Satisfiability Modulo Theories and
Z3

Nikolaj Bjgrner

Microsoft Research
ReRISE Winter School, Linz, Austria
February 4, 2014

Plan

Mon An invitation to SMT with Z3

Tue Equalities and Theory Combination

Wed Theories: Arithmetic, Arrays, Data types
Thu Quantifiers and Theories

Fri Programming Z3: Interfacing and Solving

Lecture Overview

Deciding Equality
Uninterpreted Functions
Nelson Oppen Combination

Model-based Theory Combination

Deciding Equality

a=b,b=c,d=e,b=s,d=t,aze, a%xs

QOVPVOLOOE

Deciding Equality

a=b,b=c,d=e,b=s,d=t,aze, azxs

QOVPWOLOOE

Deciding Equality

a=b,b=c,d=e,b=s,d=t,aze, azxs

QWOOO®

Deciding Equality

a=b,b=c,d=e,b=s,d=t,aze, a%s

WOPOE

Deciding Equality

a=b,b=c,d=e,b=s,d=t,aze, a%s

Do

Deciding Equality

a=b,b=c,d=e,b=s,d=t,aze, a%s

VOO

Deciding Equality

a=b,b=c,d=e,b=s,d=t,aze, a%s

@@

Deciding Equality

a=b,b=c,d=e,b=s,d=t,aze, a%s

0@

Deciding Equality

a=b,b=c,d=e,b=s,d=t,aze, a%s

&

Deciding Equality

a=b,b=c,d=e,b=s,d=t,aze, a%s

&

Deciding Equality

a=b,b=c,d=e,b=s,d=t,aze, a%s

Deciding Equality

a=b,b=c,d=e,b=s,d=t, a%e, a%s

Deciding Equality

a=b,b=c,d=e,b=s,d=t,aze, a%s

Unsatisfiable

Deciding Equality

a=b,b=c,d=e,b=s,d=t,aze

Model construction

Deciding Equality

a=b,b=c,d=e,b=s,d=t,aze

Model construction
IM| ={®,,¢,} (universe, aka domain)

Deciding Equality

a=b,b=c,d=e,b=s,d=t,aze

Model construction
IM| ={®,,¢,} (universe, aka domain)
M(a) = ¢, (assignment)

Deciding Equality

a=b,b=c,d=e,b=s,d=t,aze

¢,
a,b,c,s
Alternative notation:
aM= e,

Model construction
IM|~{#,,¢,} (universe, aka domain)
M(a) = ¢, (assignment)

Deciding Equality

a=b,b=c,d=e,b=s,d=t,aze

Model construction
IM| ={®,,¢,} (universe, aka domain)
M(a) = M(b) = M(c) = M(s) = ¢,
M(d) = M(e) = M(t) = o,

Deciding Equality:
Termination, Soundness, Completeness

* Termination: easy

* Soundness
— Invariant: all constants in a “ball” are known to be equal.
— The “ball” merge operation is justified by:
* Transitivity and Symmetry rules.
e Completeness
— We can build a model if an inconsistency was not detected.

— Proof template (by contradiction):
* Build a candidate model.
* Assume a literal was not satisfied.
* Find contradiction.

Equality: Union-Fi an]

- Size of
equivalence
class

vector<int> F; Lazy path
compression
int new_node() { F.push_back(-1); return F.size()-1; } Variant::ager
Pat
int find(int node) { compression +
if (F[node] !'=-1) { F[node] = find(node); return F[node]; } equivalence
return node; class as doubly
} linked list
void merge(int n1, int n2) {
nl = find(nl); n2 = find(n2); nlog*(n) amortized
if (F[n1] > F[n2]) swap(nl, n2); time for n operations

if (N1 ==n2) return;

F[n1] += F[n2];
F[n2] = n1;

Root for largest class
takes over

Deciding Equality:
Termination, Soundness, Completeness
* Completeness

— We can build a model if an inconsistency was not
detected.
— Instantiating the template for our procedure:
* Assume some literal c = d is not satisfied by our model.
* That is, M(c) # M(d).
* This is impossible, c and d must be in the same “ball”.
M(c) = M(d) = ¢,

DeC|d|ng Equallty

© Completeness

e We can build a model if an inconsistency was not detected.
e |Instantiating the template for our procedure:
e Assume some literal c # d is not satisfied by our model.
e That is, M(c) = M(d).

e Key property: we only check the disequalities after we
processed all equalities.

