Motivation & Solving Techniques

Given: a (gate level) multiplier circuit C for fixed-size bitwidth n

$$ (4a_2 + 2a_1 + 1a_0) \times (4b_2 + 2b_1 + 1b_0) $$

Motivation
- verify circuits to avoid issues like Pentium FDIV bug

Solving Techniques
- SAT using CNF encoding
- Binary Moment Diagrams (BMD)
- Algebraic reasoning

Question: For all $a_i, b_i \in \mathbb{B}$:

$$ 2^{n-1} \sum_{i=0}^{n-1} 2^i s_i = \left(\sum_{i=0}^{n-1} 2^i a_i \right) \left(\sum_{i=0}^{n-1} 2^i b_i \right) ? $$
Related Work

- **Binary moment diagrams**

- **Algebraic reasoning**

- **Proofs**
Basic Idea of Algebraic Approach

Multiplier

Polynomials

\[B = \{ x - a_0 \cdot b_0, \\
 y - a_1 \cdot b_1, \\
 s_0 - x \cdot y, \\
 \ldots \} \]

Specification

Membership Test

\[\sum_{i=0}^{2n-1} 2^i s_i - \\
(\sum_{i=0}^{n-1} 2^i a_i) (\sum_{i=0}^{n-1} 2^i b_i) \]

\[= 0 \checkmark \\
\neq 0 \times \]
N-bit Multipliers

- **inputs**: a_0, \ldots, a_{n-1}
- **inputs**: b_0, \ldots, b_{n-1}
- **outputs**: s_0, \ldots, s_{2n-1}
- **internal**: g_1, \ldots, g_k
Circuit Polynomials

Let \(X = a_0, \ldots, a_{n-1}, b_0, \ldots, b_{n-1}, g_1, \ldots, g_k, s_0, \ldots, s_{2n-1} \).

Definition 1 (Gate polynomial).
Polynomial \(p \in \mathbb{Q}[X] \) representing a circuit gate.

\[
\begin{align*}
 s_3 &= g_1 \land g_4 & -s_3 + g_1 g_4, \\
 s_2 &= g_1 \lor g_4 & -s_2 + g_1 + g_4 - 2g_1 g_4, \\
 g_4 &= g_2 \land g_3 & -g_4 + g_2 g_3, \\
 s_1 &= g_2 \lor g_3 & -s_1 + g_2 + g_3 - 2g_2 g_3, \\
 g_1 &= a_1 \land b_1 & -g_1 + a_1 b_1, \\
 g_2 &= a_0 \land b_1 & -g_2 + a_0 b_1, \\
 g_3 &= a_1 \land b_0 & -g_3 + a_1 b_0, \\
 s_0 &= a_0 \land b_0 & -s_0 + a_0 b_0
\end{align*}
\]

Definition 2 (Field polynomial).
Polynomial \(p \in \mathbb{Q}[X] \) which models the domain.

\[
\begin{align*}
 a_1, a_0 &\in \mathbb{B} & a_1(1 - a_1), a_0(1 - a_0), \\
 b_1, b_0 &\in \mathbb{B} & b_1(1 - b_1), b_0(1 - b_0)
\end{align*}
\]
Circuit Polynomials

Let $X = a_0, \ldots, a_{n-1}, b_0, \ldots, b_{n-1}, g_1, \ldots, g_k, s_0, \ldots, s_{2n-1}$.

Definition 1 (Gate polynomial).
Polynomial $p \in \mathbb{Q}[X]$ representing a circuit gate.

\[
\begin{align*}
 s_3 &= g_1 \land g_4 & -s_3 + g_1 g_4, \\
 s_2 &= g_1 \lor g_4 & -s_2 + g_1 + g_4 - 2g_1 g_4, \\
 g_4 &= g_2 \land g_3 & -g_4 + g_2 g_3, \\
 s_1 &= g_2 \lor g_3 & -s_1 + g_2 + g_3 - 2g_2 g_3, \\
 g_1 &= a_1 \land b_1 & -g_1 + a_1 b_1, \\
 g_2 &= a_0 \land b_1 & -g_2 + a_0 b_1, \\
 g_3 &= a_1 \land b_0 & -g_3 + a_1 b_0, \\
 s_0 &= a_0 \land b_0 & -s_0 + a_0 b_0
\end{align*}
\]

