi[x, y]$ is satisfiable.

Example (continued)

- Satisfiable PCNF $\psi = \forall x \exists y . (x \lor \neg y) \land (\neg x \lor y).$
- The node "r" represents ψ .
- The node " $\neg x$ " represents $\psi[\neg x] = \exists y.(\neg y)$.
- Leftmost path: $\psi[\neg x, \neg y]$ is satisfiable.
- Rightmost path: $\psi[x, y]$ is satisfiable.

- Assignment trees visualize the structure of recursive semantical evaluation.
- $\forall x.\psi$: both recursive subcases $\psi[\neg x]$ and $\psi[x]$ (children) must be satisfiable.
- $\exists x.\psi$: one recursive subcase $\psi[\neg x]$ or $\psi[x]$ (child) must be satisfiable.

Basic Backtracking Search

Recursive QBF Semantics and Backtracking Search

- Application of semantic rules: "splitting", "decision making", "branching".
- Backtracking: flip value of decision (wrt. quantifier type and base case).
- Early termination if one subcase of \exists (\forall) is satisfiable (unsatisfiable).

```
/* 1. Simplify under given assignment. */
/* 2. Check base cases. */
/* 3. Decision making, backtracking. */
```

M. Davis, G. Logemann, D. Loveland. A Machine Program for Theorem-Proving. Commun. ACM, 1962.

M. Cadoli, A. Giovanardi, M. Schaerf. An Algorithm to Evaluate Quantified Boolean Formulae. AAAI, 1998.

Recursive QBF Semantics and Backtracking Search

- Application of semantic rules: "splitting", "decision making", "branching".
- Backtracking: flip value of decision (wrt. quantifier type and base case).
- Early termination if one subcase of \exists (\forall) is satisfiable (unsatisfiable).

```
bool bt_search (PCNF Q \times \psi, Assignment A)
   /* 1. Simplify under given assignment. */
        \psi' := \operatorname{simplify}(Q \times \psi[A]);
   /* 2. Check base cases. */
        if (\psi' == \bot)
           return false:
        if (\psi' == \top)
           return true;
   /* 3. Decision making, backtracking. */
        if (Q == ∃)
           return bt search (\psi', A \cup \{\neg x\})
                   bt search (\psi', A \cup \{x\}):
        if (Q == \forall)
           return bt_search (\psi', A \cup \{\neg x\}) &&
                   bt search (\psi', A \cup \{x\});
```

M. Davis, G. Logemann, D. Loveland. A Machine Program for Theorem-Proving. Commun. ACM, 1962.

M. Cadoli, A. Giovanardi, M. Schaerf. An Algorithm to Evaluate Quantified Boolean Formulae. AAAI, 1998.

Example

$\psi := \forall y \exists x_1, x_2.(x_2) \land (\neg y \lor \neg x_2) \land (\neg y \lor x_1).$

- Leftmost path: check ∀-subcase ψ[¬y].
 ∃-subcase ψ[¬y, x₂] = ⊤ already, no need to try ψ[¬y, ¬x₂].
 Backtrack and check ψ[y].
- \exists -subcase $\psi[y, \neg x_1] = \bot$, flip x_1 and check $\psi[y, x_1]$.
- Both ∃-subcases $\psi[y, x_1, \neg x_2] = \bot$ and $\psi[y, x_1, x_2] = \bot$, hence ∃-subcase $\psi[y, x_1]$ unsat.
- Since ∃-subcases $\psi[y, \neg x_1]$, $\psi[y, x_1]$ unsat., also \forall -subcase $\psi[y]$ and ψ unsat.

- Every subcase $\psi[\ldots, \neg x_2, \ldots]$ is unsatisfiable: consider $\psi[\ldots, x_2, \ldots]$ instead.
- \forall -subcase $\psi[x_2, y] = \bot$, hence ψ unsatisfiable: smaller assignment tree!

Example

- $$\begin{split} \psi &:= \forall y \exists x_1, x_2.(x_2) \land (\neg y \lor \neg x_2) \land (\neg y \lor x_1). \\ \bullet \text{ Leftmost path: check } \forall \text{-subcase } \psi[\neg y]. \\ \exists \text{-subcase } \psi[\neg y, x_2] = \top \text{ already, no need to try } \psi[\neg y, \neg x_2]. \\ \text{ Backtrack and check } \psi[y]. \end{split}$$
 - \exists -subcase $\psi[y, \neg x_1] = \bot$, flip x_1 and check $\psi[y, x_1]$.
 - Both ∃-subcases $\psi[y, x_1, \neg x_2] = \bot$ and $\psi[y, x_1, x_2] = \bot$, hence ∃-subcase $\psi[y, x_1]$ unsat.
 - Since \exists -subcases $\psi[y, \neg x_1]$, $\psi[y, x_1]$ unsat., also \forall -subcase $\psi[y]$ and ψ unsat.

- Every subcase $\psi[\ldots, \neg x_2, \ldots]$ is unsatisfiable: consider $\psi[\ldots, x_2, \ldots]$ instead.
- \forall -subcase $\psi[x_2, y] = \bot$, hence ψ unsatisfiable: smaller assignment tree!

Example

- $$\begin{split} \psi &:= \forall y \exists x_1, x_2.(x_2) \land (\neg y \lor \neg x_2) \land (\neg y \lor x_1). \\ & \blacksquare \text{ Leftmost path: check } \forall \text{-subcase } \psi[\neg y]. \\ & \exists \text{-subcase } \psi[\neg y, x_2] = \top \text{ already, no need to try } \psi[\neg y, \neg x_2]. \end{split}$$
 - Backtrack and check $\psi[y]$.
 - \exists -subcase $\psi[y, \neg x_1] = \bot$, flip x_1 and check $\psi[y, x_1]$.
 - Both ∃-subcases $\psi[y, x_1, \neg x_2] = \bot$ and $\psi[y, x_1, x_2] = \bot$, hence ∃-subcase $\psi[y, x_1]$ unsat.
 - Since \exists -subcases $\psi[y, \neg x_1]$, $\psi[y, x_1]$ unsat., also \forall -subcase $\psi[y]$ and ψ unsat.

- Every subcase $\psi[\ldots, \neg x_2, \ldots]$ is unsatisfiable: consider $\psi[\ldots, x_2, \ldots]$ instead.
- \forall -subcase $\psi[x_2, y] = \bot$, hence ψ unsatisfiable: smaller assignment tree!

Example

- $$\begin{split} \psi &:= \forall y \exists x_1, x_2.(x_2) \land (\neg y \lor \neg x_2) \land (\neg y \lor x_1). \\ \bullet \text{ Leftmost path: check } \forall \text{-subcase } \psi[\neg y]. \\ \exists \text{-subcase } \psi[\neg y, x_2] = \top \text{ already, no need to try } \psi[\neg y, \neg x_2]. \\ \text{ Backtrack and check } \psi[y]. \end{split}$$
 - \exists -subcase $\psi[y, \neg x_1] = \bot$, flip x_1 and check $\psi[y, x_1]$.
 - Both ∃-subcases \u03c6[y, x₁, ¬x₂] = ⊥ and \u03c6[y, x₁, x₂] = ⊥, hence ∃-subcase \u03c6[y, x₁] unsat.
 - Since \exists -subcases $\psi[y, \neg x_1]$, $\psi[y, x_1]$ unsat., also \forall -subcase $\psi[y]$ and ψ unsat.

- Every subcase $\psi[\ldots, \neg x_2, \ldots]$ is unsatisfiable: consider $\psi[\ldots, x_2, \ldots]$ instead.
- \forall -subcase $\psi[x_2, y] = \bot$, hence ψ unsatisfiable: smaller assignment tree!

Example

- $$\begin{split} \psi &:= \forall y \exists x_1, x_2.(x_2) \land (\neg y \lor \neg x_2) \land (\neg y \lor x_1). \\ & \blacksquare \text{ Leftmost path: check } \forall -subcase \ \psi[\neg y]. \\ & \exists \text{-subcase } \psi[\neg y, x_2] = \top \text{ already, no need to try } \psi[\neg y, \neg x_2]. \end{split}$$
 - Backtrack and check $\psi[y]$.
 - ∃-subcase $\psi[y, \neg x_1] = \bot$, flip x_1 and check $\psi[y, x_1]$. ■ Both ∃ subcases $\psi[y, \neg x_1] = \bot$ and $\psi[y, x_1, \neg x_1] =$
 - Both ∃-subcases $\psi[y, x_1, \neg x_2] = \bot$ and $\psi[y, x_1, x_2] = \bot$, hence ∃-subcase $\psi[y, x_1]$ unsat.
 - Since \exists -subcases $\psi[y, \neg x_1]$, $\psi[y, x_1]$ unsat., also \forall -subcase $\psi[y]$ and ψ unsat.

- Every subcase $\psi[\ldots, \neg x_2, \ldots]$ is unsatisfiable: consider $\psi[\ldots, x_2, \ldots]$ instead.
- \forall -subcase $\psi[x_2, y] = \bot$, hence ψ unsatisfiable: smaller assignment tree!

- $$\begin{split} \psi &:= \forall y \exists x_1, x_2.(x_2) \land (\neg y \lor \neg x_2) \land (\neg y \lor x_1). \\ \bullet \text{ Leftmost path: check } \forall \text{-subcase } \psi[\neg y]. \\ \exists \text{-subcase } \psi[\neg y, x_2] = \top \text{ already, no need to try } \psi[\neg y, \neg x_2]. \\ \text{ Backtrack and check } \psi[y]. \end{split}$$
 - \exists -subcase $\psi[y, \neg x_1] = \bot$, flip x_1 and check $\psi[y, x_1]$.
 - Both \exists -subcases $\psi[y, x_1, \neg x_2] = \bot$ and $\psi[y, x_1, x_2] = \bot$, hence \exists -subcase $\psi[y, x_1]$ unsat.
 - Since \exists -subcases $\psi[y, \neg x_1]$, $\psi[y, x_1]$ unsat., also \forall -subcase $\psi[y]$ and ψ unsat.

- Every subcase $\psi[\ldots, \neg x_2, \ldots]$ is unsatisfiable: consider $\psi[\ldots, x_2, \ldots]$ instead.
- \forall -subcase $\psi[x_2, y] = \bot$, hence ψ unsatisfiable: smaller assignment tree!

Backtracking Search: Drawbacks

- Assignments by decisions only (i.e. must be flipped during backtracking).
- Generated assignment trees might contain irrelevant branches.
- Goal: add rules to make assignments other than decisions which can be ignored during backtracking.
- Avoid irrelevant branches resulting from "wrong" decisions.

Improvements to Backtracking Search: Assignment Generation

Towards Modern Search-Based QBF Solving (1/5)

Definition (Unit Literal Detection)

- Given a QBF ψ , a clause $C \in \psi$ is *unit* if and only if C = (I) and $q(I) = \exists$.
- The existential literal I in C is called a unit literal.
- Unit literal detection $UL(C) := \{I\}$ collects the assignment $\{I\}$ from the unit clause C = (I).
- Unit literal detection on a QBF ψ : $UL(\psi) := \bigcup_{C \in \psi} UL(C)$.

Example (continued)

The clause (x_2) in $\psi := \forall y \exists x_1, x_2.(x_2) \land (\neg y \lor \neg x_2) \land (\neg y \lor x_1)$ is unit: $UL(\psi) = \{x_2\}$

M. Cadoli, A. Giovanardi, M. Schaerf. An Algorithm to Evaluate Quantified Boolean Formulae. AAAI, 1998.

Towards Modern Search-Based QBF Solving (1/5)

Definition (Unit Literal Detection)

- Given a QBF ψ , a clause $C \in \psi$ is *unit* if and only if C = (I) and $q(I) = \exists$.
- The existential literal I in C is called a unit literal.
- Unit literal detection $UL(C) := \{I\}$ collects the assignment $\{I\}$ from the unit clause C = (I).
- Unit literal detection on a QBF ψ : $UL(\psi) := \bigcup_{C \in \psi} UL(C)$.

