Satisfiability Modulo Theories and Z3

Nikolaj Bjørner Microsoft Research ReRISE Winter School, Linz, Austria February 4, 2014

Plan

Mon An invitation to SMT with Z3

Tue Equalities and Theory Combination

Wed Theories: Arithmetic, Arrays, Data types

Thu Quantifiers and Theories

Fri Programming Z3: Interfacing and Solving

Lecture Overview

Deciding Equality

Uninterpreted Functions

Nelson Oppen Combination

Model-based Theory Combination

 $a = b, b = c, d = e, b = s, d = t, a \neq e, a \neq s$

$$a = b$$
, $b = c$, $d = e$, $b = s$, $d = t$, $a \ne e$, $a \ne s$

a = b, b = c, d = e, b = s, d = t, $a \ne e$, $a \ne s$

$$a = b, b = c, d = e, b = s, d = t, a \neq e, a \neq s$$

 $a = b, b = c, d = e, b = s, d = t, a \neq e, a \neq s$

$$a = b, b = c, d = e, b = s, d = t, a \neq e, a \neq s$$

$$a = b, b = c, d = e, b = s, d = t, a \neq e, a \neq s$$

$$a = b, b = c, d = e, b = s, d = t, a \neq e, a \neq s$$

 $a = b, b = c, d = e, b = s, d = t, a \neq e, a \neq s$

$$a = b, b = c, d = e, b = s, d = t, a \neq e, a \neq s$$

$$a = b, b = c, d = e, b = s, d = t, a \neq e, a \neq s$$

$$a = b, b = c, d = e, b = s, d = t, a \neq e, a \neq s$$

$$a = b, b = c, d = e, b = s, d = t, a \neq e, a \neq s$$

$$a = b, b = c, d = e, b = s, d = t, a \neq e$$

$$a = b, b = c, d = e, b = s, d = t, a \neq e$$

Model construction

 $|M| = \{ \blacklozenge_1, \blacklozenge_2 \}$ (universe, aka domain)

$$a = b, b = c, d = e, b = s, d = t, a \neq e$$

$$|M| = \{ \blacklozenge_1, \blacklozenge_2 \}$$
 (universe, aka domain)
 $M(a) = \blacklozenge_1$ (assignment)

$$a = b, b = c, d = e, b = s, d = t, a \neq e$$

$$|M| - \{ \blacklozenge_1, \blacklozenge_2 \}$$
 (universe, aka domain)
 $M(a) = \blacklozenge_1$ (assignment)

$$a = b, b = c, d = e, b = s, d = t, a \neq e$$

$$|M| = \{ \blacklozenge_1, \blacklozenge_2 \}$$
 (universe, aka domain)
 $M(a) = M(b) = M(c) = M(s) = \blacklozenge_1$
 $M(d) = M(e) = M(t) = \blacklozenge_2$

Deciding Equality: Termination, Soundness, Completeness

- Termination: easy
- Soundness
 - Invariant: all constants in a "ball" are known to be equal.
 - The "ball" merge operation is justified by:
 - Transitivity and Symmetry rules.
- Completeness
 - We can build a model if an inconsistency was not detected.
 - Proof template (by contradiction):
 - Build a candidate model.
 - Assume a literal was not satisfied.
 - Find contradiction.

Equality: Union-Find [Tarjan]

- Size of equivalence class

```
vector<int> F;
int new_node() { F.push_back(-1); return F.size()-1; }
int find(int node) {
   if (F[node] != -1) { F[node] = find(node); return F[node]; }
   return node;
void merge(int n1, int n2) {
    n1 = find(n1); n2 = find(n2);
    if (F[n1] > F[n2]) swap(n1, n2);
    if (n1 == n2) return;
    F[n1] += F[n2];
    F[n2] = n1;
```

Lazy path
compression
Variant: Eager
Path
compression +
equivalence
class as doubly
linked list

nlog*(n) amortized time for n operations

Root for largest class takes over

Deciding Equality: Termination, Soundness, Completeness

- Completeness
 - We can build a model if an inconsistency was not detected.
 - Instantiating the template for our procedure:
 - Assume some literal c = d is not satisfied by our model.
 - That is, M(c) ≠ M(d).
 - This is impossible, c and d must be in the same "ball".

$$M(c) = M(d) = \bullet_i$$

Deciding Equality: Termination, Soundness, Completeness

- Completeness
 - We can build a model if an inconsistency was not detected.
 - Instantiating the template for our procedure:
 - Assume some literal c ≠ d is not satisfied by our model.
 - That is, M(c) = M(d).
 - Key property: we only check the disequalities after we processed all equalities.
 - This is impossible, c and d must be in the different "balls"

$$a = b, b = c, d = e, b = s, d = t, f(a, g(d)) \neq f(b, g(e))$$

$$x_1 = y_1, ..., x_n = y_n \text{ implies } f(x_1, ..., x_n) = f(y_1, ..., y_n)$$

$$a = b, b = c, d = e, b = s, d = t, f(a, g(d)) \neq f(b, g(e))$$

First Step: "Naming" subterms

$$x_1 = y_1, ..., x_n = y_n \text{ implies } f(x_1, ..., x_n) = f(y_1, ..., y_n)$$

a = b, b = c, d = e, b = s, d = t,
$$f(a, v_1) \neq f(b, g(e))$$

 $v_1 \equiv g(d)$

First Step: "Naming" subterms

$$x_1 = y_1, ..., x_n = y_n \text{ implies } f(x_1, ..., x_n) = f(y_1, ..., y_n)$$

a = b, b = c, d = e, b = s, d = t,
$$f(a, v_1) \neq f(b, g(e))$$

 $v_1 \equiv g(d)$

First Step: "Naming" subterms

$$x_1 = y_1, ..., x_n = y_n \text{ implies } f(x_1, ..., x_n) = f(y_1, ..., y_n)$$

a = b, b = c, d = e, b = s, d = t,
$$f(a, v_1) \neq f(b, v_2)$$

 $v_1 \equiv g(d), v_2 \equiv g(e)$

First Step: "Naming" subterms

$$x_1 = y_1, ..., x_n = y_n \text{ implies } f(x_1, ..., x_n) = f(y_1, ..., y_n)$$

a = b, b = c, d = e, b = s, d = t,
$$f(a, v_1) \neq f(b, v_2)$$

 $v_1 \equiv g(d), v_2 \equiv g(e)$
First Step: "Naming" subterms

$$x_1 = y_1, ..., x_n = y_n \text{ implies } f(x_1, ..., x_n) = f(y_1, ..., y_n)$$