Definition 2 (Field polynomial).
Polynomial $p \in \mathbb{Q}[X]$ which models the domain.

\[
\begin{align*}
 a_1, a_0 &\in \mathbb{B} & a_1(1-a_1), a_0(1-a_0), \\
 b_1, b_0 &\in \mathbb{B} & b_1(1-b_1), b_0(1-b_0)
\end{align*}
\]
Ideals associated to Circuits

Definition 3 (Polynomial Circuit Constraints). A polynomial \(p \in \mathbb{Q}[X] \) is a polynomial circuit constraint (PCC) if for all

\[
(a_0, \ldots, a_{n-1}, b_0, \ldots, b_{n-1}) \in \{0, 1\}^{2n}
\]

and resulting values \(g_1, \ldots, g_k, s_0, \ldots, s_{2n-1} \) implied by the gates of the circuit \(C \) the substitution of these values into \(p \) gives zero.

- The set of all PCCs for \(C \) is denoted by \(I(C) \).
- \(I(C) \) contains all relations that hold in the circuit.
- \(I(C) \) is an ideal.

Definition 4 (Ideal). A nonempty subset \(I \subseteq \mathbb{Q}[X] \) is called an ideal if

- \(\forall p, q \in I : p + q \in I \)
- \(\forall p \in \mathbb{Q}[X] \forall q \in I : pq \in I \)
Examples for PCCs:

- $s_0 - a_0b_0$
- $a_1 - a_1$
- $g_2^2 - g_2$
- s_1g_4
- \ldots

Definition 5 (Multiplier). A circuit C is called a *multiplier* if

$$\sum_{i=0}^{2n-1} 2^i s_i - \left(\sum_{i=0}^{n-1} 2^i a_i \right) \left(\sum_{i=0}^{n-1} 2^i b_i \right) \in I(C).$$
Definition 6 (Term order).
An order \leq is fixed on the set of terms compatible with multiplication.

- every ideal I of $\mathbb{Q}[X]$ has a Gröbner basis G with $I = \langle G \rangle$.

- ideal membership test
 - multivariate polynomial division with remainder
 - remainder r contains no term that is a multiple of any of the leading terms of G

- construction algorithm by Buchberger which given an arbitrary basis of an ideal I computes a Gröbner basis of it (doubly exponential)
GRÖBNER BASIS

We can deduce at least some elements of \(I(C) \):

- \(G = \) Gate Polynomials + (Input) Field Polynomials
- Let \(J(C) = \langle G \rangle \).
- Term order: output variable of a gate is greater than input variables

THEOREM

\(G \) is a Gröbner basis for \(J(C) \).

Proof idea: Application of Buchberger’s Product criterion.

THEOREM (SOUNDNESS AND COMPLETENESS)

For all acyclic circuits \(C \), we have \(J(C) = I(C) \).
Non-Incremental Algorithm

Algorithm 1 (Non-Incremental Checking Algorithm).
Divide polynomial $\sum_{i=0}^{2n-1} 2^i s_i - \left(\sum_{i=0}^{n-1} 2^i a_i \right) \left(\sum_{i=0}^{n-1} 2^i b_i \right)$ by elements of G until no further reduction is possible, then C is a multiplier iff remainder is zero.

Implications
- Leading coefficient -1 of all gate polynomials, computation stays in \mathbb{Z}.
- Completeness proof allows to derive input assignment if C is incorrect.
- Still can use rational coefficients \mathbb{Q} (important for Singular).