Example (continued)

The clause (x_2) in $\psi := \forall y \exists x_1, x_2.(x_2) \land (\neg y \lor \neg x_2) \land (\neg y \lor x_1)$ is unit: $UL(\psi) = \{x_2\}$

M. Cadoli, A. Giovanardi, M. Schaerf. An Algorithm to Evaluate Quantified Boolean Formulae. AAAI, 1998.

Towards Modern Search-Based QBF Solving (2/5)

Definition (Pure Literal Detection)

- A literal *I* is *pure* in a QBF ψ if there are clauses which contain *I* but no clauses which contain $\neg I$.
- Pure literal detection PL(ψ) := ∪{l'} collects the assignment {l'} such that l is a pure literal in ψ and l' := l if q(l) = ∃ and l' := ¬l if q(l) = ∀.
- The variable of an existential (universal) pure literal is assigned so that clauses are satisfied (not satisfied) by that assignment.

Example (continued)

The universal literal $\neg y$ in $\psi := \forall y \exists x_1, x_2.(x_2) \land (\neg y \lor \neg x_2) \land (\neg y \lor x_1)$ is pure. $PL(\psi) = \{y\}$ and $\psi[y] := \exists x_1, x_2.(x_2) \land (\neg x_2) \land (x_1).$

M. Cadoli, A. Giovanardi, M. Schaerf. An Algorithm to Evaluate Quantified Boolean Formulae. AAAI, 1998.

Towards Modern Search-Based QBF Solving (2/5)

Definition (Pure Literal Detection)

- A literal *I* is *pure* in a QBF ψ if there are clauses which contain *I* but no clauses which contain $\neg I$.
- Pure literal detection PL(ψ) := ∪{l'} collects the assignment {l'} such that l is a pure literal in ψ and l' := l if q(l) = ∃ and l' := ¬l if q(l) = ∀.
- The variable of an existential (universal) pure literal is assigned so that clauses are satisfied (not satisfied) by that assignment.

Example (continued)

The universal literal $\neg y$ in $\psi := \forall y \exists x_1, x_2.(x_2) \land (\neg y \lor \neg x_2) \land (\neg y \lor x_1)$ is pure. $PL(\psi) = \{y\}$ and $\psi[y] := \exists x_1, x_2.(x_2) \land (\neg x_2) \land (x_1).$

M. Cadoli, A. Giovanardi, M. Schaerf. An Algorithm to Evaluate Quantified Boolean Formulae. AAAI, 1998.

Towards Modern Search-Based QBF Solving (3/5)

Definition

Given a clause C, universal reduction (UR) on C produces the clause

 $UR(C) := C \setminus \{l \in C \mid q(l) = \forall \text{ and } \forall l' \in C \text{ with } q(l') = \exists : var(l') < var(l)\},\$

where < is the linear variable ordering given by the quantifier prefix.

- UR deletes "trailing" universal literals from clauses.
- UR shortens clauses.

Example (continued)

Given $\psi := \forall y \exists x_1, x_2.(x_2) \land (\neg y \lor \neg x_2) \land (\neg y \lor x_1).$ By UL: $\psi[x_2] := \forall y \exists x_1.(\neg y) \land (\neg y \lor x_1).$ $UR((\neg y)) = \emptyset$ in $\psi[x_2].$

H. Kleine Büning, M. Karpinski, A. Flögel. Resolution for Quantified Boolean Formulas. Inf. Comput., 1995.

Towards Modern Search-Based QBF Solving (3/5)

Definition

Given a clause C, universal reduction (UR) on C produces the clause

 $UR(C) := C \setminus \{l \in C \mid q(l) = \forall \text{ and } \forall l' \in C \text{ with } q(l') = \exists : var(l') < var(l)\},\$

where < is the linear variable ordering given by the quantifier prefix.

- UR deletes "trailing" universal literals from clauses.
- UR shortens clauses.

Example (continued)

Given $\psi := \forall y \exists x_1, x_2.(x_2) \land (\neg y \lor \neg x_2) \land (\neg y \lor x_1).$ By UL: $\psi[x_2] := \forall y \exists x_1.(\neg y) \land (\neg y \lor x_1).$ $UR((\neg y)) = \emptyset$ in $\psi[x_2].$

H. Kleine Büning, M. Karpinski, A. Flögel. Resolution for Quantified Boolean Formulas. Inf. Comput., 1995.

Definition

Boolean Constraint Propagation for QBF (QBCP):

- Given a PCNF ψ and the empty assignment $A = \{\}$, i.e. $\psi[A] = \psi$.
 - 1. Apply universal reduction to $\psi[A]$.
 - 2. Apply unit literal detection (UL) to $\psi[A]$ to get new assignments by UL.
 - 3. Apply pure literal detection (PL) to $\psi[A]$ to find new assignments by PL.
- Add assignments found by UL and PL to A, repeat steps 1-3.
- Stop if A does not change anymore or if $\psi[A] = \top$ or $\psi[A] = \bot$.

Towards Modern Search-Based QBF Solving (5/5)

Properties of QBCP:

- QBCP takes a PCNF ψ and an assignment A and produces an extended assignment A' and a new PCNF $\psi' = \psi[A']$ by UL, PL, and UR.
- Soundness: $\psi \equiv \psi'$ (satisfiability-equivalence).
- No order restriction: QBCP assigns variables from any quantifier block.

QBCP in Practice:

- Combine decision making and QBCP.
- Successively apply QBCP starting with $A = \{x\}$ where x is a decision.
- No need to flip assignments by UL and PL in QBCP during backtracking.

Towards Modern Search-Based QBF Solving (5/5)

Properties of QBCP:

- QBCP takes a PCNF ψ and an assignment A and produces an extended assignment A' and a new PCNF $\psi' = \psi[A']$ by UL, PL, and UR.
- Soundness: $\psi \equiv \psi'$ (satisfiability-equivalence).
- No order restriction: QBCP assigns variables from any quantifier block.

QBCP in Practice:

- Combine decision making and QBCP.
- Successively apply QBCP starting with $A = \{x\}$ where x is a decision.
- No need to flip assignments by UL and PL in QBCP during backtracking.

Example

 $\blacksquare \ \psi =$

 $\forall y_5 \exists x_1 \forall y_2 \exists x_3, x_4. (\neg y_5 \lor x_4) \land (y_5 \lor \neg x_4) \land (x_1 \lor y_2 \lor \neg x_4) \land (\neg x_1 \lor x_3 \lor \neg x_4) \land (\neg y_2 \lor \neg x_3).$

- \blacksquare No simplifications of ψ by QBCP possible.
- Make decision: $A = \{y_5\}$.
- By UL: $\psi[y_5, x_4] = \exists x_1 \forall y_2 \exists x_3. (x_1 \lor y_2) \land (\neg x_1 \lor x_3) \land (\neg y_2 \lor \neg x_3).$
- By UR: $\psi[y_5, x_4] = \exists x_1 \forall y_2 \exists x_3.(x_1) \land (\neg x_1 \lor x_3) \land (\neg y_2 \lor \neg x_3).$
- By PL: $\psi[y_5, x_4, y_2] = \exists x_1 \exists x_3.(\mathbf{x}_1) \land (\neg x_1 \lor x_3) \land (\neg x_3).$
- By UL: $\psi[y_5, x_4, y_2, x_1] = \exists x_3.(x_3) \land (\neg x_3).$
- By UL: $\psi[y_5, x_4, y_2, x_1, x_3] = \bot$.
- By QBCP, we have shown: $\psi[y_5] \equiv \psi[y_5, x_4, y_2, x_1, x_3] \equiv \bot$.
- Since y_5 is a universal decision: $\psi[y_5] \equiv \bot \equiv \psi$, only one branch explored.
- Worst case: search tree has 2⁵ branches.

Example

 $\bullet \ \psi =$

 $\forall y_5 \exists x_1 \forall y_2 \exists x_3, x_4. (\neg y_5 \lor x_4) \land (y_5 \lor \neg x_4) \land (x_1 \lor y_2 \lor \neg x_4) \land (\neg x_1 \lor x_3 \lor \neg x_4) \land (\neg y_2 \lor \neg x_3).$

- \blacksquare No simplifications of ψ by QBCP possible.
- Make decision: $A = \{y_5\}$.
- $= \psi[y_5] = \exists x_1 \forall y_2 \exists x_3, x_4, (\mathbf{x}_4) \land (x_1 \lor y_2 \lor \neg x_4) \land (\neg x_1 \lor x_3 \lor \neg x_4) \land (\neg y_2 \lor \neg x_3).$
- By UL: $\psi[y_5, x_4] = \exists x_1 \forall y_2 \exists x_3. (x_1 \lor y_2) \land (\neg x_1 \lor x_3) \land (\neg y_2 \lor \neg x_3).$
- By UR: $\psi[y_5, x_4] = \exists x_1 \forall y_2 \exists x_3.(x_1) \land (\neg x_1 \lor x_3) \land (\neg y_2 \lor \neg x_3).$
- By PL: $\psi[y_5, x_4, y_2] = \exists x_1 \exists x_3.(x_1) \land (\neg x_1 \lor x_3) \land (\neg x_3).$
- By UL: $\psi[y_5, x_4, y_2, x_1] = \exists x_3.(x_3) \land (\neg x_3).$
- By UL: $\psi[y_5, x_4, y_2, x_1, x_3] = \bot$.
- By QBCP, we have shown: $\psi[y_5] \equiv \psi[y_5, x_4, y_2, x_1, x_3] \equiv \bot$.
- Since y_5 is a universal decision: $\psi[y_5] \equiv \bot \equiv \psi$, only one branch explored.
- Worst case: search tree has 2⁵ branches.

Example

 $\bullet \ \psi =$

$$\forall y_5 \exists x_1 \forall y_2 \exists x_3, x_4. (\neg y_5 \lor x_4) \land (y_5 \lor \neg x_4) \land (x_1 \lor y_2 \lor \neg x_4) \land (\neg x_1 \lor x_3 \lor \neg x_4) \land (\neg y_2 \lor \neg x_3).$$

- \blacksquare No simplifications of ψ by QBCP possible.
- Make decision: $A = \{y_5\}$.
- $\psi[y_5] = \exists x_1 \forall y_2 \exists x_3, x_4. (\mathbf{x}_4) \land (x_1 \lor y_2 \lor \neg x_4) \land (\neg x_1 \lor x_3 \lor \neg x_4) \land (\neg y_2 \lor \neg x_3).$
- By UL: $\psi[y_5, x_4] = \exists x_1 \forall y_2 \exists x_3. (x_1 \lor y_2) \land (\neg x_1 \lor x_3) \land (\neg y_2 \lor \neg x_3).$
- By UR: $\psi[y_5, x_4] = \exists x_1 \forall y_2 \exists x_3.(x_1) \land (\neg x_1 \lor x_3) \land (\neg y_2 \lor \neg x_3).$
- By PL: $\psi[y_5, x_4, y_2] = \exists x_1 \exists x_3.(\mathbf{x}_1) \land (\neg x_1 \lor x_3) \land (\neg x_3).$
- By UL: $\psi[y_5, x_4, y_2, x_1] = \exists x_3.(x_3) \land (\neg x_3).$
- By UL: $\psi[y_5, x_4, y_2, x_1, x_3] = \bot$.
- By QBCP, we have shown: $\psi[y_5] \equiv \psi[y_5, x_4, y_2, x_1, x_3] \equiv \bot$.
- Since y_5 is a universal decision: $\psi[y_5] \equiv \bot \equiv \psi$, only one branch explored.
- Worst case: search tree has 2⁵ branches.

Example

 $\bullet \ \psi =$

$$\forall y_5 \exists x_1 \forall y_2 \exists x_3, x_4. (\neg y_5 \lor x_4) \land (y_5 \lor \neg x_4) \land (x_1 \lor y_2 \lor \neg x_4) \land (\neg x_1 \lor x_3 \lor \neg x_4) \land (\neg y_2 \lor \neg x_3).$$

- \blacksquare No simplifications of ψ by QBCP possible.
- Make decision: $A = \{y_5\}.$
- $\psi[y_5] = \exists x_1 \forall y_2 \exists x_3, x_4. (\mathbf{x}_4) \land (x_1 \lor y_2 \lor \neg x_4) \land (\neg x_1 \lor x_3 \lor \neg x_4) \land (\neg y_2 \lor \neg x_3).$
- By UL: $\psi[y_5, x_4] = \exists x_1 \forall y_2 \exists x_3 (x_1 \lor y_2) \land (\neg x_1 \lor x_3) \land (\neg y_2 \lor \neg x_3).$
- By UR: $\psi[y_5, x_4] = \exists x_1 \forall y_2 \exists x_3.(x_1) \land (\neg x_1 \lor x_3) \land (\neg y_2 \lor \neg x_3).$
- By PL: $\psi[y_5, x_4, y_2] = \exists x_1 \exists x_3.(x_1) \land (\neg x_1 \lor x_3) \land (\neg x_3).$
- By UL: $\psi[y_5, x_4, y_2, x_1] = \exists x_3.(x_3) \land (\neg x_3).$
- By UL: $\psi[y_5, x_4, y_2, x_1, x_3] = \bot$.
- By QBCP, we have shown: $\psi[y_5] \equiv \psi[y_5, x_4, y_2, x_1, x_3] \equiv \bot$.
- Since y_5 is a universal decision: $\psi[y_5] \equiv \bot \equiv \psi$, only one branch explored.
- Worst case: search tree has 2⁵ branches.