a = b, b = c, d = e, b = s, d = t,
$$v_3 \neq f(b, v_2)$$

 $v_1 \equiv g(d), v_2 \equiv g(e), v_3 \equiv f(a, v_1)$
First Step: "Naming" subterms

$$x_1 = y_1, ..., x_n = y_n \text{ implies } f(x_1, ..., x_n) = f(y_1, ..., y_n)$$

a = b, b = c, d = e, b = s, d = t,
$$v_3 \neq f(b, v_2)$$

 $v_1 \equiv g(d), v_2 \equiv g(e), v_3 \equiv f(a, v_1)$
First Step: "Naming" subterms

$$x_1 = y_1, ..., x_n = y_n \text{ implies } f(x_1, ..., x_n) = f(y_1, ..., y_n)$$

a = b, b = c, d = e, b = s, d = t,
$$v_3 \neq v_4$$

 $v_1 \equiv g(d)$, $v_2 \equiv g(e)$, $v_3 \equiv f(a, v_1)$, $v_4 \equiv f(b, v_2)$
First Step: "Naming" subterms

$$x_1 = y_1, ..., x_n = y_n \text{ implies } f(x_1, ..., x_n) = f(y_1, ..., y_n)$$

a = b, b = c, d = e, b = s, d = t, $v_3 \neq v_4$ $v_1 \equiv g(d), v_2 \equiv g(e), v_3 \equiv f(a, v_1), v_4 \equiv f(b, v_2)$

$$x_1 = y_1, ..., x_n = y_n \text{ implies } f(x_1, ..., x_n) = f(y_1, ..., y_n)$$

a = b, b = c, d = e, b = s, d = t,
$$v_3 \neq v_4$$

 $v_1 \equiv g(d), v_2 \equiv g(e), v_3 \equiv f(a, v_1), v_4 \equiv f(b, v_2)$

$$x_1 = y_1, ..., x_n = y_n \text{ implies } f(x_1, ..., x_n) = f(y_1, ..., y_n)$$

 $d = e \text{ implies } g(d) = g(e)$

a = b, b = c, d = e, b = s, d = t,
$$v_3 \neq v_4$$

 $v_1 \equiv g(d), v_2 \equiv g(e), v_3 \equiv f(a, v_1), v_4 \equiv f(b, v_2)$

$$x_1 = y_1, ..., x_n = y_n \text{ implies } f(x_1, ..., x_n) = f(y_1, ..., y_n)$$

 $d = e \text{ implies } v_1 = v_2$

Deciding Equality We say: (uninterpreted) Functive and ve are congruent.

a = b, b = c, d = e, b = s, d = t,
$$v_4$$

 $v_1 \equiv g(d), v_2 \equiv g(e), v_3 \equiv f(a, v_1)$ $v_4 \equiv f(b, v_2)$

$$x_1 = y_1, ..., x_n = y_n \text{ implies } f(x_1, ..., x_n) = f(y_1, ..., y_n)$$

 $d = e \text{ implies } v_1 = v_2$

a = b, b = c, d = e, b = s, d = t,
$$v_3 \neq v_4$$

 $v_1 \equiv g(d), v_2 \equiv g(e), v_3 \equiv f(a, v_1), v_4 \equiv f(b, v_2)$

$$x_1 = y_1, ..., x_n = y_n \text{ implies } f(x_1, ..., x_n) = f(y_1, ..., y_n)$$

 $a = b, v_1 = v_2 \text{ implies } f(a, v_1) = f(b, v_2)$

a = b, b = c, d = e, b = s, d = t,
$$v_3 \neq v_4$$

 $v_1 \equiv g(d), v_2 \equiv g(e), v_3 \equiv f(a, v_1), v_4 \equiv f(b, v_2)$

$$x_1 = y_1, ..., x_n = y_n \text{ implies } f(x_1, ..., x_n) = f(y_1, ..., y_n)$$

 $a = b, v_1 = v_2 \text{ implies } v_3 = v_4$

a = b, b = c, d = e, b = s, d = t,
$$v_3 \neq v_4$$

 $v_1 \equiv g(d), v_2 \equiv g(e), v_3 \equiv f(a, v_1), v_4 \equiv f(b, v_2)$

$$x_1 = y_1, ..., x_n = y_n \text{ implies } f(x_1, ..., x_n) = f(y_1, ..., y_n)$$

 $a = b, v_1 = v_2 \text{ implies } v_3 = v_4$

a = b, b = c, d = e, b = s, d = t,
$$v_3 \neq v_4$$

 $v_1 \equiv g(d), v_2 \equiv g(e), v_3 \equiv f(a, v_1), v_4 \equiv f(b, v_2)$

$$x_1 = y_1, ..., x_n = y_n \text{ implies } f(x_1, ..., x_n) = f(y_1, ..., y_n)$$

a = b, b = c, d = e, b = s, d = t,
$$a \neq v_4$$
, $v_2 \neq v_3$
 $v_1 \equiv g(d)$, $v_2 \equiv g(e)$, $v_3 \equiv f(a, v_1)$, $v_4 \equiv f(b, v_2)$

Changing the problem

$$x_1 = y_1, ..., x_n = y_n \text{ implies } f(x_1, ..., x_n) = f(y_1, ..., y_n)$$

a = b, b = c, d = e, b = s, d = t,
$$a \neq v_4$$
, $v_2 \neq v_3$
 $v_1 \equiv g(d)$, $v_2 \equiv g(e)$, $v_3 \equiv f(a, v_1)$, $v_4 \equiv f(b, v_2)$

$$x_1 = y_1, ..., x_n = y_n \text{ implies } f(x_1, ..., x_n) = f(y_1, ..., y_n)$$

a = b, b = c, d = e, b = s, d = t, a
$$\neq$$
 v₄, v₂ \neq v₃
v₁ \equiv g(d), v₂ \equiv g(e), v₃ \equiv f(a, v₁), v₄ \equiv f(b, v₂)

$$x_1 = y_1, ..., x_n = y_n \text{ implies } f(x_1, ..., x_n) = f(y_1, ..., y_n)$$

a = b, b = c, d = e, b = s, d = t, a
$$\neq$$
 v₄, v₂ \neq v₃
v₁ \equiv g(d), v₂ \equiv g(e), v₃ \equiv f(a, v₁), v₄ \equiv f(b, v₂)

$$|M| = \{ \blacklozenge_1, \blacklozenge_2, \blacklozenge_3, \blacklozenge_4 \}$$

$$M(a) = M(b) = M(c) = M(s) = \blacklozenge_1$$

$$M(d) = M(e) = M(t) = \blacklozenge_2$$

$$M(v_1) = M(v_2) = \blacklozenge_3$$

$$M(v_3) = M(v_4) = \blacklozenge_4$$

a = b, b = c, d = e, b = s, d = t, a
$$\neq$$
 v₄, v₂ \neq v₃
v₁ \equiv g(d), v₂ \equiv g(e), v₃ \equiv f(a, v₁), v₄ \equiv f(b, v₂)

Model construction:

$$|M| = \{ \blacklozenge_1, \blacklozenge_2, \blacklozenge_3, \blacklozenge_4 \}$$

$$M(a) = M(b) = M(c) = M(s) = \blacklozenge_1$$

$$M(d) = M(e) = M(t) = \blacklozenge_2$$

$$M(v_1) = M(v_2) = \blacklozenge_3$$

 $M(v_3) = M(v_4) = \blacklozenge_4$

Missing:

Interpretation for f and g.