@ This is impossible, c and d must be in the different “balls”

M(c) =
M(d) =

Microsoft’

Research

Deciding Equality +

a=b,b=c,d=¢,b=s,d=t, f(a, g(d)) # f(b, g(e))

Congruence Rule:

X; = VYq, o X, =Y, implies f(x,, ..., x,) = flyy, ..., ¥,))

Microsoft’
Research

Deciding Equality +

a=b,b=c,d=¢,b=s,d=t, f(a, g(d)) # f(b, g(e))

First Step: “Naming” subterms

Congruence Rule:

X1 = VYq, - X, =Y, implies f(x, ..., x,) = flyy, .., ¥,)

Microsoft’
Research

Deciding Equality +

a=b,b=c,d=e,b=5s,d=t,f(a, v,) = f(b, gle))
V1Eg(d)

First Step: “Naming” subterms

Congruence Rule:

X1 = VYq, - X, =Y, implies f(x, ..., x,) = flyy, .., ¥,)

Microsoft’
Research

Deciding Equality +

a=b,b=c,d=e,b=5s,d=t,f(a, v;) # f(b, gle))
V1Eg(d)

First Step: “Naming” subterms

Congruence Rule:

X1 = VYq, - X, =Y, implies f(x, ..., x,) = flyy, .., ¥,)

Microsoft’
Research

Deudmg Equality +

a=b,b=c,d=e,b=s,d=t,f(a, v) # f(b, v,)
v, =g(d), v, = g(e)

First Step: “Naming” subterms

Congruence Rule:
=Yy, - X, =Y, implies f(xy, ..., x.) = flyy, ..., ;)

Microsoft’
Research

Deciding Equality +
(uninterpreted) Functions
a=b,b=c,d=e,b=5s,d=t,f(a, v,) = f(b, v,)
v, =gl(d), v, = gle)

First Step: “Naming” subterms

Congruence Rule:

X1 = VYq, - X, =Y, implies f(x, ..., x,) = flyy, .., ¥,)

Deciding Equality +
(uninterpreted) Functions
a=b,b=c,d=e,b=s,d=t,v;# f(b, v,)
v, =gl(d), v, =gle), v =f(a, v)

First Step: “Naming” subterms

Congruence Rule:

X1 = VYq, - X, =Y, implies f(x, ..., x,) = flyy, .., ¥,)

Deciding Equality +
(uninterpreted) Functions
a=b,b=c,d=e,b=s,d=t,vy# f(b, v,)
v, =gl(d), v, =gle), v =f(a, v,)

First Step: “Naming” subterms

Congruence Rule:

X1 = VYq, - X, =Y, implies f(x, ..., x,) = flyy, .., ¥,)

Deciding Equality +
(uninterpreted) Functions

a=b,b=c,d=e,b=5s,d=t, v;#v,
v, =g(d), v, =g(e), v;=1(a, v;), v, =f(b, v,

First Step: “Naming” subterms

Congruence Rule:

X1 = VYq, - X, =Y, implies f(x, ..., x,) = flyy, .., ¥,)

Deciding Equality +
(uninterpreted) Functions

a=b,b=c,d=e,b=5s,d=t, vy;#v,
Vlzg(d)l VZEg(e)I V3Ef(a; V1) ’ V4Ef(br Vz)

QO0VLW

Congruence Rule:

X; =VYq, - X, =Y, implies f(x, ..., x,) = flyy, ..., ¥,))

Deciding Equality +
(uninterpreted) Functions

a=b,b=c,d=e,b=5s,d=t, vy;#v,
Vlzg(d)) VZEg(e)l V3Ef(a; V1) ’ V4Ef(b/ Vz)

QOVLW

Congruence Rule:

X; =VYq, - X, =Y, implies f(x, ..., x,) = flyy, ..., ¥,))
d = e implies g(d) = g(e)

Deciding Equality +
(uninterpreted) Functions

a=b,b=c,d=e,b=5s,d=t, vy;#v,
Vlzg(d)) VzEg(E), V3Ef(a; V1) ’ V4Ef(b, Vz)

QO0VLW

Congruence Rule:

X; =VYq, - X, =Y, implies f(x, ..., x,) = flyy, ..., ¥,))
d=eimpliesv, =V,

Deciding Equality -

We say:

(un | nte rp reted) F UNC] vaandv, are congruent.

a=b,b=c,d=e,b=s,d=t,» ~v,
Vlzg(d)/ VzEg(E), V3Ef(a; V1) "4Ef(bt Vz)

o

Congruence Rule:

X; =VYq, - X, =Y, implies f(x, ..., x,) = flyy, ..., ¥,))
d=eimpliesv, =V,

Deciding Equality +
(uninterpreted) Functions

a=b,b=c,d=e,b=5s,d=t, vy;#v,
v, =g(d), v,=g(e), v;=1(a, v,), v, =1(b, v,)

o

Congruence Rule:

X; =VYq, - X, =Y, implies f(x, ..., x,) = flyy, ..., ¥,))
a=b,v,=Vv,implies f(a, v,) = f(b, v,)

Deciding Equality +
(uninterpreted) Functions

a=b,b=c,d=e,b=5s,d=t, vy;#v,
Vlzg(d)) VZEg(e)I V3Ef(ai Vl) ’ V4Ef(b, V2)

ey

Congruence Rule:

X; =VYq, - X, =Y, implies f(x, ..., x,) = flyy, ..., ¥,))
a=b,v,=v,impliesvy;=v,

Deciding Equality +
(uninterpreted) Functions

a=b,b=c,d=e,b=5s,d=t, vy;#v,
Vlzg(d)) VZEg(e)I V3Ef(ai Vl) ’ V4Ef(b, V2)