Example

$$\forall y_5 \exists x_1 \forall y_2 \exists x_3, x_4. (\neg y_5 \lor x_4) \land (y_5 \lor \neg x_4) \land (x_1 \lor y_2 \lor \neg x_4) \land (\neg x_1 \lor x_3 \lor \neg x_4) \land (\neg y_2 \lor \neg x_3).$$

- \blacksquare No simplifications of ψ by QBCP possible.
- Make decision: $A = \{y_5\}$.
- $\psi[y_5] = \exists x_1 \forall y_2 \exists x_3, x_4.(\mathbf{x}_4) \land (x_1 \lor y_2 \lor \neg x_4) \land (\neg x_1 \lor x_3 \lor \neg x_4) \land (\neg y_2 \lor \neg x_3).$
- By UL: $\psi[y_5, x_4] = \exists x_1 \forall y_2 \exists x_3 (x_1 \lor y_2) \land (\neg x_1 \lor x_3) \land (\neg y_2 \lor \neg x_3).$
- By UR: $\psi[y_5, x_4] = \exists x_1 \forall y_2 \exists x_3.(x_1) \land (\neg x_1 \lor x_3) \land (\neg y_2 \lor \neg x_3).$
- By PL: $\psi[y_5, x_4, y_2] = \exists x_1 \exists x_3 . (x_1) \land (\neg x_1 \lor x_3) \land (\neg x_3).$
- By UL: $\psi[y_5, x_4, y_2, x_1] = \exists x_3.(x_3) \land (\neg x_3).$
- By UL: $\psi[y_5, x_4, y_2, x_1, x_3] = \bot$.
- By QBCP, we have shown: $\psi[y_5] \equiv \psi[y_5, x_4, y_2, x_1, x_3] \equiv \bot$.
- Since y_5 is a universal decision: $\psi[y_5] \equiv \bot \equiv \psi$, only one branch explored.
- Worst case: search tree has 2⁵ branches.

Example

$$\forall y_5 \exists x_1 \forall y_2 \exists x_3, x_4. (\neg y_5 \lor x_4) \land (y_5 \lor \neg x_4) \land (x_1 \lor y_2 \lor \neg x_4) \land (\neg x_1 \lor x_3 \lor \neg x_4) \land (\neg y_2 \lor \neg x_3).$$

- \blacksquare No simplifications of ψ by QBCP possible.
- Make decision: $A = \{y_5\}$.
- $\psi[y_5] = \exists x_1 \forall y_2 \exists x_3, x_4.(\mathbf{x}_4) \land (x_1 \lor y_2 \lor \neg x_4) \land (\neg x_1 \lor x_3 \lor \neg x_4) \land (\neg y_2 \lor \neg x_3).$
- By UL: $\psi[y_5, x_4] = \exists x_1 \forall y_2 \exists x_3 . (x_1 \lor y_2) \land (\neg x_1 \lor x_3) \land (\neg y_2 \lor \neg x_3).$
- By UR: $\psi[y_5, x_4] = \exists x_1 \forall y_2 \exists x_3.(x_1) \land (\neg x_1 \lor x_3) \land (\neg y_2 \lor \neg x_3).$
- By PL: $\psi[y_5, x_4, y_2] = \exists x_1 \exists x_3 . (\mathbf{x_1}) \land (\neg x_1 \lor x_3) \land (\neg x_3).$
- By UL: $\psi[y_5, x_4, y_2, x_1] = \exists x_3.(x_3) \land (\neg x_3).$
- By UL: $\psi[y_5, x_4, y_2, x_1, x_3] = \bot$.
- By QBCP, we have shown: $\psi[y_5] \equiv \psi[y_5, x_4, y_2, x_1, x_3] \equiv \bot$.
- Since y_5 is a universal decision: $\psi[y_5] \equiv \bot \equiv \psi$, only one branch explored.
- Worst case: search tree has 2⁵ branches.

Example

$$(\forall y_5 \exists x_1 \forall y_2 \exists x_3, x_4. (\neg y_5 \lor x_4) \land (y_5 \lor \neg x_4) \land (x_1 \lor y_2 \lor \neg x_4) \land (\neg x_1 \lor x_3 \lor \neg x_4) \land (\neg y_2 \lor \neg x_3).$$

- \blacksquare No simplifications of ψ by QBCP possible.
- Make decision: $A = \{y_5\}$.
- $\psi[y_5] = \exists x_1 \forall y_2 \exists x_3, x_4.(\mathbf{x}_4) \land (x_1 \lor y_2 \lor \neg x_4) \land (\neg x_1 \lor x_3 \lor \neg x_4) \land (\neg y_2 \lor \neg x_3).$
- By UL: $\psi[y_5, x_4] = \exists x_1 \forall y_2 \exists x_3 . (x_1 \lor y_2) \land (\neg x_1 \lor x_3) \land (\neg y_2 \lor \neg x_3).$
- By UR: $\psi[y_5, x_4] = \exists x_1 \forall y_2 \exists x_3.(x_1) \land (\neg x_1 \lor x_3) \land (\neg y_2 \lor \neg x_3).$
- By PL: $\psi[y_5, x_4, y_2] = \exists x_1 \exists x_3 . (\mathbf{x_1}) \land (\neg x_1 \lor x_3) \land (\neg x_3).$
- By UL: $\psi[y_5, x_4, y_2, x_1] = \exists x_3.(x_3) \land (\neg x_3).$
- By UL: $\psi[y_5, x_4, y_2, x_1, x_3] = \bot$
- By QBCP, we have shown: $\psi[y_5] \equiv \psi[y_5, x_4, y_2, x_1, x_3] \equiv \bot$.
- Since y_5 is a universal decision: $\psi[y_5] \equiv \bot \equiv \psi$, only one branch explored.
- Worst case: search tree has 2⁵ branches.

Example

 $\psi = \psi = \psi = \psi$

$$\forall y_5 \exists x_1 \forall y_2 \exists x_3, x_4. (\neg y_5 \lor x_4) \land (y_5 \lor \neg x_4) \land (x_1 \lor y_2 \lor \neg x_4) \land (\neg x_1 \lor x_3 \lor \neg x_4) \land (\neg y_2 \lor \neg x_3).$$

- \blacksquare No simplifications of ψ by QBCP possible.
- Make decision: $A = \{y_5\}$.
- $\psi[y_5] = \exists x_1 \forall y_2 \exists x_3, x_4.(\mathbf{x}_4) \land (x_1 \lor y_2 \lor \neg x_4) \land (\neg x_1 \lor x_3 \lor \neg x_4) \land (\neg y_2 \lor \neg x_3).$
- By UL: $\psi[y_5, x_4] = \exists x_1 \forall y_2 \exists x_3 . (x_1 \lor y_2) \land (\neg x_1 \lor x_3) \land (\neg y_2 \lor \neg x_3).$
- By UR: $\psi[y_5, x_4] = \exists x_1 \forall y_2 \exists x_3.(x_1) \land (\neg x_1 \lor x_3) \land (\neg y_2 \lor \neg x_3).$
- By PL: $\psi[y_5, x_4, y_2] = \exists x_1 \exists x_3 . (\mathbf{x_1}) \land (\neg x_1 \lor x_3) \land (\neg x_3).$
- By UL: $\psi[y_5, x_4, y_2, x_1] = \exists x_3.(x_3) \land (\neg x_3).$
- By UL: $\psi[y_5, x_4, y_2, x_1, x_3] = \bot$.
- By QBCP, we have shown: $\psi[y_5] \equiv \psi[y_5, x_4, y_2, x_1, x_3] \equiv \bot$.
- Since y_5 is a universal decision: $\psi[y_5] \equiv \bot \equiv \psi$, only one branch explored.
- Worst case: search tree has 2⁵ branches.

Example

$$(\forall y_5 \exists x_1 \forall y_2 \exists x_3, x_4. (\neg y_5 \lor x_4) \land (y_5 \lor \neg x_4) \land (x_1 \lor y_2 \lor \neg x_4) \land (\neg x_1 \lor x_3 \lor \neg x_4) \land (\neg y_2 \lor \neg x_3).$$

- \blacksquare No simplifications of ψ by QBCP possible.
- Make decision: $A = \{y_5\}$.
- $\psi[y_5] = \exists x_1 \forall y_2 \exists x_3, x_4.(\mathbf{x}_4) \land (x_1 \lor y_2 \lor \neg x_4) \land (\neg x_1 \lor x_3 \lor \neg x_4) \land (\neg y_2 \lor \neg x_3).$
- By UL: $\psi[y_5, x_4] = \exists x_1 \forall y_2 \exists x_3 . (x_1 \lor y_2) \land (\neg x_1 \lor x_3) \land (\neg y_2 \lor \neg x_3).$
- By UR: $\psi[y_5, x_4] = \exists x_1 \forall y_2 \exists x_3 . (x_1) \land (\neg x_1 \lor x_3) \land (\neg y_2 \lor \neg x_3).$
- By PL: $\psi[y_5, x_4, y_2] = \exists x_1 \exists x_3 . (\mathbf{x}_1) \land (\neg x_1 \lor x_3) \land (\neg x_3).$
- By UL: $\psi[y_5, x_4, y_2, x_1] = \exists x_3.(x_3) \land (\neg x_3).$
- By UL: $\psi[y_5, x_4, y_2, x_1, x_3] = \bot$.
- By QBCP, we have shown: $\psi[y_5] \equiv \psi[y_5, x_4, y_2, x_1, x_3] \equiv \bot$.
- Since y_5 is a universal decision: $\psi[y_5] \equiv \bot \equiv \psi$, only one branch explored.
- Worst case: search tree has 2⁵ branches.

Iterative Search-Based QBF Solving (QDPLL)

QDPLL:

- QBF-specific variant of the DPLL algorithm for propositional logic [DLL62].
- Original descriptions [GNT01, CGS98] both recursive and iterative.
- Start with empty assignment.
- Decisions open a new \exists/\forall -subcase.
- Function qbcp applies UL, PL, UR and simplifications to extend the assignment corresponding to the current ∃/∀-subcase.
- Function analyze: retraction of assignments, flipping a decision variable by backtracking.

```
Result qdpll (PCNF f)
 Result r = UNDEF;
  Assignment a = {};
  while (true)
    /* Simplify. */
    (r,a) = qbcp (f,a);
   if (r == UNDET)
      /* Decision making. */
      a = assign_dec_var (f,a);
    else
      /* Backtracking. */
      /* r == UNSAT or r == SAT */
      btlevel = analyze (r,a);
      if (btlevel == TNVALTD)
        return r;
      else
        a = backtrack (btlevel);
```

M. Cadoli, A. Giovanardi, M. Schaerf. An Algorithm to Evaluate Quantified Boolean Formulae. AAAI, 1998.

E. Giunchiglia, M. Narizzano, A. Tacchella. QUBE: A System for Deciding Quantified Boolean Formulas Satisfiability. IJCAR, 2001.

```
Result qdpll (PCNF f)
  Result r = UNDEF;
  Assignment a = {};
  while (true)
    /* Simplify. */
    (r,a) = qbcp (f,a);
    if (r == UNDET)
      /* Decision making. */
      a = assign dec var (f,a);
    else
      /* Backtracking. */
      /* r == UNSAT or r == SAT */
      btlevel = analyze (r,a);
      if (btlevel == INVALID)
       return r:
      else
        a = backtrack (btlevel):
```

```
bool bt_search (PCNF Q \times \psi, Assignment A)
   /* 1. Simplify under given assignment. */
        \psi' := \operatorname{simplify}(Q \times \psi[A]);
   /* 2. Check base cases. */
        if (\psi' == \bot)
           return false:
        if (\psi' == \top)
           return true:
   /* 3. Decision making, backtracking. */
        if (Q == ∃)
           return bt search (\psi', A \cup \{\neg x\})
                   bt_search (\psi', A \cup \{x\});
        if (Q == \forall)
           return bt_search (\psi', A \cup \{\neg x\}) &&
                   bt search (\psi', A \cup \{x\});
```

Comparison:

- bt_search very close to recursive semantics.
- qdpll explicitly enumerates paths (i.e. assignments) in assignment trees.
- QBCP makes the difference between qdpll and bt_search.
- Structure of qdp11 is close to implementations of modern QBF solvers.

```
Result qdpll (PCNF f)
  Result r = UNDEF;
  Assignment a = {};
  while (true)
    /* Simplify. */
    (r,a) = qbcp (f,a);
    if (r == UNDET)
      /* Decision making. */
      a = assign dec var (f,a);
    else
      /* Backtracking. */
      /* r == UNSAT or r == SAT */
      btlevel = analyze (r,a);
      if (btlevel == INVALID)
       return r:
      else
        a = backtrack (btlevel):
```

```
bool bt_search (PCNF Qx\psi, Assignment A)

/* 1. Simplify under given assignment. */

\psi' := simplify(Qx\psi[A]);

/* 2. Check base cases. */

if (\psi' == \bot)

return false;

if (\psi' == \top)

return true;

/* 3. Decision making, backtracking. */

if (Q == \exists)

return bt_search (\psi', A \cup \{\neg x\}) ||

bt_search (\psi', A \cup \{\neg x\});

if (Q == \forall)

return bt_search (\psi', A \cup \{\neg x\});

k&

bt_search (\psi', A \cup \{x\});
```

Comparison:

bt_search very close to recursive semantics.