Building the interpretation for function symbols

- M(g) is a mapping from |M| to |M|
- Defined as:

```
M(g)(\blacklozenge_i) = \blacklozenge_j if there is v = g(a) s.t.

M(a) = \blacklozenge_i

M(v) = \blacklozenge_j

M(v) = \blacklozenge_k, otherwise (\blacklozenge_k is an arbitrary element)
```

Is M(g) well-defined?

Building the interpretation for function symbols

- M(g) is a mapping from |M| to |M|
- Defined as:

```
M(g)(\blacklozenge_i) = \blacklozenge_j if there is v = g(a) s.t.

M(a) = \blacklozenge_i

M(v) = \blacklozenge_j

M(v) = \blacklozenge_k, otherwise (\blacklozenge_k is an arbitrary element)
```

Is M(g) well-defined? Problem: we may have

```
v \equiv g(a) and w \equiv g(b) s.t.

M(a) = M(b) = \blacklozenge_1 and M(v) = \blacklozenge_2 \neq \blacklozenge_3 = M(w)

So, is M(g)(\blacklozenge_1) = \blacklozenge_2 or M(g)(\blacklozenge_1) = \blacklozenge_3?
```

Building the interpretation for function symbols

- M(g) is a mapping from |M| to |M
- Defined as:

```
M(g)(\blacklozenge_i) = \blacklozenge_j if there is v \equiv g(a)
M(a) = \blacklozenge_i
M(v) = \blacklozenge_j
= \blacklozenge_k, otherwise (\blacklozenge_i) arbitrary element)
```

This is impossible because of

Is M(g) well-defined? Problem: we may have

```
v \equiv g(a) and w \equiv g(b) s.t.

M(a) = M(b) = \blacklozenge_1 and M(v) = \blacklozenge_2 \neq \blacklozenge_3 = M(w)

So, is M(g)(\blacklozenge_1) = \blacklozenge_2 or M(g)(\blacklozenge_1) = \blacklozenge_3?
```

a = b, b = c, d = e, b = s, d = t, a
$$\neq$$
 v₄, v₂ \neq v₃
v₁ \equiv g(d), v₂ \equiv g(e), v₃ \equiv f(a, v₁), v₄ \equiv f(b, v₂)

$$|M| = \{ \blacklozenge_1, \blacklozenge_2, \blacklozenge_3, \blacklozenge_4 \}$$

$$M(a) = M(b) = M(c) = M(s) = \blacklozenge_1$$

$$M(d) = M(e) = M(t) = \blacklozenge_2$$

$$M(v_1) = M(v_2) = \blacklozenge_3$$

$$M(v_3) = M(v_4) = \blacklozenge_4$$

a = b, b = c, d = e, b = s, d = t, a
$$\neq v_4$$
, $v_2 \neq v_3$
 $v_1 \equiv g(d)$, $v_2 \equiv g(e)$, $v_3 \equiv f(a, v_1)$, $v_4 \equiv f(b, v_2)$

```
|M| = \{ \blacklozenge_1, \blacklozenge_2, \blacklozenge_3, \blacklozenge_4 \}
M(a) = M(b) = M(c) = M(s) = \blacklozenge_1
M(d) = M(e) = M(t) = \blacklozenge_2
M(v_1) = M(v_2) = \blacklozenge_3
M(v_3) = M(v_4) = \blacklozenge_4
```

```
M(g)(\blacklozenge_i) = \blacklozenge_j if there is v \equiv g(a) s.t.

M(a) = \blacklozenge_i

M(v) = \blacklozenge_j

= \blacklozenge_k, otherwise
```

a = b, b = c, d = e, b = s, d = t, a
$$\neq$$
 v₄, v₂ \neq v₃
v₁ \equiv g(d), v₂ \equiv g(e), v₃ \equiv f(a, v₁), v₄ \equiv f(b, v₂)

$$|M| = \{ \blacklozenge_1, \blacklozenge_2, \blacklozenge_3, \blacklozenge_4 \}$$

$$M(a) = M(b) = M(c) = M(s) = \blacklozenge_1$$

$$M(d) = M(e) = M(t) = \blacklozenge_2$$

$$M(v_1) = M(v_2) = \blacklozenge_3$$

$$M(v_3) = M(v_4) = \blacklozenge_4$$

$$M(g) = \{ \blacklozenge_2 \rightarrow \blacklozenge_3 \}$$

```
M(g)(\blacklozenge_i) = \blacklozenge_j if there is v = g(a) s.t.

M(a) = \blacklozenge_i

M(v) = \blacklozenge_j

= \blacklozenge_k, otherwise
```

a = b, b = c, d = e, b = s, d = t, a
$$\neq v_4$$
, $v_2 \neq v_3$
 $v_1 \equiv g(d)$, $v_2 \equiv g(e)$, $v_3 \equiv f(a, v_1)$, $v_4 \equiv f(b, v_2)$

$$|M| = \{ \blacklozenge_1, \blacklozenge_2, \blacklozenge_3, \blacklozenge_4 \}$$

$$M(a) = M(b) = M(c) = M(s) = \blacklozenge_1$$

$$M(d) = M(e) = M(t) = \blacklozenge_2$$

$$M(v_1) = M(v_2) = \blacklozenge_3$$

$$M(v_3) = M(v_4) = \blacklozenge_4$$

$$M(g) = \{ \blacklozenge_2 \rightarrow \blacklozenge_3 \}$$

```
M(g)(\blacklozenge_i) = \blacklozenge_j if there is v \equiv g(a) s.t.

M(a) = \blacklozenge_i

M(v) = \blacklozenge_j

= \blacklozenge_k, otherwise
```