Congruence Rule:

X; =VYq, - X, =Y, implies f(x, ..., x,) = flyy, ..., ¥,))
a=b,v,=v,impliesvy;=v,

Deciding Equality +
(uninterpreted) Functions

a=b,b=c,d=e,b=5s,d=t, v;#v,
Vlzg(d)l VZEg(e)I V3Ef(a; V1) ’ V4Ef(br Vz)

@

Unsatisfiable
Congruence Rule:

X; =VYq, - X, =Y, implies f(x, ..., x,) = flyy, ..., ¥,))

Deciding Equality +
(uninterpreted) Functions
a=b,b=c,d=e,b=s,d=t,a%v, v,#v,

V1 = g(d)l V2 = g(e), V3 = f(a; V1) ’ V4 = f(bl Vz)
Changing the problem

Congruence Rule:

X1 =Yy, - X, =Y, implies f(x,, ..., x,) = flyy, .., ¥,)

Deciding Equality +
(uninterpreted) Functions

a=b,b=c,d=e,b=s,d=t,azv, v,Zv,
Vlzg(d)l VZEg(e)I V3Ef(a; V1) ’ V4Ef(br Vz)

Congruence Rule:

X; =VYq, - X, =Y, implies f(x, ..., x,) = flyy, ..., ¥,))

Deciding Equality +
(uninterpreted) Functions

a=b,b=c,d=e,b=s,d=t,azv, v,# v,
Vlzg(d)l VZEg(e)I V3Ef(a; V1) ’ V4Ef(b/ Vz)

Congruence Rule:

X; =VYq, - X, =Y, implies f(x, ..., x,) = flyy, ..., ¥,))

Deciding Equality +
(uninterpreted) Functions

a=b,b=c,d=e,b=s,d=t,azv, v,Zv,

V“ = g(d)l V2 — g(e), V3 = f(a; V1) ’ V4 = f(b/ Vz)

Model construction:

IM| ={0,,¢,,6,,¢,}
M(a) = M(b) = M(c) = M(s) = &,
M(d) = M(e) = M(t) = ¢,
M(v,) = M(v,) = &,
M(v;) = M(v,) = ¢,

Deciding Equality +
(uninterpreted) Functions

a=b,b=c,d=e,b=s,d=t,azv, v,Zv,

V‘“ = g(d)l V2 — g(e)l V3 = f(a; V1) ’ V4 = f(b/ Vz)

Model construction:

_ Missing:
M =1{#1,¢,,¢5,¢,) Interpretation for
M(a) = M(b) = M(c) = M(s) = ¢, fand g.

M(d) = M(e) = M(t) = o,
M(v;) = M(v,) = &,
M(v;) = M(v,) = ¢,

Deciding Equality +
(uninterpreted) Functions

Building the interpretation for function symbols
— M(g) is a mapping from |[M| to |M|

— Defined as:
M(g)(¢;) = ¢, if there isv=g(a)s.t.
M(a) = o,
M(v) = o,

= ¢,, otherwise (¢ Is an arbitrary element)

Is M(g) well-defined?

Deciding Equality +
(uninterpreted) Functions

Building the interpretation for function symbols
— M(g) is a mapping from |[M| to |M|

— Defined as:
M(g)(¢;) = ¢, if there isv=g(a)s.t.
M(a) = o,
M(v) = o,

= ¢,, otherwise (¢ Is an arbitrary element)

Is M(g) well-defined? Problem: we may have
v=g(a) and w=g(b) s.t.
M(a) = M(b) = ¢, and M(v) = ¢,# &, = M(w)
So, is M(g)(#,) = ¢, or M(g)(e,) = ¢,?

Deciding Equality +

(uninterpreted) Functions
Building the interpretation for function symbols

— M(g) is a mapping from [M| to |M

— Defined as:
_ : . the congruence rule!
M(g)(#:) = g It there Is v=g(a a and b are in the same “ball”,

M(a) = o, then so are vand w
M(v) =

This is impossible because of

¢.
J
= ¢,, otherwise (¢, itrary element)

Is M(g) well-defined? Problem: we may have
v=g(a) and w=g(b) s.t.
M(a) = M(b) = ¢, and M(v) = ¢,# &, = M(w)
So, is M(g)(#,) = ¢, or M(g)(e,) = ¢,?

Deciding Equality +
(uninterpreted) Functions

a=b,b=c,d=e,b=s,d=t,azv, v,Zv,
Vlzg(d)i VzEg(E), V3 f(a V1) V4 f(b Vz)

Model construction:
|M | ={®,,¢,,6;,¢,}
M(a) = M(b) = M(c) = M(s) =
M(d) = M(e) = M(t) =
M(v,) = M(v,) = &,
M(v;) = M(v,) = ¢,

Deciding Equality +
(uninterpreted) Functions

a=b,b=c,d=e,b=s,d=t,azv, v,Zv,
Vlzg(d)l VZEg(e)I V3Ef(a; V1) ’ V4Ef(b/ Vz)