- qdpll explicitly enumerates paths (i.e. assignments) in assignment trees.
- QBCP makes the difference between qdpll and bt_search.
- Structure of qdp11 is close to implementations of modern QBF solvers.

```
Result qdpll (PCNF f)
  Result r = UNDEF;
  Assignment a = {};
  while (true)
    /* Simplify. */
    (r,a) = qbcp (f,a);
    if (r == UNDET)
      /* Decision making. */
      a = assign dec var (f,a);
    else
      /* Backtracking. */
      /* r == UNSAT or r == SAT */
      btlevel = analyze (r,a);
      if (btlevel == INVALID)
       return r:
      else
        a = backtrack (btlevel):
```

```
bool bt_search (PCNF Q \times \psi, Assignment A)
   /* 1. Simplify under given assignment. */
        \psi' := \operatorname{simplify}(Q \times \psi[A]);
   /* 2. Check base cases. */
        if (\psi' == \bot)
           return false:
        if (\psi' == \top)
           return true:
   /* 3. Decision making, backtracking. */
        if (Q == ∃)
           return bt search (\psi', A \cup \{\neg x\})
                   bt search (\psi', A \cup \{x\});
        if (Q == \forall)
           return bt_search (\psi', A \cup \{\neg x\}) &&
                   bt search (\psi', A \cup \{x\});
```

Comparison:

- bt_search very close to recursive semantics.
- qdpll explicitly enumerates paths (i.e. assignments) in assignment trees.
- QBCP makes the difference between qdpll and bt_search.
- Structure of qdpll is close to implementations of modern QBF solvers.

```
Result qdpll (PCNF f)
  Result r = UNDEF;
  Assignment a = {};
  while (true)
    /* Simplify. */
    (r,a) = qbcp (f,a);
    if (r == UNDET)
      /* Decision making. */
      a = assign dec var (f,a);
    else
      /* Backtracking. */
      /* r == UNSAT or r == SAT */
      btlevel = analyze (r,a);
      if (btlevel == INVALID)
       return r:
      else
        a = backtrack (btlevel):
```

```
bool bt_search (PCNF Q \times \psi, Assignment A)
   /* 1. Simplify under given assignment. */
        \psi' := \operatorname{simplify}(Q \times \psi[A]);
   /* 2. Check base cases. */
        if (\psi' == \bot)
           return false:
        if (\psi' == \top)
           return true:
   /* 3. Decision making, backtracking. */
        if (Q == ∃)
           return bt search (\psi', A \cup \{\neg x\})
                   bt search (\psi', A \cup \{x\});
        if (Q == \forall)
           return bt_search (\psi', A \cup \{\neg x\}) &&
                   bt search (\psi', A \cup \{x\});
```

Comparison:

- bt_search very close to recursive semantics.
- qdpll explicitly enumerates paths (i.e. assignments) in assignment trees.
- QBCP makes the difference between qdpll and bt_search.

Structure of qdpll is close to implementations of modern QBF solvers.

```
Result qdpll (PCNF f)
  Result r = UNDEF;
  Assignment a = {};
  while (true)
    /* Simplify. */
    (r,a) = qbcp (f,a);
    if (r == UNDET)
      /* Decision making. */
      a = assign dec var (f,a);
    else
      /* Backtracking. */
      /* r == UNSAT or r == SAT */
      btlevel = analyze (r,a);
      if (btlevel == INVALID)
       return r:
      else
        a = backtrack (btlevel):
```

```
bool bt_search (PCNF Q \times \psi, Assignment A)
   /* 1. Simplify under given assignment. */
        \psi' := \operatorname{simplify}(Q \times \psi[A]);
   /* 2. Check base cases. */
        if (\psi' == \bot)
           return false:
        if (\psi' == \top)
           return true:
   /* 3. Decision making, backtracking. */
        if (Q == ∃)
           return bt search (\psi', A \cup \{\neg x\})
                   bt search (\psi', A \cup \{x\});
        if (Q == \forall)
           return bt_search (\psi', A \cup \{\neg x\}) &&
                   bt search (\psi', A \cup \{x\});
```

Comparison:

- bt_search very close to recursive semantics.
- qdpll explicitly enumerates paths (i.e. assignments) in assignment trees.
- QBCP makes the difference between qdpll and bt_search.
- Structure of qdpll is close to implementations of modern QBF solvers.

Improvements to Backtracking Search: Backtracking is not optimal

Assignments:

- Represented as sequence $A = \{l_1, l_2, \dots, l_n\}$ of literals.
- Assignments due to decisions and QBCP (UL, PL).
- Literals I_i are ordered chronologically as they were assigned.
- Conflict: assignment A such that $\psi[A] = \bot$.
- Solution: assignment A such that $\psi[A] = \top$.

A Closer Look on Backtracking (2/2)

Chronological Backtracking:

- Given a conflict A = {..., d, ..., l_n} where d is the most-recent unflipped existential decision.
- Given a solution *A* = {..., *d*, ..., *l_n*} where *d* is the most-recent *unflipped* universal decision.
- No such d: formula solved.
- Retract decision d and later assignments: $A' = A \setminus \{d, \dots, l_n\}.$
- Set the variable of *d* to the opposite value (flip): $A' = A' \cup \{\neg d\}.$
- Continue with A = A'.

```
Snippet of qdpl1:
```

```
/* Backtracking. */
/* r == UNSAT or r == SAT */
btlevel = analyze (r,a);
if (btlevel == INVALID)
   return r;
else
   a = backtrack (btlevel);
```

Example

 $\psi = \exists x_1, x_2, x_3, x_4 \forall y_5 \exists x_6. (\neg x_3 \lor x_4) \land (x_3 \lor x_4) \land (\neg x_4 \lor x_6) \land (\neg x_1 \lor y_5 \lor \neg x_6) \land \phi.$

- Assume that ϕ contains further clauses.
- Obecision on x_1 : $A = A \cup \{x_1\}$
- O Decision on x_2 : $A = A \cup \{x_2\}$.
- Decision on x_3 : $A = A \cup \{x_3\}$.
- **•** By QBCP (UL): $A = A \cup \{x_4, x_6\}$.
- **O** By QBCP (UR): conflict $A = \{x_1, x_2, x_3, x_4, x_6\}, \psi[A] = \bot$.
- If Ip x_3 , get conflict $A = \{x_1, x_2, \neg x_3, x_4, x_6\}$, where again x_4, x_6 by UL.
- **()** Flip x_2 , assume that no conflict/solution is found with $A = \{x_1, \neg x_2\}$.
- **(**) Continue with a decision on x_3 : $A = \{x_1, \neg x_2, x_3\}$ or $A = \{x_1, \neg x_2, \neg x_3\}$.
- **(**) In any case, get a conflict by $\{x_1, \neg x_2, x_3, x_4, x_6\}$ and $\{x_1, \neg x_2, \neg x_3, x_4, x_6\}$.
- **@** Repeated subassignments $\{x_3, x_4, x_6\}$, $\{\neg x_3, x_4, x_6\}$ of conflicts (steps 7,8).
- Flipping x₂ did not resolve the conflict, redundant work in steps 9-11.

- $\psi = \exists x_1, x_2, x_3, x_4 \forall y_5 \exists x_6. (\neg x_3 \lor x_4) \land (x_3 \lor x_4) \land (\neg x_4 \lor x_6) \land (\neg x_1 \lor y_5 \lor \neg x_6) \land \phi.$
 - Assume that ϕ contains further clauses.
 - Obcision on x_1 : $A = A \cup \{x_1\}$.
 - Decision on x_2 : $A = A \cup \{x_2\}$.
 - Decision on x_3 : $A = A \cup \{x_3\}$.

 - **•** By QBCP (UL): $A = A \cup \{x_4, x_6\}$.
 - **O** By QBCP (UR): conflict $A = \{x_1, x_2, x_3, x_4, x_6\}, \psi[A] = \bot$.
 - If Ip x_3 , get conflict $A = \{x_1, x_2, \neg x_3, x_4, x_6\}$, where again x_4, x_6 by UL.
 - **()** Flip x_2 , assume that no conflict/solution is found with $A = \{x_1, \neg x_2\}$.
 - **(**) Continue with a decision on x_3 : $A = \{x_1, \neg x_2, x_3\}$ or $A = \{x_1, \neg x_2, \neg x_3\}$.
 - **(1)** In any case, get a conflict by $\{x_1, \neg x_2, x_3, x_4, x_6\}$ and $\{x_1, \neg x_2, \neg x_3, x_4, x_6\}$.
 - **@** Repeated subassignments $\{x_3, x_4, x_6\}$, $\{\neg x_3, x_4, x_6\}$ of conflicts (steps 7,8).
 - Flipping x₂ did not resolve the conflict, redundant work in steps 9-11.

$$\psi = \exists x_1, x_2, x_3, x_4 \forall y_5 \exists x_6. (\neg x_3 \lor x_4) \land (x_3 \lor x_4) \land (\neg x_4 \lor x_6) \land (\neg x_1 \lor y_5 \lor \neg x_6) \land \phi.$$

- Assume that ϕ contains further clauses.
- Obecision on x_1 : $A = A \cup \{x_1\}$.
- Solution Decision on x_2 : $A = A \cup \{x_2\}$.
- Decision on x_3 : $A = A \cup \{x_3\}$.
- **3** By QBCP (UL): $A = A \cup \{x_4, x_6\}$.
- **O** By QBCP (UR): conflict $A = \{x_1, x_2, x_3, x_4, x_6\}, \psi[A] = \bot$.
- If Ip x_3 , get conflict $A = \{x_1, x_2, \neg x_3, x_4, x_6\}$, where again x_4, x_6 by UL.
- **()** Flip x_2 , assume that no conflict/solution is found with $A = \{x_1, \neg x_2\}$.
- **(a)** Continue with a decision on x_3 : $A = \{x_1, \neg x_2, x_3\}$ or $A = \{x_1, \neg x_2, \neg x_3\}$.
- **(1)** In any case, get a conflict by $\{x_1, \neg x_2, x_3, x_4, x_6\}$ and $\{x_1, \neg x_2, \neg x_3, x_4, x_6\}$.
- **@** Repeated subassignments $\{x_3, x_4, x_6\}$, $\{\neg x_3, x_4, x_6\}$ of conflicts (steps 7,8).
- Flipping x₂ did not resolve the conflict, redundant work in steps 9-11.

$$\psi = \exists x_1, x_2, x_3, x_4 \forall y_5 \exists x_6. (\neg x_3 \lor x_4) \land (x_3 \lor x_4) \land (\neg x_4 \lor x_6) \land (\neg x_1 \lor y_5 \lor \neg x_6) \land \phi.$$

- Occision on x_1 : $A = A \cup \{x_1\}$.
- Decision on x_2 : $A = A \cup \{x_2\}$.
- Decision on x_3 : $A = A \cup \{x_3\}$.
- **3** By QBCP (UL): $A = A \cup \{x_4, x_6\}$.
- **()** By QBCP (UR): conflict $A = \{x_1, x_2, x_3, x_4, x_6\}, \psi[A] = \bot$.
- **3** Flip x_3 , get conflict $A = \{x_1, x_2, \neg x_3, x_4, x_6\}$, where again x_4, x_6 by UL.
- **()** Flip x_2 , assume that no conflict/solution is found with $A = \{x_1, \neg x_2\}$.
- **(**) Continue with a decision on x_3 : $A = \{x_1, \neg x_2, x_3\}$ or $A = \{x_1, \neg x_2, \neg x_3\}$.
- **(1)** In any case, get a conflict by $\{x_1, \neg x_2, x_3, x_4, x_6\}$ and $\{x_1, \neg x_2, \neg x_3, x_4, x_6\}$.
- **@** Repeated subassignments $\{x_3, x_4, x_6\}$, $\{\neg x_3, x_4, x_6\}$ of conflicts (steps 7,8).
- Flipping x₂ did not resolve the conflict, redundant work in steps 9-11.

$$\psi = \exists x_1, x_2, x_3, x_4 \forall y_5 \exists x_6. (\neg x_3 \lor x_4) \land (x_3 \lor x_4) \land (\neg x_4 \lor x_6) \land (\neg x_1 \lor y_5 \lor \neg x_6) \land \phi.$$

- Occision on x_1 : $A = A \cup \{x_1\}$.
- Decision on x_2 : $A = A \cup \{x_2\}$.
- Decision on x_3 : $A = A \cup \{x_3\}$.