a = b, b = c, d = e, b = s, d = t, a
$$\neq v_4$$
, $v_2 \neq v_3$
 $v_1 \equiv g(d)$, $v_2 \equiv g(e)$, $v_3 \equiv f(a, v_1)$, $v_4 \equiv f(b, v_2)$

```
|M| = \{ \blacklozenge_1, \blacklozenge_2, \blacklozenge_3, \blacklozenge_4 \}
M(a) = M(b) = M(c) = M(s) = \blacklozenge_1
M(d) = M(e) = M(t) = \blacklozenge_2
M(v_1) = M(v_2) = \blacklozenge_3
M(v_3) = M(v_4) = \blacklozenge_4
M(g) = \{ \blacklozenge_2 \rightarrow \blacklozenge_3, \text{ else } \rightarrow \blacklozenge_1 \}
```

```
M(g)(\blacklozenge_i) = \blacklozenge_j if there is v \equiv g(a) s.t.

M(a) = \blacklozenge_i

M(v) = \blacklozenge_j

= \blacklozenge_k, otherwise
```

a = b, b = c, d = e, b = s, d = t, a
$$\neq$$
 v₄, v₂ \neq v₃
v₁ \equiv g(d), v₂ \equiv g(e), v₃ \equiv f(a, v₁), v₄ \equiv f(b, v₂)

```
|M| = \{ \blacklozenge_1, \blacklozenge_2, \blacklozenge_3, \blacklozenge_4 \}
M(a) = M(b) = M(c) = M(s) = \blacklozenge_1
M(d) = M(e) = M(t) = \blacklozenge_2
M(v_1) = M(v_2) = \blacklozenge_3
M(v_3) = M(v_4) = \blacklozenge_4
M(g) = \{ \blacklozenge_2 \rightarrow \blacklozenge_3, \text{ else } \rightarrow \blacklozenge_1 \}
M(f) = \{ (\blacklozenge_1, \blacklozenge_3) \rightarrow \blacklozenge_4, \text{ else } \rightarrow \blacklozenge_1 \}
```

```
M(g)(\blacklozenge_i) = \blacklozenge_j if there is v = g(a) s.t.

M(a) = \blacklozenge_i

M(v) = \blacklozenge_j

= \blacklozenge_k, otherwise
```

What about predicates?

$$p(a, b), \neg p(c, b)$$

What about predicates?

p(a, b),
$$\neg$$
p(c, b)

$$f_p(a, b) = T, \quad f_p(c, b) \neq T$$

It is possible to implement our procedure in O(n log n)

Case Analysis

Many verification/analysis problems require:

case-analysis

$$x \ge 0$$
, $y = x + 1$, $(y > 2 \lor y < 1)$

Case Analysis

Many verification/analysis problems require:

case-analysis

$$x \ge 0$$
, $y = x + 1$, $(y > 2 \lor y < 1)$

Naïve Solution: Convert to DNF

$$(x \ge 0, y = x + 1, y > 2) \lor (x \ge 0, y = x + 1, y < 1)$$

Case Analysis

Many verification/analysis problems require:

case-analysis

$$x \ge 0$$
, $y = x + 1$, $(y > 2 \lor y < 1)$

Naïve Solution: Convert to DNF

$$(x \ge 0, y = x + 1, y > 2) \lor (x \ge 0, y = x + 1, y < 1)$$

Too Inefficient! (exponential blowup)

SMT: Basic Architecture

Research

Partial model

Set of clauses

Guessing

$$p, \neg q \mid p \lor q, \neg q \lor r$$

Deducing

Backtracking

Basic Idea

$$x \ge 0$$
, $y = x + 1$, $(y > 2 \lor y < 1)$
Abstract (aka "naming" atoms)

$$p_1, p_2, (p_3 \lor p_4)$$
 $p_1 \equiv (x \ge 0), p_2 \equiv (y = x + 1),$ $p_3 \equiv (y > 2), p_4 \equiv (y < 1)$

Basic Idea

$$x \ge 0$$
, $y = x + 1$, $(y > 2 \lor y < 1)$

Abstract (aka "naming" atoms)

$$p_1, p_2, (p_3 \lor p_4)$$

$$p_1$$
, p_2 , $(p_3 \vee p_4)$ $p_1 \equiv (x \ge 0)$, $p_2 \equiv (y = x + 1)$,

$$p_3 \equiv (y > 2), p_4 \equiv (y < 1)$$

SAT Solver

Basic Idea

$$x \ge 0$$
, $y = x + 1$, $(y > 2 \lor y < 1)$
Abstract (aka "naming" atoms)

$$p_1, p_2, (p_3 \lor p_4)$$
 $p_1 \equiv (x \ge 0), p_2 \equiv (y = x + 1),$ $p_3 \equiv (y > 2), p_4 \equiv (y < 1)$

SAT Solver

Assignment
$$p_1, p_2, \neg p_3, p_4$$

Basic Idea

$$x \ge 0, y = x + 1, (y > 2 \lor y < 1)$$

$$Abstract (aka "naming" atoms)$$

$$p_{1}, p_{2}, (p_{3} \lor p_{4}) \qquad p_{1} \equiv (x \ge 0), p_{2} \equiv (y = x + 1),$$

$$p_{3} \equiv (y > 2), p_{4} \equiv (y < 1)$$

$$Assignment$$

$$p_{1}, p_{2}, \neg p_{3}, p_{4} \qquad x \ge 0, y = x + 1,$$

$$\neg (y > 2), y < 1$$

Basic Idea

$$x \ge 0$$
, $y = x + 1$, $(y > 2 \lor y < 1)$
Abstract (aka "naming" atoms)

$$p_1, p_2, (p_3 \lor p_4)$$
 $p_1 \equiv (x \ge 0), p_2 \equiv (y = x + 1),$ $p_3 \equiv (y > 2), p_4 \equiv (y < 1)$