Model construction: M(g)(#;) = ¢, if thereis v=g(a) s.t.
IM| ={®,,¢,,¢,,¢,] M(a) = ¢,
M(a) = M(b) = M(c) = M(s) = ¢, o ot = ¢,
M(d) = M(e) = M(t) = o, ©
M(v,) = M(v,) = &,
M(v;) = M(v,) = ¢,

Deciding Equality +
(uninterpreted) Functions

a=b,b=c,d=e,b=s,d=t,azv, v,Zv,
Vlzg(d)) VZEg(e)I V3Ef(a; V1) ’ V4Ef(b/ Vz)

Model construction: M(g)(#;) = ¢, if thereisv=g(a)s.t.
IM| ={®,,¢,,¢,,¢,] M(a) = ¢,
M(a) = M(b) = M(c) = M(s) = #, o ot = ¢,
M(d) = M(e) = M(t) = o, ¥
M(v,) = M(v,) = &,
M(v;) = M(v,) = ¢,
M(g) ={029‘3}

Deciding Equality +
(uninterpreted) Functions

a=b,b=c,d=e,b=s,d=t,azv, v,Zv,
Vlzg(d)i VzEg(E), V3 f(a V1) V4 f(b Vz)

Model construction: M(g)(#;) = ¢, if thereis v=g(a) s.t.
VTP i
M(a) = M(b) = M(c) = M(s) = = ¢, otherwise
M(d) = M(e) = M(t) =
M(v,) = M(v,) = ¢,
M(v;) = M(v,) = ¢,
M(g)={e,> ¢}

Deciding Equality +
(uninterpreted) Functions

a=b,b=c,d=e,b=s,d=t,azv, v,Zv,
Vlzg(d)l VZEg(e)I V3Ef(a; V1) ’ V4Ef(b/ Vz)

Model construction: M(g)(#;) = ¢, if thereis v=g(a) s.t.
M(a) = ¢.
M(v) g
M(a) = M(b) = M(c) = M(s) = ¢, = ¢, otherwise

M(d) = M(e) = M(t) = o,
M(v,) = M(v,) = &,
M(v;) = M(v,) = ¢,

M(g)={®,> ¢, else > ¢}

Deciding Equality +
(uninterpreted) Functions

a=b,b=c,d=e,b=s,d=t,azv, v,Zv,
Vlzg(d)) VZEg(e)I V3Ef(ai V]_) ’ V4Ef(b, Vz)

Model construction:
IM| ={®,,¢,,¢,,6,) M(g)(#;) = ¢, if thereisv=g(a) s.t.
M(a) = M(b) = M(c) = M(s) = +, i
M(d) = M(e) = M(t) = ¢, = ¢, otherwise
M(v,) = M(v,) = &,
M(v;) = M(v,) = ¢,
M(g)={®,> ¢, else >¢. }
M(f)={(®,,¢;)> ¢, else >e]}

Deciding Equality +
(uninterpreted) Functions

What about predicates?
p(al b)l _Ip(cl b)

Deciding Equality +
(uninterpreted) Functions

What about predicates?
p(al b)l _Ip(cl b)

U

f(a,b)=T, f (c,b)=T

Deciding Equality +
(uninterpreted) Functions

It is possible to implement our procedure in
O(n log n)

Case Analysis

Many verification/analysis problems require:
case-analysis
x>0,y=x+1,(y>2vy<1)

Case Analysis

Many verification/analysis problems require:
case-analysis
x>0,y=x+1,(y>2vy<1)

Naive Solution: Convert to DNF
(x>0,y=x+1,y>2)v(x=>0,y=x+1,y<1)

Case Analysis

Many verification/analysis problems require:
case-analysis
x>0,y=x+1,(y>2vy<1)

Naive Solution: Convert to DNF
(x>0,y=x+1,y>2)v(x=>0,y=x+1,y<1)

Too Inefficient!
(exponential blowup)

SMT : Basic Architecture

A

Case Analysis

Theory |

\Solvers |

e Equality + UF
e Arithmetic
© Bit-vectors

e LN

Microsoft’
Research

DPLL
M | F
LPartiaI nﬁ [if clauses J

Microsoft’
Research

DPLL

Guessing

pl pva —qvr

@

p,—q|lpvag —qvr

Microsoft’
Research

DPLL

Deducing
plpvag —pvs

@

p,s|lpvag, —pvs

Microsoft’
Research

DPLL

Backtracking
P, =S, (| pv(q,Ssvqg,—pPVv—(q

@

p,slpvaq,svag, —pv—q

Microsoft’
Research

SAT + Theory solvers

Basic Idea
x>0,y=x+1,(y>2vy<l1)

@ Abstract (aka “naming” atoms)

Py, Py (P3V P, P1=(x=0), p,=(y=x+1),
p;=(y>2),p,=(y<1)

SAT + Theory solvers

Basic Idea
x>0,y=x+1,(y>2vy<l1)

@ Abstract (aka “naming” atoms)

Py, Py (P3V P P1=(x20), p,=(y=x+1),

E? ps=(y>2), py=(y<1)

SAT
Solver

SAT + Theory solvers

Basic Idea
x>0,y=x+1,(y>2vy<l1)