- **•** By QBCP (UL): $A = A \cup \{x_4, x_6\}$.
- **O** By QBCP (UR): conflict $A = \{x_1, x_2, x_3, x_4, x_6\}, \psi[A] = \bot$.
- **3** Flip x_3 , get conflict $A = \{x_1, x_2, \neg x_3, x_4, x_6\}$, where again x_4, x_6 by UL.
- **()** Flip x_2 , assume that no conflict/solution is found with $A = \{x_1, \neg x_2\}$.
- **(**) Continue with a decision on x_3 : $A = \{x_1, \neg x_2, x_3\}$ or $A = \{x_1, \neg x_2, \neg x_3\}$.
- **(1)** In any case, get a conflict by $\{x_1, \neg x_2, x_3, x_4, x_6\}$ and $\{x_1, \neg x_2, \neg x_3, x_4, x_6\}$.
- **@** Repeated subassignments $\{x_3, x_4, x_6\}$, $\{\neg x_3, x_4, x_6\}$ of conflicts (steps 7,8).
- Flipping x₂ did not resolve the conflict, redundant work in steps 9-11.

$$\psi = \exists x_1, x_2, x_3, x_4 \forall y_5 \exists x_6. (\neg x_3 \lor x_4) \land (x_3 \lor x_4) \land (\neg x_4 \lor x_6) \land (\neg x_1 \lor y_5 \lor \neg x_6) \land \phi.$$

- Occision on x_1 : $A = A \cup \{x_1\}$.
- Decision on x_2 : $A = A \cup \{x_2\}$.
- Decision on x_3 : $A = A \cup \{x_3\}$.
- **•** By QBCP (UL): $A = A \cup \{x_4, x_6\}$.
- **O** By QBCP (UR): conflict $A = \{x_1, x_2, x_3, x_4, x_6\}, \psi[A] = \bot$.
- **3** Flip x_3 , get conflict $A = \{x_1, x_2, \neg x_3, x_4, x_6\}$, where again x_4, x_6 by UL.
- **()** Flip x_2 , assume that no conflict/solution is found with $A = \{x_1, \neg x_2\}$.
- **(**) Continue with a decision on x_3 : $A = \{x_1, \neg x_2, x_3\}$ or $A = \{x_1, \neg x_2, \neg x_3\}$.
- **(1)** In any case, get a conflict by $\{x_1, \neg x_2, x_3, x_4, x_6\}$ and $\{x_1, \neg x_2, \neg x_3, x_4, x_6\}$.
- **@** Repeated subassignments $\{x_3, x_4, x_6\}$, $\{\neg x_3, x_4, x_6\}$ of conflicts (steps 7,8).
- Flipping x₂ did not resolve the conflict, redundant work in steps 9-11.

$$\psi = \exists x_1, x_2, x_3, x_4 \forall y_5 \exists x_6. (\neg x_3 \lor x_4) \land (x_3 \lor x_4) \land (\neg x_4 \lor x_6) \land (\neg x_1 \lor y_5 \lor \neg x_6) \land \phi.$$

- Assume that ϕ contains further clauses.
- Occision on x_1 : $A = A \cup \{x_1\}$.
- Decision on x_2 : $A = A \cup \{x_2\}$.
- Decision on x_3 : $A = A \cup \{x_3\}$.
- **•** By QBCP (UL): $A = A \cup \{x_4, x_6\}$.
- **O** By QBCP (UR): conflict $A = \{x_1, x_2, x_3, x_4, x_6\}, \psi[A] = \bot$.
- **③** Flip x_3 , get conflict $A = \{x_1, x_2, \neg x_3, x_4, x_6\}$, where again x_4, x_6 by UL.
- **()** Flip x_2 , assume that no conflict/solution is found with $A = \{x_1, \neg x_2\}$.
- **(**) Continue with a decision on x_3 : $A = \{x_1, \neg x_2, x_3\}$ or $A = \{x_1, \neg x_2, \neg x_3\}$.
- **(1)** In any case, get a conflict by $\{x_1, \neg x_2, x_3, x_4, x_6\}$ and $\{x_1, \neg x_2, \neg x_3, x_4, x_6\}$.
- **@** Repeated subassignments $\{x_3, x_4, x_6\}$, $\{\neg x_3, x_4, x_6\}$ of conflicts (steps 7,8).
- Flipping x₂ did not resolve the conflict, redundant work in steps 9-11.

$$\psi = \exists x_1, x_2, x_3, x_4 \forall y_5 \exists x_6. (\neg x_3 \lor x_4) \land (x_3 \lor x_4) \land (\neg x_4 \lor x_6) \land (\neg x_1 \lor y_5 \lor \neg x_6) \land \phi.$$

- Occision on x_1 : $A = A \cup \{x_1\}$.
- Decision on x_2 : $A = A \cup \{x_2\}$.
- Decision on x_3 : $A = A \cup \{x_3\}$.
- **•** By QBCP (UL): $A = A \cup \{x_4, x_6\}$.
- **O** By QBCP (UR): conflict $A = \{x_1, x_2, x_3, x_4, x_6\}, \psi[A] = \bot$.
- **3** Flip x_3 , get conflict $A = \{x_1, x_2, \neg x_3, x_4, x_6\}$, where again x_4, x_6 by UL.
- **9** Flip x_2 , assume that no conflict/solution is found with $A = \{x_1, \neg x_2\}$.
- **(**) Continue with a decision on x_3 : $A = \{x_1, \neg x_2, x_3\}$ or $A = \{x_1, \neg x_2, \neg x_3\}$.
- **(1)** In any case, get a conflict by $\{x_1, \neg x_2, x_3, x_4, x_6\}$ and $\{x_1, \neg x_2, \neg x_3, x_4, x_6\}$.
- **@** Repeated subassignments $\{x_3, x_4, x_6\}$, $\{\neg x_3, x_4, x_6\}$ of conflicts (steps 7,8).
- Flipping x₂ did not resolve the conflict, redundant work in steps 9-11.

$$\psi = \exists x_1, x_2, x_3, x_4 \forall y_5 \exists x_6. (\neg x_3 \lor x_4) \land (x_3 \lor x_4) \land (\neg x_4 \lor x_6) \land (\neg x_1 \lor y_5 \lor \neg x_6) \land \phi.$$

- Occision on x_1 : $A = A \cup \{x_1\}$.
- Decision on x_2 : $A = A \cup \{x_2\}$.
- Decision on x_3 : $A = A \cup \{x_3\}$.

- **•** By QBCP (UL): $A = A \cup \{x_4, x_6\}$.
- By QBCP (UR): conflict $A = \{x_1, x_2, x_3, x_4, x_6\}, \psi[A] = \bot$.
- **3** Flip x_3 , get conflict $A = \{x_1, x_2, \neg x_3, x_4, x_6\}$, where again x_4, x_6 by UL.
- Flip x_2 , assume that no conflict/solution is found with $A = \{x_1, \neg x_2\}$.
- **(**) Continue with a decision on x_3 : $A = \{x_1, \neg x_2, x_3\}$ or $A = \{x_1, \neg x_2, \neg x_3\}$.
- **(**) In any case, get a conflict by $\{x_1, \neg x_2, x_3, x_4, x_6\}$ and $\{x_1, \neg x_2, \neg x_3, x_4, x_6\}$.
- **@** Repeated subassignments $\{x_3, x_4, x_6\}$, $\{\neg x_3, x_4, x_6\}$ of conflicts (steps 7,8).
- Impose x_2 did not resolve the conflict, redundant work in steps 9-11.

$$\psi = \exists x_1, x_2, x_3, x_4 \forall y_5 \exists x_6. (\neg x_3 \lor x_4) \land (x_3 \lor x_4) \land (\neg x_4 \lor x_6) \land (\neg x_1 \lor y_5 \lor \neg x_6) \land \phi.$$

- Assume that ϕ contains further clauses.
- Occision on x_1 : $A = A \cup \{x_1\}$.
- Decision on x_2 : $A = A \cup \{x_2\}$.
- Decision on x_3 : $A = A \cup \{x_3\}$.
- **•** By QBCP (UL): $A = A \cup \{x_4, x_6\}$.
- By QBCP (UR): conflict $A = \{x_1, x_2, x_3, x_4, x_6\}, \psi[A] = \bot$.
- **3** Flip x_3 , get conflict $A = \{x_1, x_2, \neg x_3, x_4, x_6\}$, where again x_4, x_6 by UL.
- Flip x_2 , assume that no conflict/solution is found with $A = \{x_1, \neg x_2\}$.
- **(**) Continue with a decision on x_3 : $A = \{x_1, \neg x_2, x_3\}$ or $A = \{x_1, \neg x_2, \neg x_3\}$.
- **1** In any case, get a conflict by $\{x_1, \neg x_2, x_3, x_4, x_6\}$ and $\{x_1, \neg x_2, \neg x_3, x_4, x_6\}$.
- **@** Repeated subassignments $\{x_3, x_4, x_6\}$, $\{\neg x_3, x_4, x_6\}$ of conflicts (steps 7,8).
- Impliping x_2 did not resolve the conflict, redundant work in steps 9-11.

Example (continued)

$$\psi = \exists x_1, x_2, x_3, x_4 \forall y_5 \exists x_6. (\neg x_3 \lor x_4) \land (x_3 \lor x_4) \land (\neg x_4 \lor x_6) \land (\neg x_1 \lor y_5 \lor \neg x_6) \land \phi.$$

Conflicts generated by QDPLL:

- $A = \{x_1, x_2, x_3, x_4, x_6\}.$
- $A = \{x_1, x_2, \neg x_3, x_4, x_6\}.$
- $A = \{x_1, \neg x_2, x_3, x_4, x_6\}.$
- $A = \{x_1, \neg x_2, \neg x_3, x_4, x_6\}.$
- Same conflicting subtrees after flipping x_2 .
- Decision x₂ is irrelevant in this context.

Drawback of Chronological Backtracking:

- Flipping variables which are irrelevant for the current conflict/solution.
- Repeating subassignments of previous conflicts: redundant work, needless branches.

QDPLL with Chronological Backtracking (2/2)

Example (continued)

$$\psi = \exists x_1, x_2, x_3, x_4 \forall y_5 \exists x_6. (\neg x_3 \lor x_4) \land (x_3 \lor x_4) \land (\neg x_4 \lor x_6) \land (\neg x_1 \lor y_5 \lor \neg x_6) \land \phi.$$

Drawback of Chronological Backtracking:

- Flipping variables which are irrelevant for the current conflict/solution.
- Repeating subassignments of previous conflicts: redundant work, needless branches.

QBCP and Implication Graphs

Definition (implication graph as a levelized graph)

- Vertices: literals in A (variable assignments), special vertex \emptyset denoting a clause $C \in \psi$ such that $C[A] = \bot$ (conflicting clause).
- For assignments {1} by UL from a unit clause C[A]: the clause ante(1) := C is the antecedent clause of the assignment {1}.
- Define $ante(\emptyset) = C$, for a clause $C \in \psi$ such that $C[A] = \bot$.
- Edges: $(x, y) \in E$ if y assigned by UL and literal $\neg x \in ante(y)$.