SAT Solver Assignment

$$x \ge 0$$
, $y = x + 1$, $y < 1$

Theory Solver

Basic Idea

$$x \ge 0$$
, $y = x + 1$, $(y > 2 \lor y < 1)$

Abstract (aka "naming" atoms)

$$p_1, p_2, (p_3 \vee p_4)$$

$$p_1, p_2, (p_3 \vee p_4)$$
 $p_1 \equiv (x \ge 0), p_2 \equiv (y = x + 1),$

$$p_3 \equiv (y > 2), p_4 \equiv (y < 1)$$

Assignment
$$p_1, p_2, \neg p_3, p_4$$
 $x \ge 0, y = x + 1,$

$$x \ge 0, y = x + 1,$$

$$\neg (y > 2), y < 1$$

$$\neg p_1 \lor \neg p_2 \lor \neg p_4$$

Unsatisfiable

$$x \ge 0, y = x + 1, y < 1$$

Theory Solver

Theory Solver

AKA
Theory conflict

SAT + Theory solvers: Main loop

```
procedure SmtSolver(F)
   (F_n, M) := Abstract(F)
   loop
       (R, A) := SAT\_solver(F_p)
        if R = UNSAT then return UNSAT
       S := Concretize(A, M)
       (R, S') := Theory_solver(S)
       if R = SAT then return SAT
        L := New Lemma(S', M)
       Add L to F<sub>n</sub>
```

Basic Idea

F:
$$x \ge 0$$
, $y = x + 1$, $(y > 2 \lor y < 1)$

Abstract (aka "naming" atoms)

$$F_{p}: p_{1}, p_{2}, (p_{3} \vee p_{4})$$

M:
$$p_1 \equiv (x \ge 0)$$
, $p_2 \equiv (y = x + 1)$, $p_3 \equiv (y > 2)$, $p_4 \equiv (y < 1)$

A: Assignment
$$p_1$$
, p_2 , $\neg p_3$, p_4

S:
$$x \ge 0$$
, $y = x + 1$, $\neg (y > 2)$, $y < 1$

S': Unsatisfiable

$$x \ge 0$$
, $y = x + 1$, $y < 1$

Theory Solver

```
F: x \ge 0, y = x + 1, (y > 2 \lor y < 1)
                                                   Abstract (aka "naming" atoms)
              \mathbf{F_p}: p_1, \ p_2, \ (p_3 \lor p_4) M: p_1 \equiv (x \ge 0), \ p_2 \equiv (y = x + 1),
                                                   p_3 \equiv (y > 2), p_4 \equiv (y < 1)
                             A: Assignment p_1, p_2, \neg p_3, p_4 S: x \ge 0, y = x + 1, \neg (y > 2), y < 1
                 SAT
               Solver
L: New Lemma p_1 \lor p_2 \lor p_4 S': Unsatisfiable x \ge 0, y = x + 1, y < 1
                                                               Theory
                                                               Solver
                 procedure SMT Solver(F)
                       (F_n, M) := Abstract(F)
                       loop
                               (R, A) := SAT_solver(F_n)
                               if R = UNSAT then return UNSAT
                                                                                    "Lazy translation"
                               S = Concretize(A, M)
                               (R, S') := Theory_solver(S)
                                                                                                to
                               if R = SAT then return SAT
                                                                                               DNF
                               L := New Lemma(S, M)
                               Add L to F<sub>n</sub>
```

State-of-the-art SMT solvers implement many improvements.

Incrementality

Send the literals to the Theory solver as they are assigned by the SAT solver

$$p_1 \equiv (x \ge 0), p_2 \equiv (y = x + 1),$$

 $p_3 \equiv (y > 2), p_4 \equiv (y < 1), p_5 \equiv (x < 2),$
 $p_1, p_2, p_4 \mid p_1, p_2, (p_3 \lor p_4), (p_5 \lor \neg p_4)$

Partial assignment is already Theory inconsistent.

Efficient Backtracking

We don't want to restart from scratch after each backtracking operation.

Efficient Lemma Generation (computing a small S')

Avoid lemmas containing redundant literals.

$$p_1 \equiv (x \ge 0), p_2 \equiv (y = x + 1),$$

 $p_3 \equiv (y > 2), p_4 \equiv (y < 1), p_5 \equiv (x < 2),$
 $p_1, p_2, p_3, p_4 \mid p_1, p_2, (p_3 \lor p_4), (p_5 \lor \neg p_4)$

$$\neg p_1 \lor \neg p_2 \lor \neg p_3 \lor \neg p_4$$

Imprecise Lemma

Theory Propagation

It is the SMT equivalent of unit propagation.

$$\begin{aligned} p_1 &\equiv (x \geq 0), \ p_2 &\equiv (y = x + 1), \\ p_3 &\equiv (y > 2), \ p_4 &\equiv (y < 1), \ p_5 &\equiv (x < 2), \\ p_1, \ p_2 \mid \ p_1, \ p_2, \ (p_3 \vee p_4), \ (p_5 \vee \neg p_4) \\ & \qquad \\ p_1, \ p_2 \ imply \ \neg p_4 \ by \ theory \ propagation \\ p_1, \ p_2, \ \neg p_4 \mid \ p_1, \ p_2, \ (p_3 \vee p_4), \ (p_5 \vee \neg p_4) \end{aligned}$$

Theory Propagation

It is the SMT equivalent of unit propagation.

$$\begin{aligned} p_1 &\equiv (x \geq 0), \ p_2 &\equiv (y = x + 1), \\ p_3 &\equiv (y > 2), \ p_4 &\equiv (y < 1), \ p_5 &\equiv (x < 2), \\ p_1, \ p_2 \mid \ p_1, \ p_2, \ (p_3 \vee p_4), \ (p_5 \vee \neg p_4) \end{aligned}$$

$$p_1, \ p_2 \ imply \ \neg p_4 \ by \ theory \ propagation$$

$$p_1, \ p_2, \ \neg p_4 \mid \ p_1, \ p_2, \ (p_3 \vee p_4), \ (p_5 \vee \neg p_4)$$

Tradeoff between precision × performance.

An Architecture: the core

An Architecture: the core

An Architecture: the core

SAT Solver

Scalar Values

Blackboard: equalities, disequalities, predicates

Combining Theories

In practice, we need a combination of theories.

$$b + 2 = c$$
 and $f(read(write(a,b,3), c-2)) \neq f(c-b+1)$

A theory is a set (potentially infinite) of first-order sentences.

Main questions:

Is the union of two theories $T1 \cup T2$ consistent?

Given a solvers for T1 and T2, how can we build a solver for

A Combination History

Foundations

1979 Nelson, Oppen - Framework

1996 Tinelli & Harindi, N.O Fix

2000 Barrett et.al N.O + Rewriting

2002 Zarba & Manna. "Nice" Theories

2004 Ghilardi et.al. N.O. Generalized

Efficiency using rewriting

1984 Shostak. Theory solvers

1996 Cyrluk et.al Shostak Fix #1

1998 B. Shostak with Constraints

2001 Rueß & Shankar Shostak Fix #2

2004 Ranise et.al. N.O + Superposition

2001: Moskewicz et.al. Efficient DPLL made guessing cheap

2006 Bruttomesso et.al. Delayed Theory Combination

2007 de Moura & B. Model-based Theory Combination

... 2013 Jojanovich et.al. polite, shiny, etc.