@ Abstract (aka “naming” atoms)

Py, Py (P3V P P1=(x20), p,=(y=x+1),

Q ps=(y>2), py=(y<1)

Assignment
SAT
L J f‘> p]_l p21 _'p3l p4

Solver

SAT + Theory solvers

Basic Idea
x>0,y=x+1,(y>2vy<l1)

@ Abstract (aka “naming” atoms)

p]_l p21 (p3\/ p4) plz(XZO), sz(y=X+ 1)1

E? ps=(y>2), p,=(y<1)
U

Assignment
SAT x>0,y=x+1,
L Solver J :> P P s P :> —(y>2),y<1

SAT + Theory solvers

Basic Idea
x>0,y=x+1,(y>2vy<l1)

@ Abstract (aka “naming” atoms)

Py, Py (P3V P, P1=(x=0), p,=(y=x+1),

@ p3=(y >2), py=(y <1)
T P vy SR)
Solver vory e —(y>2),y<1

v

Unsatisfiable <,t Theory
x>0,y=x+1,y<1 Solver

SAT + Theory solvers

Basic Idea
x>0,y=x+1,(y>2vy<l1)

@ Abstract (aka “naming” atoms)

Py, Py (P3V P, P1=(x=0), p,=(y=x+1),

Q Ps=(y>2), p,=(y<1)
SAT j>§ss'gmiep”tp » X>0,y=x+1,
Solver b —(y>2),y<1

New Lemma <] Unsatisfiable <,i Theory
=P Vapv—p, Y x20,y=x+1,y<1 Solver

SAT + Theory solvers

New Lemma <] Unsatisfiable <,i Theory
=P, V—pP,V—Pp, x=20,y=x+1,y<1 Solver

AKA
Theory conflict

SAT + Theory solvers: Main loop

procedure SmtSolver(F)

(F,, M) := Abstract(F)

loop
(R, A) := SAT_solver(F)
if R = UNSAT then return UNSAT
S := Concretize(A, M)
(R, S’) := Theory_solver(S)
if R = SAT then return SAT
L := New_Lemma(S’, M)
Add Lto F,

SAT + Theory solvers

FoiP1 Py (P3V Py)

Basic Idea

F-x>0,y=x+1,(y>2vy<l1l)
@ Abstract (aka “naming” atoms)

M:p,;=(x20),p,=(y=x+1),

P;=(y>2), p,=(y<1)

SAT
Solver

A: Assighment
p]_l p21 _'p3) p4

L: New Lemma

—|p1V—|p2V—|p4

-

S’: Unsatisfiable <,i
x=>0,y=x+1,y<1

V

S:x=0,y=x+1,
—(y>2),y<1

v

|

Theory
Solver

SAT + Theory solvers

@ Abstract (aka “naming” atoms)

Foi Py P (P3V Py M:p;=(x2>0), p,=(y=x+1),
p3=(y>2), p,=(y<1)

ST o Rt S e
Solver vore —(y>2),y<1

L: New Lemma S’: Unsatisfiable <:j Theory
—P, VP, VP, x>0,y=x+1y<1 Solver

procedure SMT_Solver(F)
(F,, M) := Abstract(F)
loop
(R, A) := SAT_solver(F)

if R = UNSAT then return UNSAT
S = Concretize(A, M) “Lazy translation”
(R, S’) := Theory_solver(S) to

if R = SAT then return SAT : DNF
L := New_Lemma(s, M)
Add Lto F,

SAT + Theory solvers

State-of-the-art SMT solvers implement
many improvements.

SAT + Theory solvers

Incrementality
Send the literals to the Theory solver as they are
assigned by the SAT solver

plE(XZO), sz(y=X+ 1),
P3=(y>2), p,=(y<1),ps=(x<2),
Py, Py Pa | Py Py (P3V P, (Ps Vv —p,)

AN

Partial assignment is already
Theory inconsistent.

SAT + Theory solvers

Efficient Backtracking
We don’t want to restart from scratch after each
backtracking operation.

SAT + Theory solvers

Efficient Lemma Generation (computing a small S’)
Avoid lemmas containing redundant literals.

p1E(XZO)r sz(y=X+ 1),
P3=(y>2), p,=(y<1),ps=(x<2),
Py, Py P3Py | P Py (P3V P4, (Ps Vv —Py)

J—

—P1VTP; VTIP3 VTP, Imprecise Lemma

SAT + Theory solvers

Theory Propagation
It is the SMT equivalent of unit propagation.

p,=(x=0), p,=(y=x+1),
P;=(y>2),p,=(y<1),ps=(x<2),
P, Py | Py Py (P35 VP4 (PsV —P,)

@ P, P, imply —p, by theory propagation

Py, P, =P | Py Py (P3V P, (PsV —p,)

SAT + Theory solvers

Theory Propagation
It is the SMT equivalent of unit propagation.

p,=(x=0), p,=(y=x+1),
P;=(y>2),p,=(y<1),ps=(x<2),
P, Py | Py Py (P35 VP4 (PsV —P,)

@ P, P, imply —p, by theory propagation

Py, P, =P | Py Py (P3V P, (PsV —p,)

Tradeoff between precision x performance.