Generally the size of intermediate results in Algorithm 1 increases drastically:
- 8-bit multiplier can not be verified within 20 minutes.
- Tailored heuristics become very important.
Rows and Columns

\[(4a_2 + 2a_1 + 1a_0) \times (4b_2 + 2b_1 + 1b_0)\]

\[32s_5 + 16s_4 + 8s_3 + 4s_2 + 2s_1 + 1s_0\]

\[(4a_2 + 2a_1 + 1a_0) \times (4b_2 + 2b_1 + 1b_0)\]

\[32s_5 + 16s_4 + 8s_3 + 4s_2 + 2s_1 + 1s_0\]
Row-Wise Order

\[(4a_2 + 2a_1 + 1a_0) \times (4b_2 + 2b_1 + 1b_0)\]

not robust under permutation
Definition 7 (Partial Products). Let \(P_k = \sum_{k = i+j} a_i b_j \).
Definition 8 (Input Cone).
For each output bit s_i we determine its input cone

$$l_i = \{\text{gate } g \mid g \text{ is in input cone of output } s_i\}$$

Definition 9 (Slice).
Slices S_i are defined as the difference of consecutive cones l_i:

$$S_0 = l_0 \quad S_{i+1} = l_{i+1} \setminus \bigcup_{j=0}^{i} S_j$$

Definition 10 (Sliced Gröbner Bases).
Let G_i be the set of polynomial representations of the gates in slice S_i.
Definition 11 (Carry Recurrence Relation).

- A sequence of $2n + 1$ polynomials C_0, \ldots, C_{2n} over the variables of C is called a *carry sequence of carry polynomials*.

- For $0 \leq i < 2n$, carry polynomial C_i and output s_i let

$$-C_i + 2C_{i+1} + s_i - P_i$$

denote the *carry recurrence relation* R_i for column i.

- Then R_i *holds* on C if it vanishes in $I(C)$, i.e., $R_i \in I(C)$.

Theorem

*Let C be a circuit where all carry recurrence relations hold. Then C is a multiplier in the sense of Def. 6, iff $C_0 - 2^{2n}C_{2n} \in I(C)$.***
Algorithm 2 (Incremental Checking Algorithm).

input: Circuit C with sliced Gröbner bases G_i
output: Determine whether C is a multiplier

$C_{2n} \leftarrow 0$

for $i \leftarrow 2n - 1$ to 0

$C_i \leftarrow \text{Remainder} \ (2C_{i+1} + s_i - P_i, \ G_i \cup F)$

return $C_0 = 0$
MULTIPLIERS

Column-Wise Verification of Multipliers Using Computer Algebra
COLUMN-WISE VERIFICATION OF MULTIPLIERS USING COMPUTER ALGEBRA
ENGINEERING

AIG

\textbf{AigMulToPoly}
Polynomial representation

CAS-File

Mathematica/Singular
Application of Alg. 2

C_0
Experiments

multiplier	Bit width	Mathematica			Singular		
		Alg. 1	Alg. 2	Alg. 1	Alg. 2		
	col	row	col	row			
btor	16	12	12	4	2	2	1
btor	24	102	101	14	12	13	4
btor	32	531	491	35	53	58	16
btor	40	TO	TO	78	210	219	55
btor	48	TO	TO	156	602	621	145
btor	56	MO	MO	263	MO	MO	226
btor	64	MO	MO	409	MO	MO	MO
sp-ar-rc	8	TO	TO	2	TO	TO	1
sp-ar-rc	16	TO	TO	7	TO	TO	1
sp-ar-rc	32	TO	TO	67	TO	TO	39
sp-ar-rc	64	MO	MO	841	MO	MO	MO

Table: time in sec; TO = 1200 sec, MO = 14 GB
Conclusion & Future Work

Conclusion:
- simple and precise mathematical formulation
- new incremental column-based verification approach
- magnitude faster than previous non-incremental approach
- using computer algebra systems

Future Work:
- other word-level operators (shift, division, ...)
- more complex multipliers
- extend our methods to floating points
- negative numbers

Experimental data, source code, benchmarks, and scripts are available at http://fmv.jku.at/cwmulverca.
COLUMN-WISE VERIFICATION OF MULTIPLIERS USING COMPUTER ALGEBRA

Daniela Ritirc, Armin Biere, Manuel Kauers
Johannes Kepler University
Linz, Austria

FMCAD 2017
October 02 - 06, 2017
Vienna, Austria