Example (continued)

$$\psi = \exists x_1, x_2, x_3, x_4 \forall y_5 \exists x_6. (\neg x_3 \lor x_4) \land (x_3 \lor x_4) \land (\neg x_4 \lor x_6) \land (\neg x_1 \lor y_5 \lor \neg x_6) \land \phi.$$

Implication graph for conflict $A = \{x_1, x_2, x_3, x_4, x_6\}$ where x_1, x_2 , and x_3 are decisions. Note: UR applied to get \emptyset .

- Implication graph is implicitly constructed during QBCP.
- Similar to BCP in SAT solvers, but QBCP includes additional rules PL, UR.

U. Egly and F. Lonsing (TU Wien)

QBCP and Implication Graphs

Definition (implication graph as a levelized graph)

- Vertices: literals in A (variable assignments), special vertex \emptyset denoting a clause $C \in \psi$ such that $C[A] = \bot$ (conflicting clause).
- For assignments {*I*} by UL from a unit clause *C*[*A*]: the clause *ante*(*I*) := *C* is the *antecedent clause* of the assignment {*I*}.
- Define $ante(\emptyset) = C$, for a clause $C \in \psi$ such that $C[A] = \bot$.
- Edges: $(x, y) \in E$ if y assigned by UL and literal $\neg x \in ante(y)$.

Example (continued)

$$\psi = \exists x_1, x_2, x_3, x_4 \forall y_5 \exists x_6. (\neg x_3 \lor x_4) \land (x_3 \lor x_4) \land (\neg x_4 \lor x_6) \land (\neg x_1 \lor y_5 \lor \neg x_6) \land \phi.$$

Implication graph for conflict $A = \{x_1, x_2, x_3, x_4, x_6\}$ where x_1, x_2 , and x_3 are decisions. Note: UR applied to get \emptyset .

- Implication graph is implicitly constructed during QBCP.
- Similar to BCP in SAT solvers, but QBCP includes additional rules PL, UR.

Non-Chronological Backtracking — Backjumping (1/3)

Idea: given a conflict *A* and the implication graph.

- **()** Start at the conflicting clause \emptyset and traverse the implication graph backwards.
- **2** Collect all decisions reachable from \emptyset : *conflict set*.
- Petract all assignments made after the second most recent existential decision in the conflict set.
- Ip the most recent unflipped existential decision in the conflict set.

Example (continued)

$$\psi = \exists x_1, x_2, x_3, x_4 \forall y_5 \exists x_6. (\neg x_3 \lor x_4) \land (x_3 \lor x_4) \land (\neg x_4 \lor x_6) \land (\neg x_1 \lor y_5 \lor \neg x_6) \land \phi.$$

- Conflict $A = \{x_1, x_2, x_3, x_4, x_6\}$, decisions x_1, x_2, x_3 .
- Steps 1,2: conflict set $\{x_1, x_3\}$.
- **Step 3**: retract $\{x_2, x_3, x_4, x_6\}$ from *A*.
- Step 4: flip x_3 , $A \cup \{\neg x_3\} = \{x_1, \neg x_3\}$.
- "Jump over" irrelevant, non-reachable x₂.

Non-Chronological Backtracking — Backjumping (1/3)

Idea: given a conflict A and the implication graph.

- **()** Start at the conflicting clause \emptyset and traverse the implication graph backwards.
- **②** Collect all decisions reachable from \emptyset : *conflict set*.
- Petract all assignments made after the second most recent existential decision in the conflict set.
- Ip the most recent unflipped existential decision in the conflict set.

Example (continued)

$$\psi = \exists x_1, x_2, x_3, x_4 \forall y_5 \exists x_6. (\neg x_3 \lor x_4) \land (x_3 \lor x_4) \land (\neg x_4 \lor x_6) \land (\neg x_1 \lor y_5 \lor \neg x_6) \land \phi.$$

- Conflict $A = \{x_1, x_2, x_3, x_4, x_6\}$, decisions x_1, x_2, x_3 .
- Steps 1,2: conflict set $\{x_1, x_3\}$.
- Step 3: retract $\{x_2, x_3, x_4, x_6\}$ from A.
- Step 4: flip x_3 , $A \cup \{\neg x_3\} = \{x_1, \neg x_3\}$.
- "Jump over" irrelevant, non-reachable x₂.

Non-Chronological Backtracking — Backjumping (2/3)

Example (continued)

 $\psi = \exists x_1, x_2, x_3, x_4 \forall y_5 \exists x_6. (\neg x_3 \lor x_4) \land (x_3 \lor x_4) \land (\neg x_4 \lor x_6) \land (\neg x_1 \lor y_5 \lor \neg x_6) \land \phi.$

- After flipping x_3 , get conflict $A = \{x_1, \neg x_3, x_4, x_6\}$, decisions $x_1, \neg x_3$.
- Conflict set $\{x_1, \neg x_3\}$.
- **Retract** $\{\neg x_3, x_4, x_6\}$ from *A*.
- Flip x_1 , $A \cup \{\neg x_1\} = \{\neg x_1\}$.

Chronological backtracking:

Non-chronological backtracking:

Non-Chronological Backtracking — Backjumping (3/3)

Properties of Backjumping:

- "backtracking" = "chronological backtracking".
- "backjumping" = "non-chronological backtracking".
- Potential retraction of irrelevant decisions, exponential reduction of branches in assignment trees.
- Children of nodes in assignment trees might have different labels: $x_2, \neg x_3$ in the example.
- Similar approaches to backjump from solutions, i.e. $\psi[A] = \top$.
- Fundamentally different from traditional recursive backtracking search.

```
Snippet of bt_search:

/* 3. Decision making, backtracking. */

if (Q == \exists)

return bt_search (\psi', A \cup \{\neg x\}) ||

bt_search (\psi', A \cup \{x\});

if (Q == \forall)

return bt_search (\psi', A \cup \{\neg x\}) &&

bt_search (\psi', A \cup \{x\});
```


Backtracking and Backjumping in QDPLL

Implementation:

- Function analyze must be adapted.
- Stop if there is no decision to be flipped in the conflict set.
- Think of backtracking like a variant of backjumping where the conflict set always contains all decisions made.

```
Result qdpll (PCNF f)
 Result r = UNDEF;
  Assignment a = {};
  while (true)
    /* Simplify. */
    (r,a) = qbcp (f,a);
    if (r == UNDET)
      /* Decision making. */
      a = assign_dec_var (f,a);
    else
      /* Backtracking. */
      /* r == UNSAT or r == SAT */
      btlevel = analyze (r,a);
      if (btlevel == INVALID)
        return r;
      مادم
        a = backtrack (btlevel):
```

Drawback of Backjumping

Example (continued)

 $\psi = \exists x_1, x_2, x_3, x_4 \forall y_5 \exists x_6. (\neg x_3 \lor x_4) \land (x_3 \lor x_4) \land (\neg x_4 \lor x_6) \land (\neg x_1 \lor y_5 \lor \neg x_6) \land \phi.$

- Assume that the assignment tree on the right is a subtree of a bigger tree.
- Observe: every assignment A with $\{x_1, x_4\} \subseteq A$ is a conflict (under QBCP).
- **QBCP** extends $\{x_1, x_4\}$ to $\{x_1, x_4, x_6\}$ by UL.
- Clause $(\neg x_1 \lor y_5 \lor \neg x_6)[x_1, x_4, x_6] = \bot$.
- The subassignment {*x*₁, *x*₄} can be repeated in other branches, the same clause is conflicting.
- Backjumping cannot avoid this problem.

Improvements to Backtracking Search: Backjumping is not optimal

Idea:

- A clause $(l_1 \vee l_2 \vee \ldots \vee l_k)$ is conflicting under the assignment $\{\neg l_1, \ldots \neg l_k\}$.
- QDPLL tries to satisfy clauses by unit literal detection in QBCP.
- Clauses in a PCNF guide QDPLL away from conflicts.
- Intuition(!): if a subassignment $A = \{l_1, l_2, ..., l_k\}$ is responsible for a conflict then add the clause $(\neg l_1 \lor \neg l_2 \lor ... \lor \neg l_k)$ to the PCNF.
- QDPLL tries to satisfy the added clause by assigning $\neg l_i$ for at least one l_i .
- QDPLL will not enumerate assignments A' such that $A \subseteq A'$.

Example (continued)

- $\psi = \exists x_1, x_2, x_3, x_4 \forall y_5 \exists x_6. (\neg x_3 \lor x_4) \land (x_3 \lor x_4) \land (\neg x_4 \lor x_6) \land (\neg x_1 \lor y_5 \lor \neg x_6) \land \phi.$
 - Every assignment A with $\{x_1, x_4\} \subseteq A$ is a conflict (under QBCP).
 - Adding the clause $(\neg x_1 \lor \neg x_4)$ to ψ prevents QDPLL from repeating the subassignment $\{x_1, x_4\}$ in other branches.
 - Assigning $x_1(x_4)$ triggers the assignment of $\neg x_4(\neg x_1)$ by unit literal detection in QBCP.

Clause Learning (3/9)

Properties:

- "clause learning" = adding clauses obtained from analyzing a conflict.
- "learned clause" = added clause.
- In general, adding arbitrary clauses to a PCNF ψ can make ψ unsatisfiable.
- Correctness of clause learning: $\psi \equiv \psi \wedge C$.

In Practice:

- Checking if $\psi \equiv \psi \wedge C$ is PSPACE-complete.
- How to efficiently find clauses C which can safely be added to ψ ?

Resolution:

- Given the PCNF $\psi' = \psi \wedge C_1 \wedge C_2$, the resolution operation produces a new clause C_r (*resolvent*) from C_1 and C_2 such that $\psi' \equiv \psi' \wedge C_r$.
- By construction, a resolvent can safely be added to a PCNF.
- Idea: use resolution to produce learned clauses.

J.A. Robinson. A Machine-Oriented Logic Based on the Resolution Principle. J. ACM, 1965. H. Kleine Büning, M. Karpinski, A. Flögel. Resolution for Quantified Boolean Formulas. Inf. Comput., 1995.

Clause Learning (3/9)

Properties:

- "clause learning" = adding clauses obtained from analyzing a conflict.
- "learned clause" = added clause.
- \blacksquare In general, adding arbitrary clauses to a PCNF ψ can make ψ unsatisfiable.
- Correctness of clause learning: $\psi \equiv \psi \wedge C$.

In Practice:

- Checking if $\psi \equiv \psi \wedge C$ is PSPACE-complete.
- How to efficiently find clauses C which can safely be added to ψ ?

Resolution:

- Given the PCNF $\psi' = \psi \wedge C_1 \wedge C_2$, the resolution operation produces a new clause C_r (*resolvent*) from C_1 and C_2 such that $\psi' \equiv \psi' \wedge C_r$.
- By construction, a resolvent can safely be added to a PCNF.
- Idea: use resolution to produce learned clauses.

J.A. Robinson. A Machine-Oriented Logic Based on the Resolution Principle. J. ACM, 1965. H. Kleine Büning, M. Karpinski, A. Flögel. Resolution for Quantified Boolean Formulas. Inf. Comput., 1995.

Clause Learning (3/9)

Properties:

- "clause learning" = adding clauses obtained from analyzing a conflict.
- "learned clause" = added clause.
- \blacksquare In general, adding arbitrary clauses to a PCNF ψ can make ψ unsatisfiable.
- Correctness of clause learning: $\psi \equiv \psi \wedge C$.

In Practice:

- Checking if $\psi \equiv \psi \wedge C$ is PSPACE-complete.
- How to efficiently find clauses C which can safely be added to ψ ?

Resolution:

- Given the PCNF $\psi' = \psi \wedge C_1 \wedge C_2$, the resolution operation produces a new clause C_r (*resolvent*) from C_1 and C_2 such that $\psi' \equiv \psi' \wedge C_r$.
- By construction, a resolvent can safely be added to a PCNF.
- Idea: use resolution to produce learned clauses.

J.A. Robinson. A Machine-Oriented Logic Based on the Resolution Principle. J. ACM, 1965. H. Kleine Büning, M. Karpinski, A. Flögel. Resolution for Quantified Boolean Formulas. Inf. Comput., 1995.

Clause Learning (4/9)

Q-Resolution:

- Combination of universal reduction and resolution for propositional logic.
- Q-resolvents C can safely be added to a PCNF because $\psi \equiv \psi \wedge C$.