Disjoint Theories

Two theories are disjoint if they do not share function/constant and predicate symbols.

= is the only exception.

Example:

The theories of arithmetic and arrays are disjoint.

Arithmetic symbols: $\{0, -1, 1, -2, 2, ..., +, -, *, >, <, \geq, \leq\}$ Array symbols: $\{\text{ read, write }\}$

Purification

It is a different name for our "naming" subterms procedure.

b + 2 = c, $f(read(write(a,b,3), c-2)) \neq f(c-b+1)$

b + 2 = c,
$$v_6 \neq v_7$$

 $v_1 \equiv 3$, $v_2 \equiv write(a, b, v_1)$, $v_3 \equiv c-2$, $v_4 \equiv read(v_2, v_3)$,
 $v_5 \equiv c-b+1$, $v_6 \equiv f(v_4)$, $v_7 \equiv f(v_5)$

Purification

It is a different name for our "naming" subterms procedure.

$$b + 2 = c$$
, $f(read(write(a,b,3), c-2)) \neq f(c-b+1)$

b + 2 = c,
$$v_6 \neq v_7$$

 $v_1 \equiv 3$, $v_2 \equiv write(a, b, v_1)$, $v_3 \equiv c-2$, $v_4 \equiv read(v_2, v_3)$,
 $v_5 \equiv c-b+1$, $v_6 \equiv f(v_4)$, $v_7 \equiv f(v_5)$

b + 2 = c,
$$v_1 \equiv 3$$
, $v_3 \equiv c-2$, $v_5 \equiv c-b+1$,
 $v_2 \equiv write(a, b, v_1)$, $v_4 \equiv read(v_2, v_3)$,
 $v_6 \equiv f(v_4)$, $v_7 \equiv f(v_5)$, $v_6 \neq v_7$

Stably Infinite Theories

A theory is stably infinite if every satisfiable QFF is satisfiable in an infinite model.

EUF and arithmetic are stably infinite.

Bit-vectors are not.

Important Result

The union of two consistent, disjoint, stably infinite theories is consistent.

Convexity

```
A theory T is convex iff for all finite sets S of literals and for all a_1 = b_1 \lor ... \lor a_n = b_n
S implies a_1 = b_1 \lor ... \lor a_n = b_n
iff
S implies a_i = b_i for some 1 \le i \le n
```


Convexity: Results

Every convex theory with non trivial models is stably infinite.

All Horn equational theories are convex.

formulas of the form $s_1 \neq r_1 \vee ... \vee s_n \neq r_n \vee t = t'$

Linear rational arithmetic is convex.

Convexity: Negative Results

Linear integer arithmetic is not convex

$$1 \le a \le 2$$
, b = 1, c = 2 implies a = b \lor a = c

Nonlinear arithmetic

$$a^2 = 1$$
, $b = 1$, $c = -1$ implies $a = b \lor a = c$

Theory of bit-vectors

Theory of arrays

$$c_1 = \text{read}(\text{write}(a, i, c_2), j), c_3 = \text{read}(a, j)$$

implies $c_1 = c_2 \lor c_1 = c_3$

Combination of non-convex theories

```
EUF is convex (O(n log n))
IDL is non-convex (O(nm))
```

EUF ∪ IDL is NP-Complete

Reduce 3CNF to EUF \cup IDL For each boolean variable p_i add $0 \le a_i \le 1$ For each clause $p_1 \lor \neg p_2 \lor p_3$ add

 $f(a_1, a_2, a_3) \neq f(0, 1, 0)$

Combination of non-convex theories

```
EUF is convex (O(n log n))
IDL is non-convex (O(nm))
```

EUF ∪ IDL is NP-Complete

Reduce 3CNF to EUF ∪ IDL

For each boolean variable p_i add $0 \le a_i \le 1$

For each clause $p_1 \vee \neg p_2 \vee p_3$ add

$$f(a_1, a_2, a_3) \neq f(0, 1, 0)$$

$$a_1 \neq 0 \lor a_2 \neq 1 \lor a_3 \neq 0$$

Nelson-Oppen Combination

Let \mathcal{T}_1 and \mathcal{T}_2 be consistent, stably infinite theories over disjoint (countable) signatures. Assume satisfiability of conjunction of literals can decided in $O(T_1(n))$ and $O(T_2(n))$ time respectively. Then,

- 1. The combined theory \mathcal{T} is consistent and stably infinite.
- 2. Satisfiability of quantifier free conjunction of literals in \mathcal{T} can be decided in $O(2^{n^2} \times (T_1(n) + T_2(n))$.
- 3. If \mathcal{T}_1 and \mathcal{T}_2 are convex, then so is \mathcal{T} and satisfiability in \mathcal{T} is in $O(n^3 \times (T_1(n) + T_2(n)))$.

Nelson-Oppen Combination

The combination procedure:

Initial State: ϕ is a conjunction of literals over $\Sigma_1 \cup \Sigma_2$.

Purification: Preserving satisfiability transform ϕ into $\phi_1 \wedge \phi_2$, such that, $\phi_i \in \Sigma_i$.

Interaction: Guess a partition of $\mathcal{V}(\phi_1) \cap \mathcal{V}(\phi_2)$ into disjoint subsets. Express it as conjunction of literals ψ . Example. The partition $\{x_1\}, \{x_2, x_3\}, \{x_4\}$ is represented as $x_1 \neq x_2, x_1 \neq x_4, x_2 \neq x_4, x_2 = x_3$.

Component Procedures : Use individual procedures to decide whether $\phi_i \wedge \psi$ is satisfiable.

Return: If both return yes, return yes. No, otherwise.

NO deterministic procedure (for convex theories)

Instead of guessing, we can deduce the equalities to be shared.

Purification: no changes.

Interaction: Deduce an equality x = y:

$$\mathcal{T}_1 \vdash (\phi_1 \Rightarrow x = y)$$

Update $\phi_2 := \phi_2 \wedge x = y$. And vice-versa. Repeat until no further changes.

Component Procedures : Use individual procedures to decide whether ϕ_i is satisfiable.

Remark: $\mathcal{T}_i \vdash (\phi_i \Rightarrow x = y)$ iff $\phi_i \land x \neq y$ is not satisfiable in \mathcal{T}_i .

NO deterministic procedure Completeness

Assume the theories are convex.