An Architecture: the core

Core

Arithmetic Bit-Vectors Scalar Values

\£/

Equality
Uninterpreted
Functions

0

SAT Solver

An Architecture: the core

Core

Arithmetic Bit-Vectors Scalar Values

\&/

Equality
Uninterpreted
Functions

$ Case Analysis

SAT Solver

An Architecture: the core

Core
Arithmetic Bit-Vectors Scalar Values
Equality

Uninterpreted

Functions
$ Blackboard:
equalities,

disequalities,
predicates

SAT Solver

Combining Theories

In practice, we need a combination of theories.
b+ 2=c and f(read(write(a,b,3), c-2)) # f(c-b+1)
A theory is a set (potentially infinite) of first-order sentences.

Main questions:
Is the union of two theories T1 U T2 consistent?

Given a solvers for T1 and T2, how can we build a solver for
T1UT2?

Microsoft’

Research

A Combination History

Foundations Efficiency using rewriting
1979 Nelson, Oppen - Framework 1984 Shostak. Theory solvers

1996 Tinelli & Harindi. N.O Fix 1996 Cyrluk et.al Shostak Fix #1

2000 Barrett et.al N.O + Rewriting 1998 B. Shostak with Constraints

2002 Zarba & Manna. “Nice” Theories 2001 Ruef’ & Shankar Shostak Fix #2
2004 Ghilardi et.al. N.O. Generalized 2004 Ranise et.al. N.O + Superposition

-Moskewicz et.al. Efficient DPLL made guessing -

2006 Bruttomesso et.al. Delayed Theory Combination

2007 de Moura & B. Model-based Theory Combination

... 2013 Jojanovich et.al. polite, shiny, etc.

Disjoint Theories

Two theories are disjoint if they do not share
function/constant and predicate symbols.

= is the only exception.

Example:
The theories of arithmetic and arrays are disjoint.

Arithmetic symbols: {0,-1,1,-2,2, ..., +, -, *, >, <, 2, <
Array symbols: { read, write }

Microsoft’

Research

Purification

It is a different name for our “naming” subterms procedure.

b + 2 =c, f(read(write(a,b,3), c-2)) # f(c-b+1)
b+2=c,v,#%V,

v, =3, v, = write(a, b, v,), v =c-2, v, = read(v,, v3),
V5 = C'b'l'l, V6 = f(V4), V7 = f(VS)

Microsoft’

Research

Purification

It is a different name for our “naming” subterms procedure.

b + 2 =c, f(read(write(a,b,3), c-2)) # f(c-b+1)
b+2=c,v,#%V,

v, =3, v, = write(a, b, v,), v =c-2, v, = read(v,, v3),
V5 = C'b'l'l, V6 = f(V4), V7 = f(VS)

U

b+2=c,v,=3,v;=C-2, v =C-b+],
v, = write(a, b, v,), v, =read(v,, v;), _—
Ve =f(v,), v, = f(Ve), ve 2 v, Research

Stably Infinite Theories

A theory is stably infinite if every satisfiable QFF is satisfiable
in an infinite model.

EUF and arithmetic are stably infinite.

Bit-vectors are not.

Microsoft’

Research

Important Result

The union of two consistent, disjoint, stably infinite
theories is consistent.

Microsoft’

Research

Convexity

A theory T is convex iff
for all finite sets S of literals and
foralla,=b,v..va, =b,
Simpliesa; =b,v..va, =b,
iff
Simplies a,=b, forsome 1<i<n

Microsoft’

Research

Convexity: Results

Every convex theory with non trivial models is stably infinite.

All Horn equational theories are convex.
formulas of the form s, #r,v ... vs #r vi=t

Linear rational arithmetic is convex.

Microsoft’

Research

Convexity: Negative Results

Linear integer arithmetic is not convex
1<a<2,b=1,c=2 impliesa=bva=c

Nonlinear arithmetic

a’=1,b=1,c=-1limpliesa=bva=c

Theory of bit-vectors

Theory of arrays
c, = read(write(a, i, ¢,), j), ¢ = read(a, j)
impliesc,=c,vc,=¢

Microsoft’

Research

Combination of hon-convex theories

EUF is convex (O(n log n))
IDL is non-convex (O(nm))

EUF U IDL is NP-Complete
Reduce 3CNF to EUF U IDL
For each boolean variable p,add0<a, <1

For each clause p, v —p, v p; add
f(ay, @, a3) #f(0, 1, 0)

Microsoft’

Research

Combination of hon-convex theories

EUF is convex (O(n log n))
IDL is non-convex (O(nm))

EUF U IDL is NP-Complete
Reduce 3CNF to EUF U IDL
For each boolean variable p,add0<a, <1

For each clause p, v —p, v p; add
f(ay, @, a3) #f(0, 1, 0)

@ implies

a;Zz0va,z1lvaz#0

Microsoft’

Research

Nelson-Oppen Combination

Let 71 and 7 5 be consistent, stably infinite theories over disjoint
(countable) signatures. Assume satisfiability of conjunction of
literals can decided in O(77(n)) and O(T5(n)) time respectively.
Then,

1. The combined theory 7 is consistent and stably infinite.

2. Satisfiability of quantifier free conjunction of literals in 7 can be
decided in O(2"" x (Ty(n) + Ta(n)).

3. If 7, and 7 5 are convex, then so is 7 and satisfiability in 7 is
in O(n® x (T1(n) + Th(n))).

Microsoft’

Research

Nelson-Oppen Combination

The combination procedure:

Initial State: ¢ is a conjunction of literals over X1 U X.o.