Definition (Q-Resolution)

- Let C_1 , C_2 be non-tautological clauses where $v \in C_1$, $\neg v \in C_2$ for an \exists -variable v.
- Variable v is the *pivot* of the Q-resolution step.
- Tentative Q-resolvent of C_1 and C_2 : $C_1 \otimes C_2 := (UR(C_1) \setminus \{v\}) \cup (UR(C_2) \setminus \{\neg v\}).$
- If $\{x, \neg x\} \subseteq C_1 \otimes C_2$ for some variable x, then no Q-resolvent exists.
- Otherwise, the non-tautological *Q*-resolvent is $C := UR(C_1 \otimes C_2)$.

Clause Learning (4/9)

Q-Resolution:

- Combination of universal reduction and resolution for propositional logic.
- Q-resolvents C can safely be added to a PCNF because $\psi \equiv \psi \wedge C$.

Definition (Q-Resolution)

- Let C_1 , C_2 be non-tautological clauses where $v \in C_1$, $\neg v \in C_2$ for an \exists -variable v.
- Variable *v* is the *pivot* of the Q-resolution step.
- Tentative Q-resolvent of C_1 and C_2 : $C_1 \otimes C_2 := (UR(C_1) \setminus \{v\}) \cup (UR(C_2) \setminus \{\neg v\}).$
- If $\{x, \neg x\} \subseteq C_1 \otimes C_2$ for some variable x, then no Q-resolvent exists.
- Otherwise, the non-tautological *Q*-resolvent is $C := UR(C_1 \otimes C_2)$.

Clause Learning (5/9)

Example (continued)

 $\psi = \exists x_1, x_2, x_3, x_4 \forall y_5 \exists x_6. (\neg x_3 \lor x_4) \land (x_3 \lor x_4) \land (\neg x_4 \lor x_6) \land (\neg x_1 \lor y_5 \lor \neg x_6) \land \phi.$

- Conflict $A = \{x_1, x_2, x_3, x_4, x_6\}$, decisions x_1, x_2, x_3 .
- Idea: consider antecedent clauses by unit literal detection and the conflicting clause for possible Q-resolutions, in reverse assignment order.
- Resolve $ante(\emptyset) = (\neg x_1 \lor y_5 \lor \neg x_6)$ and $ante(x_6) = (\neg x_4 \lor x_6)$, get tentative Q-resolvent $(\neg x_1 \lor \neg x_4 \lor y_5)$ and finally the Q-resolvent $(\neg x_1 \lor \neg x_4)$ by UR.
- Add $(\neg x_1 \lor \neg x_4)$ as a learned clause.

Clause Learning (6/9)

Example (continued)

 $\psi = \exists x_1, x_2, x_3, x_4 \forall y_5 \exists x_6. (\neg x_3 \lor x_4) \land (x_3 \lor x_4) \land (\neg x_4 \lor x_6) \land (\neg x_1 \lor y_5 \lor \neg x_6) \land \phi.$

- Add $(\neg x_1 \lor \neg x_4)$ as a learned clause.
- Retract $\{x_2, x_3, x_4, x_6\}$, continue with $A = \{x_1\}$.
- By QBCP the learned clause $(\neg x_1 \lor \neg x_4)$ is unit and $A = \{x_1, \neg x_4\}$.
- Further, clause $(x_3 \lor x_4)$ is unit and $A = \{x_1, \neg x_4, x_3\}.$
- Conflict $A = \{x_1, \neg x_4, x_3\}$, clause $(\neg x_3 \lor x_4)[A] = \bot$ conflicting.
- Resolve $ante(\emptyset) = (\neg x_3 \lor x_4)$ and $ante(x_3) = (x_3 \lor x_4)$, get Q-resolvent (x_4) .

After learning $(\neg x_1 \lor \neg x_4)$, continue with $A = \{x_1\}$:

Example (continued)

 $\psi = \exists x_1, x_2, x_3, x_4 \forall y_5 \exists x_6. (\neg x_3 \lor x_4) \land (x_3 \lor x_4) \land (\neg x_4 \lor x_6) \land (\neg x_1 \lor y_5 \lor \neg x_6) \land \phi.$

- Resolve $ante(\emptyset) = (\neg x_3 \lor x_4)$ and $ante(x_3) = (x_3 \lor x_4)$, get Q-resolvent (x_4) .
- Add (x_4) as a learned clause.
- Retract $\{x_1, \neg x_4, x_3\}$, continue with $A = \{\}$.
- By QBCP, get $A = \{x_4, \neg x_1, x_6\}$ since the two learned clauses became unit.

After learning $(\neg x_1 \lor \neg x_4)$ and (x_4) , continue with $A = \{\}$:

$$x_4 \longrightarrow \neg x_1 \longrightarrow x_6$$

...

Clause Learning (8/9)

Example (continued)

 $\psi = \exists x_1, x_2, x_3, x_4 \forall y_5 \exists x_6. (\neg x_3 \lor x_4) \land (x_3 \lor x_4) \land (\neg x_4 \lor x_6) \land (\neg x_1 \lor y_5 \lor \neg x_6) \land \phi.$

- Only three decisions in left branch: x₁, x₂, x₃.
- Other branches due to learned clauses which become unit after backtracking.
- Right branch: assignments x₄,¬x₁,x₆ by unit literal detection due to learned clauses *without* decisions.
- Note: we never flipped decision variables explicitly.

Clause Learning (9/9)

Properties:

- Decisions are not explicitly flipped (unlike in backjumping).
- Our focus: learned clauses always become unit in QBCP after retracting assignments.
- Fundamentally different from backjumping and traditional backtracking.
- More powerful than backjumping: learned clauses prune search space.
- \blacksquare QDPLL learns the empty clause if and only if ψ is unsatisfiable.

Novel View on Search-Based Solving with Clause Learning:

- Assignment-driven engines searching for a Q-resolution proof (of unsatisfiable QBFs).
- Traditional backtracking view does not fit any more (also applies to SAT solvers).
- More appropriate name: *conflict-driven clause learning (CDCL)* for QBF (*QCDCL*).

Clause Learning (9/9)

Properties:

- Decisions are not explicitly flipped (unlike in backjumping).
- Our focus: learned clauses always become unit in QBCP after retracting assignments.
- Fundamentally different from backjumping and traditional backtracking.
- More powerful than backjumping: learned clauses prune search space.
- **QDPLL** learns the empty clause if and only if ψ is unsatisfiable.

Novel View on Search-Based Solving with Clause Learning:

- Assignment-driven engines searching for a Q-resolution proof (of unsatisfiable QBFs).
- Traditional backtracking view does not fit any more (also applies to SAT solvers).
- More appropriate name: conflict-driven clause learning (CDCL) for QBF (QCDCL).

Combining QDPLL and Clause Learning

Modern Search-Based QBF Solving:

- Implementation: analyze must be adapted.
- Clause learning in analyze.
- Backtracking based on learned clause.
- No explicit flipping of decisions.
- Challenges: *efficient* implementation.

```
Result qdpll (PCNF f)
 Result r = UNDEF;
  Assignment a = {};
  while (true)
    /* Simplify. */
    (r,a) = qbcp (f,a);
    if (r == UNDET)
      /* Decision making. */
      a = assign_dec_var (f,a);
    else
      /* Backtracking. */
      /* r == UNSAT or r == SAT */
      btlevel = analyze (r,a);
      if (btlevel == INVALID)
        return r;
      else
        a = backtrack (btlevel);
```

Pitfall (Implementation): Traditional Clause Learning for QBF (1/2)

- In reverse assignment order, resolve on existential variables which were assigned as unit literals, using clauses (i.e. antecedents) which became unit during QBCP.
- Tautological resolvents by universal literals might occur but must be avoided: deviate from strict reverse assignment order [GNT06].
- Worst case exponential number of intermediate resolvents [VG12].

ExampleExampleAssignment $A = \{x_1, x_2, x_3, x_4\}$
Assignment order: x_1, x_2, x_3, x_4
Can we resolve in reverse assignment order? $\exists x_1, x_3, x_4 \forall y_5 \exists x_2$
 $(\neg x_1 \lor x_2) \land$
 $(x_3 \lor y_5 \lor \neg x_2) \land$
 $(x_4 \lor \neg y_5 \lor \neg x_2) \land$
 $(\neg x_3 \lor \neg x_4)$ Clause $(\neg x_3 \lor \neg x_4)$ conflicting:
 $x_1 \longrightarrow x_2 \longrightarrow x_4$

Pitfall (Implementation): Traditional Clause Learning for QBF (2/2)

Example

Linear-time procedure: resolve in assignment order [LEVG13].

Towards a Proof System for PCNFs

Learning from Solutions (1/4)

Cube Learning:

- Given a solution A, i.e. $\psi[A] = \top$.
- Solution A is a branch in the assignment tree with a \top -leaf.
- All clauses in ψ are satisfied under A.
- Idea: record A as a conjunction of literals: *learned cube*.
- Dual to clauses, learned cubes become unit in QBCP after backtracking and prevent the solver from enumerating the same subassignment.

Learning from Solutions (2/4)

Definition (model generation rule [GNT06])

Given a PCNF $\psi := \hat{Q}.\phi$ and a solution A, i.e. $\psi[A] = \top$. An *initial cube* $C = (\bigwedge_{l_i \in A} l_i)$ is a conjunction over the literals of a solution A.

Example

$$\begin{split} \psi &:= \exists x_1 \forall y_8 \exists x_5, x_2, x_6, x_4, (y_8 \lor \neg x_5) \land (x_2 \lor \neg x_6) \land (\neg x_1 \lor x_4) \land (\neg y_8 \lor \neg x_4) \land (x_1 \lor x_6) \land (x_4 \lor x_5). \\ \text{Solution } A_1 &:= \{x_6, x_2, \neg y_8, \neg x_5, x_4\}, \text{ initial cube } C_1 &:= (x_6 \land x_2 \land \neg y_8 \land \neg x_5 \land x_4). \\ \text{Solution } A_2 &:= \{y_8, \neg x_4, \neg x_1, x_5, x_6, x_2\}, \text{ initial cube } C_2 &:= (y_8 \land \neg x_4 \land \neg x_1 \land x_5 \land x_6 \land x_2). \end{split}$$

Learning from Solutions (3/4)

Definition

Given a cube C, existential reduction (ER) on C produces the cube

$$\textit{ER}(\textit{C}) := \textit{C} \setminus \{\textit{I} \in \textit{C} \mid q(\textit{I}) = \exists \text{ and } \forall \textit{I}' \in \textit{C} \text{ with } q(\textit{I}') = \forall : \textit{var}(\textit{I}') < \textit{var}(\textit{I})\},$$

where < is the linear variable ordering given by the quantifier prefix.

ER is dual to universal reduction, deletes "trailing" existential literals from cubes.
 ER shortens cubes.

Example (continued)

$$\begin{split} \psi &:= \exists x_1 \forall y_8 \exists x_5, x_2, x_6, x_4. (y_8 \lor \neg x_5) \land (x_2 \lor \neg x_6) \land (\neg x_1 \lor x_4) \land (\neg y_8 \lor \neg x_4) \land (x_1 \lor x_6) \land (x_4 \lor x_5). \\ \text{Initial cube } C_1 &:= (x_6 \land x_2 \land \neg y_8 \land \neg x_5 \land x_4). \\ C_3 &:= ER(C_1) = (\neg y_8) \\ \text{Initial cube } C_2 &:= (y_8 \land \neg x_4 \land \neg x_1 \land x_5 \land x_6 \land x_2). \\ C_4 &:= ER(C_2) = (y_8 \land \neg x_1) \end{split}$$

Learning from Solutions (4/4)

Definition (cube resolution [GNT06, ZM02])

Given two non-contradictory cubes C_1 and C_2 , *cube resolution* is defined analogously to Q-resolution for clauses, except:

- existential reduction.
- universal variables as pivots.

The cube resolvent of C_1 and C_2 (if it exists) is denoted by $C := C_1 \otimes C_2$.