- Suppose ϕ_i is satisfiable.
- Let E be the set of equalities $x_j = x_k$ $(j \neq k)$ such that, $\mathcal{T}_i \not\vdash \phi_i \Rightarrow x_j = x_k$.
- ▶ By convexity, $\mathcal{T}_i \not\vdash \phi_i \Rightarrow \bigvee_E x_j = x_k$.
- $\phi_i \wedge \bigwedge_E x_j \neq x_k$ is satisfiable.
- The proof now is identical to the nondeterministic case.
- Sharing equalities is sufficient, because a theory \mathcal{T}_1 can assume that $x^B \neq y^B$ whenever x=y is not implied by \mathcal{T}_2 and vice versa.

$$b + 2 = c$$
, $f(read(write(a,b,3), c-2)) \neq f(c-b+1)$

Arithmetic

$$b + 2 = c$$
,

$$V_1 \equiv 3$$
,

$$V_3 \equiv c-2$$
,

$$v_5 \equiv c-b+1$$

Arrays

$$v_2 \equiv write(a, b, v_1),$$

 $v_4 \equiv read(v_2, v_3)$

EUF

$$v_6 \equiv f(v_4)$$
,

$$v_7 \equiv f(v_5)$$
,

$$V_6 \neq V_7$$

$$b + 2 = c$$
, $f(read(write(a,b,3), c-2)) \neq f(c-b+1)$

Arithmetic

$$b + 2 = c$$
,

$$V_1 \equiv 3$$
,

$$v_3 \equiv c-2$$
,

$$v_5 \equiv c-b+1$$

Arrays

$$v_2 \equiv write(a, b, v_1),$$

 $v_4 \equiv read(v_2, v_3)$

EUF

$$v_6 \equiv f(v_4)$$
,

$$v_7 \equiv f(v_5)$$
,

$$V_6 \neq V_7$$

Substituting c

$$b + 2 = c$$
, $f(read(write(a,b,3), c-2)) \neq f(c-b+1)$

```
Arithmetic Arrays EUF b+2=c, v_2\equiv write(a,b,v_1), v_6\equiv f(v_4), v_1\equiv 3, v_4\equiv read(v_2,v_3), v_7\equiv f(v_5), v_6\neq v_7 v_5\equiv 3
```

Propagating $v_3 = b$

$$b + 2 = c$$
, $f(read(write(a,b,3), c-2)) \neq f(c-b+1)$

Arithmetic

$$b + 2 = c$$
,

$$V_1 \equiv 3$$
,

$$v_3 \equiv b$$
,

$$v_5 \equiv 3$$

Arrays

$$\mathbf{v_2} \equiv \text{write}(\mathbf{a}, \mathbf{b}, \mathbf{v_1}),$$

$$v_4 \equiv read(v_2, v_3),$$

$$v_3 = b$$

EUF

$$V_6 \equiv f(V_4)$$
,

$$v_7 \equiv f(v_5)$$
,

$$V_6 \neq V_7$$

$$v_3 = b$$

Deducing $v_4 = v_1$

$$b + 2 = c$$
, $f(read(write(a,b,3), c-2)) \neq f(c-b+1)$

Arithmetic Arrays EUF $b + 2 = c, v_2 \equiv write(a, b, v_1), v_6 \equiv f(v_4), v_1 \equiv 3, v_4 \equiv read(v_2, v_3), v_7 \equiv f(v_5), v_3 \equiv b, v_4 \equiv v_1 v_3 = b$

Propagating $v_4 = v_1$

$$b + 2 = c$$
, $f(read(write(a,b,3), c-2)) \neq f(c-b+1)$

Arithmetic

$$b + 2 = c$$
,

$$V_1 \equiv 3$$

$$v_3 \equiv b$$
,

$$v_5 \equiv 3$$
,

$$v_4 = v_1$$

Arrays

$$v_2 \equiv write(a, b, v_1),$$

$$v_4 \equiv read(v_2, v_3),$$

$$v_3 = b$$
,

$$V_4 = V_1$$

EUF

$$V_6 \equiv f(V_4)$$

$$v_7 \equiv f(v_5)$$
,

$$V_6 \neq V_7$$

$$v_3 = b$$
,

$$v_4 = v_1$$

Propagating $v_5 = v_1$

NO procedure: Example

$$b + 2 = c$$
, $f(read(write(a,b,3), c-2)) \neq f(c-b+1)$

Arithmetic

$$b + 2 = c$$
,

$$V_1 \equiv 3$$
,

$$v_3 \equiv b$$
,

$$v_5 \equiv 3$$
,

$$V_{\Delta} = V_{1}$$

Congruence: $v_6 = v_7$

Arrays

$$v_2 \equiv write(a, b, v_1),$$

$$v_4 \equiv \text{read}(v_2, v_3),$$

$$v_3 = b$$
,

$$V_4 = V_1$$

EUF

$$\mathbf{v}_6 \equiv \mathbf{f}(\mathbf{v_4}),$$

$$\mathbf{v}_7 \equiv \mathbf{f}(\mathbf{v_5}),$$

$$V_6 \neq V_7$$

$$v_3 = b$$
,

$$V_4 = V_{1}$$

$$\mathbf{v}_5 = \mathbf{v}_1$$

NO procedure: Example

$$b + 2 = c$$
, $f(read(write(a,b,3), c-2)) \neq f(c-b+1)$

Arithmetic

$$b + 2 = c$$
,

$$V_1 \equiv 3$$
,

$$v_3 \equiv b$$
,

$$v_5 \equiv 3$$
,

$$V_4 = V_1$$

Unsatisfiable

Arrays

$$v_2 \equiv write(a, b, v_1),$$

$$v_4 \equiv read(v_2, v_3),$$

$$v_3 = b$$
,

$$V_4 = V_1$$

EUF

$$V_6 \equiv f(V_4)$$
,

$$v_7 \equiv f(v_5)$$
,

$$V_6 \neq V_{7}$$

$$v_3 = b$$
,

$$v_4 = v_1$$
,

$$V_5 = V_1$$
,

$$v_6 = v_7$$

NO deterministic procedure

Deterministic procedure may fail for non-convex theories.

```
0 \le a \le 1, 0 \le b \le 1, 0 \le c \le 1,

f(a) \ne f(b),

f(a) \ne f(c),

f(b) \ne f(c)
```


Combining Procedures in Practice

Propagate all implied equalities.

- Deterministic Nelson-Oppen.
- Complete only for convex theories.
- It may be expensive for some theories.

Delayed Theory Combination.