Purification: Preserving satisfiability transform ¢ into ¢; A @9,
such that, ¢; € X;.

Interaction: Guess a partition of V() M V(¢) into disjoint
subsets. Express it as conjunction of literals 1.
Example. The partition {2}, {29, 23}, {24} is represented
as Iy # To, T, F T4.T9 F Ty, To = I3.

Component Procedures : Use individual procedures to decide
whether ¢; A 1) is satisfiable.

Return: If both return yes, return yes. No, otherwise.

Microsoft:

Research

NO deterministic procedure

Instead of guessing, we can deduce the equalities to be shared.
Purification: no changes.

Interaction: Deduce an equality r =
TiF (= 2=y

Update @9 := o9 A 2 = 1. And vice-versa. Repeat until no
further changes.

Component Procedures : Use individual procedures to decide

whether ¢, is satisfiable.

Remark: 7; - (¢; = x = y) iff ¢; A\ 2 # y is not satisfiable in

Ti . osoft
Kesearch

NO deterministic procedure

Assume the theories are convex.
» Suppose ¢; is satisfiable.
» Let £ be the set of equalities 7; = 2. (J # k) such that,
T,V ¢i = vj = Tk
» By convexity, 7, I/ ¢; = \/ p x; = 4.
» 0; N \p xj # 11 is satisfiable.
» The proof now is identical to the nondeterministic case.

» Sharing equalities is sufficient, because a theory 7 ; can
assume that 2% = y” whenever 2 = v is not implied by 7 5
and vice versa.

Microsoft’

Research

NO procedure: Example

b + 2 =c, f(read(write(a,b,3), c-2)) # f(c-b+1)

Arithmetic Arrays EUF
b+2=c v, = write(a, b, v,), Ve =f(v,),
v, =3, v, = read(v,, v,) v, = f(vg),
V3 =C-2, Ve # V7

Ve = C-b+1

Microsoft’

Research

NO procedure: Example

b + 2 =c, f(read(write(a,b,3), c-2)) # f(c-b+1)

Arithmetic Arrays EUF
b+2=c v, = write(a, b, v,), Ve =f(v,),
v, =3, v, = read(v,, v,) v, = f(vg),
V3 =C-2, Ve # V7

Ve = C-b+1

Substituting ¢

Microsoft’

Research

NO procedure: Example

b + 2 =c, f(read(write(a,b,3), c-2)) # f(c-b+1)

Arithmetic Arrays EUF
b+2=c, v, = write(a, b, v,), Ve =T(v,),
v, =3, v, =read(v,, v3), v, = f(ve),
v;=b, Ve # V5

Ve =3

Propagating v;=b

Microsoft’

Research

NO procedure: Example

b + 2 =c, f(read(write(a,b,3), c-2)) # f(c-b+1)

Arithmetic Arrays EUF
b+2=c v, = write(a, b, v,), Ve =f(v,),
v, =3, v, = read(v,, v3), v, = f(vg),
v,=b, v;=b Vg % V-,
Ve =3 V3 =

Deducing v, = v,

Microsoft’

Research

NO procedure: Example

b + 2 =c, f(read(write(a,b,3), c-2)) # f(c-b+1)

Arithmetic Arrays EUF
b+2=c v, = write(a, b, v,), Ve =f(v,),
v, =3, v, =read(v,, v3), v, = f(ve),
v,=b, vy = b, Vg % Vs,
Vg =3 Va=Va V3 =

Propagating v, = v,

Microsoft’

Research

NO procedure: Example

b + 2 =c, f(read(write(a,b,3), c-2)) # f(c-b+1)

Arithmetic Arrays EUF
b+2=c v, = write(a, b, v,), Ve =f(v,),
v, =3, v, = read(v,, v;), v, = f(ve),
v,=b, vy = b, Vg % Vs,
Ve =3, Va=Vq V3 =D,
Vy =V, Vo =Vy

Propagating v. = v,

Microsoft’

Research

NO procedure: Example

b + 2 =c, f(read(write(a,b,3), c-2)) # f(c-b+1)

Arithmetic Arrays EUF

b+2-= C, V, = write(a, b, Vl)' Vg = f(V4),

v, =3, v, =read(v,, v3), v, = f(vg),

vy =b, V3= b, Ve # V7,

Ve =3, Va=Va V3 =D,

Va=Vq Va=Vy
Vs =V,

Congruence: v, =V,

Microsoft’

Research

NO procedure: Example

b + 2 =c, f(read(write(a,b,3), c-2)) # f(c-b+1)

Arithmetic Arrays EUF
b+2=c v, = write(a, b, v,), Ve =f(v,),
v, =3, v, =read(v,, v3), v, = f(ve),
v,=b, v; = Db, Vg £ V5,
V553, Va=Vyq V3 =D,
Va=Vq Va= Vo
Ve =V,

Unsatisfiable

Microsoft’

Research

NO deterministic procedure

Deterministic procedure may fail for non-convex theories.