Example (continued)

$$\begin{split} \psi &:= \exists x_1 \forall y_8 \exists x_5, x_2, x_6, x_4. (y_8 \lor \neg x_5) \land (x_2 \lor \neg x_6) \land (\neg x_1 \lor x_4) \land (\neg y_8 \lor \neg x_4) \land (x_1 \lor x_6) \land (x_4 \lor x_5). \\ \text{Initial cube } C_1 &:= (x_6 \land x_2 \land \neg y_8 \land \neg x_5 \land x_4). \\ C_3 &:= ER(C_1) = (\neg y_8) \\ \text{Initial cube } C_2 &:= (y_8 \land \neg x_4 \land \neg x_1 \land x_5 \land x_6 \land x_2). \\ C_4 &:= ER(C_2) = (y_8 \land \neg x_1) \\ C_5 &:= C_3 \otimes C_4 = (\neg x_1), ER(C_5) = \emptyset. \end{split}$$

QCDCL as a Proof System

Cube Learning:

- Model generation, existential reduction, cube resolution.
- The empty cube is derived if and only if the PCNF satisfiable.
- Dual to clause learning: driven by assignment generation, implication graphs.

Clause Learning:

- Universal reduction, Q-resolution.
- The empty clause is derived if and only if the PCNF unsatisfiable.

Definition

- PCNF $\psi := \hat{Q}. \phi$ with quantifier prefix \hat{Q} and CNF ϕ .
- Augmented CNF of ψ : $\psi' := \hat{Q}. (\phi \land \theta \lor \gamma).$
- Original clauses ϕ .
- Learned clauses θ , filled during clause learning.
- Learned cubes γ , filled during cube learning.
- Properties: $\hat{Q}. \phi \equiv \hat{Q}. (\phi \wedge \theta)$ and $\hat{Q}. \phi \equiv \hat{Q}. (\phi \vee \gamma).$

Final View: $QCDCL \neq QDPLL + Learning$

- QCDCL generates proofs.
- Proof generation is driven by assignments.
- QCDCL does not flip decision variables explicitly.
- Backtracking is driven by learned clauses and cubes.
- Problem: CNF is bad for cube learning.

```
Result qdpll (PCNF f)
  Result r = UNDEF;
  Assignment a = \{\};
  while (true)
    /* Simplify. */
    (r,a) = qbcp (f,a);
    if (r == UNDET)
      /* Decision making. */
      a = assign_dec_var (f,a);
    else
      /* Backtracking. */
      /* r == UNSAT or r == SAT */
      btlevel = analyze (r,a);
      if (btlevel == INVALID)
        return r;
      else
        a = backtrack (btlevel);
```

Optimizations

Inspired by efficient solvers for propositional logic (SAT).

Restarts:

- Periodically retract all assignments and start over with $A = \{\}$.
- Makes the solver incomplete unless restart period grows sufficiently large.
- Idea: getting out of "bad" regions in the search space.

Assignment Caching:

- Store assigned values other than decisions in a per-variable cache.
- If variable x is selected to make a decision, then assign cached value of x.
- Idea: re-use previous assignments in similar parts of the formula.

Deletion of Learned Clauses and Cubes:

- Formula grows steadily by addition of learned clauses and cubes.
- QBCP will be slowed down.
- Idea: heuristically discard unimportant clauses and cubes.

Optimizations

Inspired by efficient solvers for propositional logic (SAT).

Restarts:

- Periodically retract all assignments and start over with $A = \{\}$.
- Makes the solver incomplete unless restart period grows sufficiently large.
- Idea: getting out of "bad" regions in the search space.

Assignment Caching:

- Store assigned values other than decisions in a per-variable cache.
- If variable *x* is selected to make a decision, then assign cached value of *x*.
- Idea: re-use previous assignments in similar parts of the formula.

Deletion of Learned Clauses and Cubes:

- Formula grows steadily by addition of learned clauses and cubes.
- QBCP will be slowed down.
- Idea: heuristically discard unimportant clauses and cubes.

Optimizations

Inspired by efficient solvers for propositional logic (SAT).

Restarts:

- Periodically retract all assignments and start over with $A = \{\}$.
- Makes the solver incomplete unless restart period grows sufficiently large.
- Idea: getting out of "bad" regions in the search space.

Assignment Caching:

- Store assigned values other than decisions in a per-variable cache.
- If variable x is selected to make a decision, then assign cached value of x.
- Idea: re-use previous assignments in similar parts of the formula.

Deletion of Learned Clauses and Cubes:

- Formula grows steadily by addition of learned clauses and cubes.
- QBCP will be slowed down.
- Idea: heuristically discard unimportant clauses and cubes.

Optimizations

Inspired by efficient solvers for propositional logic (SAT).

Restarts:

- Periodically retract all assignments and start over with $A = \{\}$.
- Makes the solver incomplete unless restart period grows sufficiently large.
- Idea: getting out of "bad" regions in the search space.

Assignment Caching:

- Store assigned values other than decisions in a per-variable cache.
- If variable x is selected to make a decision, then assign cached value of x.
- Idea: re-use previous assignments in similar parts of the formula.

Deletion of Learned Clauses and Cubes:

- Formula grows steadily by addition of learned clauses and cubes.
- QBCP will be slowed down.
- Idea: heuristically discard unimportant clauses and cubes.

Traditional Q-Resolution:

- Tautological resolvents *C*, i.e. where $\{v, \neg v\} \subseteq C$, are disallowed.
- In general, tautological resolvents might produce unsound results.

Long-Distance (LD) Resolution:

- Allow to produce *certain* tautological resolvents: soundness.
- Can produce exponentially shorter proofs than Q-resolution.
- Implemented in yQuaffle, DepQBF for clause learning.

QU-Resolution:

- Allow to resolve over universally quantified variables.
- Can produce exponentially shorter proofs than Q-resolution.

Future Work:

Traditional Q-Resolution:

- **T**autological resolvents *C*, i.e. where $\{v, \neg v\} \subseteq C$, are disallowed.
- In general, tautological resolvents might produce unsound results.

Long-Distance (LD) Resolution:

- Allow to produce *certain* tautological resolvents: soundness.
- Can produce exponentially shorter proofs than Q-resolution.
- Implemented in yQuaffle, DepQBF for clause learning.

QU-Resolution:

- Allow to resolve over universally quantified variables.
- Can produce exponentially shorter proofs than Q-resolution.

Future Work:

Traditional Q-Resolution:

- **T**autological resolvents *C*, i.e. where $\{v, \neg v\} \subseteq C$, are disallowed.
- In general, tautological resolvents might produce unsound results.

Long-Distance (LD) Resolution:

- Allow to produce *certain* tautological resolvents: soundness.
- Can produce exponentially shorter proofs than Q-resolution.
- Implemented in yQuaffle, DepQBF for clause learning.

QU-Resolution:

- Allow to resolve over universally quantified variables.
- Can produce exponentially shorter proofs than Q-resolution.

Future Work:

Traditional Q-Resolution:

- **T**autological resolvents *C*, i.e. where $\{v, \neg v\} \subseteq C$, are disallowed.
- In general, tautological resolvents might produce unsound results.

Long-Distance (LD) Resolution:

- Allow to produce *certain* tautological resolvents: soundness.
- Can produce exponentially shorter proofs than Q-resolution.
- Implemented in yQuaffle, DepQBF for clause learning.

QU-Resolution:

- Allow to resolve over universally quantified variables.
- Can produce exponentially shorter proofs than Q-resolution.

Future Work:

Challenge: Variable Dependencies (1/2)

Order of Assignments:

Given the PCNF $Q_1B_1Q_2B_2...Q_mB_m.\phi$, QDPLL in general must only assign variables as decisions starting from B_1 to ensure soundness.

Example

The PCNF $\psi = \forall x \exists y. (x \lor \neg y) \land (\neg x \lor y)$ is satisfiable. The PCNF $\psi = \exists y \forall x. (x \lor \neg y) \land (\neg x \lor y)$ is unsatisfiable.

This linear ordering limits the freedom to select decision variables.

Example

- $\psi = Q_1 B_1 \dots Q_n B_n \phi \wedge \phi'(B_n).$
 - ϕ : hard formula.
 - $\phi'(B_n)$: easy formula over variables in B_n .
 - QDPLL tends to assign variables in B_n late (except in QBCP).
 - \blacksquare QDPLL attempts to solve hard ϕ first.

Challenge: Variable Dependencies (2/2)

Dependency Analysis:

- Are there variables which can be moved to the left end in the quantifier prefix without changing the satisfiability of \u03c6?
- Related work: quantifier shifting / miniscoping in theorem proving.
- PSPACE-complete problem.

Dependency Schemes:

- Binary relation $D \subseteq V \times V$ over variables in a PCNF.
- If $(x, y) \in D$ then must assign x before y to ensure soundness.
- If $(x, y) \notin D$ then can assign x before y or vice versa.
- D computed by a syntactic analysis of the PCNF.
- Tradeoff: efficiency of computation and precision.
- Dependency Schemes in DepQBF: efficient integration as compact graphs.

Challenge: Variable Dependencies (2/2)

Dependency Analysis:

- Are there variables which can be moved to the left end in the quantifier prefix without changing the satisfiability of *ψ*?
- Related work: quantifier shifting / miniscoping in theorem proving.
- PSPACE-complete problem.

Dependency Schemes:

- Binary relation $D \subseteq V \times V$ over variables in a PCNF.
- If $(x, y) \in D$ then must assign x before y to ensure soundness.
- If $(x, y) \notin D$ then can assign x before y or vice versa.
- D computed by a syntactic analysis of the PCNF.
- Tradeoff: efficiency of computation and precision.
- Dependency Schemes in DepQBF: efficient integration as compact graphs.

Recent Trends

Preprocessing:

- Impressive reduction in formula size and solving time.
- Can be harmful for solvers relying on formula structure.
- Applications: preprocessing can destroy the original encoding (certificates).

CNF-based Solving and Structure Reconstruction:

- Dedicated non-PCNF solvers operating on e.g. circuit structure.
- Recent focus on CNF data structures due to efficiency.
- Structure reconstruction to extract circuit information from a CNF.
- Can improve cube learning: shorter cubes, exponential gap.

Recent Trends

Preprocessing:

- Impressive reduction in formula size and solving time.
- Can be harmful for solvers relying on formula structure.
- Applications: preprocessing can destroy the original encoding (certificates).

CNF-based Solving and Structure Reconstruction:

- Dedicated non-PCNF solvers operating on e.g. circuit structure.
- Recent focus on CNF data structures due to efficiency.
- Structure reconstruction to extract circuit information from a CNF.
- Can improve cube learning: shorter cubes, exponential gap.

Summary

Search-Based QBF Solving (QDPLL):

- Originates from backtracking search (1960s), like SAT solvers.
- Modern implementations: fundamentally different.

QCDCL: Assignment Generation + Clause/Cube Learning:

- More powerful than backtracking/backjumping.
- No explicit flipping of decision variables.
- Generation of resolution proofs guided by assignments.
- State-of-the-art approach, crucial implementation details.
- Future work: safely relax the quantifier ordering.
- Future work: integrate preprocessing, certificate generation.

http://lonsing.github.io/depqbf/

M. Cadoli, A. Giovanardi, and M. Schaerf. An Algorithm to Evaluate Quantified Boolean Formulae. In *AAAI/IAAI*, pages 262–267, 1998.

- M. Davis, G. Logemann, and D. Loveland. A Machine Program for Theorem-proving. *Commun. ACM*, 5(7):394–397, 1962.
- E. Giunchiglia, M. Narizzano, and A. Tacchella.
 QUBE: A System for Deciding Quantified Boolean Formulas Satisfiability.
 In R. Goré, A. Leitsch, and T. Nipkow, editors, *IJCAR*, volume 2083 of *LNCS*, pages 364–369. Springer, 2001.
- E. Giunchiglia, M. Narizzano, and A. Tacchella.

Clause/Term Resolution and Learning in the Evaluation of Quantified Boolean Formulas.

J. Artif. Intell. Res. (JAIR), 26:371-416, 2006.

F. Lonsing, U. Egly, and Allen Van Gelder.

Efficient Clause Learning for Quantified Boolean Formulas via QBF Pseudo Unit Propagation.

In Matti Järvisalo and Allen Van Gelder, editors, *SAT*, volume 7962 of *Lecture Notes in Computer Science*, pages 100–115. Springer, 2013.

Contributions to the Theory of Practical Quantified Boolean Formula Solving. In Michela Milano, editor, *CP*, volume 7514 of *LNCS*, pages 647–663. Springer, 2012.

L. Zhang and S. Malik.

Towards a Symmetric Treatment of Satisfaction and Conflicts in Quantified Boolean Formula Evaluation.

In P. Van Hentenryck, editor, *CP*, volume 2470 of *LNCS*, pages 200–215. Springer, 2002.