- Nondeterministic Nelson-Oppen.
- Create set of interface equalities (x = y) between shared variables.
- Use SAT solver to guess the partition.
- Disadvantage: the number of additional equality literals is quadratic in the number of shared variables.

Combining Procedures in Practice

Common to these methods is that they are pessimistic about which equalities are propagated.

Model-based Theory Combination

- Optimistic approach.
- Use a candidate model M_i for one of the theories \mathcal{T}_i and propagate all equalities implied by the candidate model, hedging that other theories will agree.

if
$$M_i \models \mathcal{T}_i \cup \Gamma_i \cup \{u = v\}$$
 then propagate $u = v$.

- If not, use backtracking to fix the model.
- It is cheaper to enumerate equalities that are implied in a particular model than of all models.

$$x = f(y - 1), f(x) \neq f(y), 0 \le x \le 1, 0 \le y \le 1$$

Purifying

$$x = f(z), f(x) \neq f(y), 0 \le x \le 1, 0 \le y \le 1, z = y - 1$$

${\mathcal T}_E$			${\mathcal T}_A$	
Literals	Eq. Classes	Model	Literals	Model
x = f(z)	$\{x, f(z)\}$	$E(x) = *_1$	$0 \le x \le 1$	A(x) = 0
$f(x) \neq f(y)$	<i>{y}</i>	$E(y) = *_2$	$0 \le y \le 1$	A(y) = 0
	{z}	$E(z) = *_3$	z = y - 1	A(z) = -1
	$\{f(x)\}$	$E(f) = \{ *_1 \mapsto *_4,$		
	$\{f(y)\}$	$*_2 \mapsto *_5,$		
		$*_3 \mapsto *_1,$		
		else $\mapsto *_6 \}$		

Assume x = y

${\mathcal T}_E$			${\mathcal T}_A$	
Literals	Eq. Classes	Model	Literals	Model
x = f(z)	$\{x, y, f(z)\}$	$E(x) = *_1$	$0 \le x \le 1$	A(x) = 0
$f(x) \neq f(y)$	$\{z\}$	$E(y) = *_1$	$0 \le y \le 1$	A(y) = 0
x = y	$\{f(x), f(y)\}$	$E(z) = *_2$	z = y - 1	A(z) = -1
		$E(f) = \{ *_1 \mapsto *_3,$	x = y	
		$*_2 \mapsto *_1,$		
		$\textit{else} \mapsto *_4 \big\}$		

Unsatisfiable

${\mathcal T}_E$			${\mathcal T}_A$	
Literals	Eq. Classes	Model	Literals	Model
x = f(z)	$\{x, f(z)\}$	$E(x) = *_1$	$0 \le x \le 1$	A(x) = 0
$f(x) \neq f(y)$	<i>{y}</i>	$E(y) = *_2$	$0 \le y \le 1$	A(y) = 0
$x \neq y$	{z}	$E(z) = *_3$	z = y - 1	A(z) = -1
	$\{f(x)\}$	$E(f) = \{ *_1 \mapsto *_4,$	$x \neq y$	
	$\{f(y)\}$	$*_2 \mapsto *_5,$		
		$*_3 \mapsto *_1,$		
		$\textit{else} \mapsto *_6 \}$		

Backtrack, and assert $x \neq y$.

 \mathcal{T}_A model need to be fixed.

${\cal T}_E$			${\mathcal T}_A$	
Literals	Eq. Classes Model		Literals	Model
x = f(z)	$\{x, f(z)\}$	$E(x) = *_1$	$0 \le x \le 1$	A(x) = 0
$f(x) \neq f(y)$	<i>{y}</i>	$E(y) = *_2$	$0 \le y \le 1$	A(y) = 1
$x \neq y$	{z}	$E(z) = *_3$	z = y - 1	A(z) = 0
	$\{f(x)\}$	$E(f) = \{ *_1 \mapsto *_4,$	$x \neq y$	
	$\{f(y)\}$	$*_2 \mapsto *_5,$		
		$*_3 \mapsto *_1,$		
		else $\mapsto *_6 \}$		

Assume x = z

${\mathcal T}_E$			${\mathcal T}_A$	
Literals Eq. Classes		Model	Literals	Model
x = f(z)	$\{x, z,$	$E(x) = *_1$	$0 \le x \le 1$	A(x) = 0
$f(x) \neq f(y)$	$f(x), f(z)\}$	$E(y) = *_2$	$0 \le y \le 1$	A(y) = 1
$x \neq y$	{ <i>y</i> }	$E(z) = *_1$	z = y - 1	A(z) = 0
x = z	$\{f(y)\}$	$E(f) = \{ *_1 \mapsto *_1,$	$x \neq y$	
		$*_2 \mapsto *_3,$	x = z	
		$\textit{else} \mapsto *_4 \big\}$		

Satisfiable

${\cal T}_E$			${\mathcal T}_A$	
Literals	Eq. Classes	Model	Literals	Model
x = f(z)	$\{x, z,$	$E(x) = *_1$	$0 \le x \le 1$	A(x) = 0
$f(x) \neq f(y)$	$f(x), f(z)\}$	$E(y) = *_2$	$0 \le y \le 1$	A(y) = 1
$x \neq y$	$\{y\}$	$E(z) = *_1$	z = y - 1	A(z) = 0
x = z	$\{f(y)\}$	$E(f) = \{ *_1 \mapsto *_1,$	$x \neq y$	
		$*_2 \mapsto *_3,$	x = z	
		$\textit{else} \mapsto *_4 \big\}$		

Let h be the bijection between $\vert E \vert$ and $\vert A \vert$.

$$h = \{ *_1 \mapsto 0, *_2 \mapsto 1, *_3 \mapsto -1, *_4 \mapsto 2, \ldots \}$$

${\mathcal T}_E$		${\mathcal T}_A$	
Literals	Model	Literals	Model
x = f(z)	$E(x) = *_1$	$0 \le x \le 1$	A(x) = 0
$f(x) \neq f(y)$	$E(y) = *_2$	$0 \le y \le 1$	A(y) = 1
$x \neq y$	$E(z) = *_1$	z = y - 1	A(z) = 0
x = z	$E(f) = \{ *_1 \mapsto *_1,$	$x \neq y$	$A(f) = \{0 \mapsto 0$
	$*_2 \mapsto *_3,$	x = z	$1 \mapsto -1$
	else $\mapsto *_4 \}$		$\mathit{else} \mapsto 2\}$

Extending A using h.

$$h = \{ *_1 \mapsto 0, *_2 \mapsto 1, *_3 \mapsto -1, *_4 \mapsto 2, \ldots \}$$