0<a<1,0<b<1,0<c<],
f(a) # f(b),
f(a) # f(c),
f(b) = f(c)

Microsoft’
Research

Combining Procedures in Practice

Propagate all implied equalities.
» Deterministic Nelson-Oppen.
» Complete only for convex theories.

» It may be expensive for some theories.

Delayed Theory Combination.
» Nondeterministic Nelson-Oppen.

» Create set of interface equalities (r = 1) between shared
variables.
» Use SAT solver to guess the partition.

» Disadvantage: the number of additional equality literals is

quadratic in the number of shared variables. Microsoft

Research

Combining Procedures in Practice

Common to these methods is that they are pessimistic about which

equalities are propagated.
Model-based Theory Combination
» Optimistic approach.
» Use a candidate model M/; for one of the theories 7 ; and

propagate all equalities implied by the candidate model,

hedging that other theories will agree.
if M; =7,UT;U{u=uv} then propagate u = v .
» If not, use backtracking to fix the model.

» Itis cheaper to enumerate equalities that are implied in a

particular model than of all models.

Microsoft’

Research

Example

r=fly—1),f(z)# f(y),0<x<10<y<I1
Purifying

Microsoft’
Research

Example

r=[f(2),flr)# f(y),0<r<1,0<y <1,z

y— 1

Microsoft’
Research

TE T A

Literals Eq. Classes | Model Literals Model
xr = f(2) {x, f(2)} | E(x) =% 0<z<1|A(x)=0
@) # f) | {v) E(y) = % 0<y<1|Aly) =0

{z} E(2) = *3 r=y—1]A(z) =-1

(f@)} | E(f) = {x1— =4

{f(w)} *9 = kg

*3 > ¥]

Assume X =y

Example

T T4
Literals Eq. Classes Model Literals Model
r= f(2) {z,y,f(2)} | E(x) =% 0<a<1|A(r)=0
flz) # fy) | {#} E(y) == 0<y<1|A(y)=0
=1y (@), f(y)} | E(2) = *2 z=y—1|A(z)=-1
E(f)={*x1—=%3, |x=y
o
else — 4}

Unsatisfiable

Example

TE T A
Literals Eq. Classes | Model Literals Model
r=f(z) [{a.f()} |E@) =n 0<a<1|A@)=0
fa) # f(y) | {v) E(y) = #2 0<y<1|Aly) =0
x#Y {2} E(z) = *3 r=y—11A()=-1
{f(x)} E(f)={x1—%, |2#y
{f(y)} k9 = ks,
k3 = *1,
else — g}

Backtrack, and assert © == 1.
7 4 model need to be fixed.

Example

TE Ta
Literals Eq. Classes | Model Literals Model
r=f(z) |H{zf(2)} | E®)=m O0<a<1|A(r)=0
flx) # f(y) | {y} E(y) = 2 0<y<1]|A(y =1
r#y {2} E(z) = *3 z2=y—1]|A(2)=0
{f(x)} E(f)={x1—x*1, |2#y
{f()} k9 = k5,
*3 — *1,
else — ¢}

Assume x =2

TE T 4

Literals Eq. Classes | Model Literals Model
r = f(2) {x, 2, E(x) = % O0<er<1]|Ax)=0
fla) # fQu) | f(x), f(2)} | E(y) = *2 O<y<1]|A(y)=1
T F Y {y} E(z) = z=y—-1]A()=0
v = (FW)} |E()={na—*, |x#y

ko = %3, | 1= 2

else — x4}

Satisfiable

Example

TE T A

Literals Eq. Classes | Model Literals Model
r = f(2) {x, 2, E(x) =% 0<ax<1|Ax)=0
fla) # fy) | f(z), f(2)} | E(y) = *2 O=y=1|Ay) =1
T #Fy {y} E(z) == z=y—-1]A()=0
T =2z ()} E(f)={tx1—=%, |z#Y

kg = %3, |1 =2

else — 4}

Let /1 be the bijection between |E'| and | A|.

]1-:{$1H0,$2H 1,$3H—1,$4H2,...}

Example

TE T A

Literals Model Literals Model

r= f(2) E(x) = O<xr<l1|Ax) =

flx) # f(y) | E(y) = *2 0<y<1]A(y =

r £y E(z) =% 2=y—1|A(2)=0

r=z E(f) = {*1+ *1 Ty A(f)={0~=0
%9 = %9 r=z 1— -1
else — %4} else — 2}

Extending A using h.

fl.:{$1+—>-0,:+cg+—>- 1,$31—>—1,$41—>2,...}

