# COLUMN-WISE VERIFICATION OF MULTIPLIERS USING COMPUTER ALGEBRA

<u>Daniela Ritirc</u>, Armin Biere, Manuel Kauers Johannes Kepler University Linz, Austria







## **FMCAD 2017**

October 02 - 06, 2017 Vienna, Austria

# MOTIVATION & SOLVING TECHNIQUES

**Given:** a (gate level) multiplier circuit *C* for fixed-size bitwidth *n* 

**Question:** For all  $a_i, b_i \in \mathbb{B}$ :

$$\sum_{i=0}^{2n-1} 2^i s_i = \big(\sum_{i=0}^{n-1} 2^i a_i\big) \big(\sum_{i=0}^{n-1} 2^i b_i\big)?$$

#### Motivation

verify circuits to avoid issues like Pentium FDIV bug

#### **Solving Techniques**

- SAT using CNF encoding
- Binary Moment Diagrams (BMD)
- Algebraic reasoning

## RELATED WORK

#### Binary moment diagrams

 Y.-A. Chen and R.E. Bryant. Verification of arithmetic circuits with binary moment diagrams. In DAC, 1995.

#### Algebraic reasoning

- O. Wienand, M. Wedler, D. Stoffel, W. Kunz, and G.-M. Greuel. An algebraic approach for proving data correctness in arithmetic data paths. In CAV, 2008.
- J. Lv, P. Kalla, and F. Enescu. Efficient Gröbner basis reductions for formal verification of Galois field arithmetic circuits. In IEEE TCAD, 2013.
- C. Yu, W. Brown, D. Liu, A. Rossi, and M. Ciesielski. Formal verification of arithmetic circuits by function extraction. In IEEE TCAD, 2016.
- A.A.R. Sayed-Ahmed, D. Große, U. Kühne, M. Soeken, and R. Drechsler. Formal verification of integer multipliers by combining Gröbner basis with logic reduction. In DATE, 2016.

#### Proofs

■ P. Beame and V. Liew. **Towards verifying** nonlinear integer arithmetic. In CAV, 2017.

## BASIC IDEA OF ALGEBRAIC APPROACH

#### Multiplier





## **Polynomials**





#### **Specification**

$$\sum_{i=0}^{2n-1} 2^{i} s_{i} - \left(\sum_{i=0}^{n-1} 2^{i} a_{i}\right) \left(\sum_{i=0}^{n-1} 2^{i} b_{i}\right)$$



## **Membership Test**

= 0 **✓** ≠ 0 **X** 

## N-BIT MULTIPLIERS



- inputs: a<sub>0</sub>,...,a<sub>n-1</sub>
- inputs: b<sub>0</sub>,...,b<sub>n-1</sub>
- outputs: s<sub>0</sub>,...,s<sub>2n-1</sub>
- internal:  $g_1, \ldots, g_k$

## **CIRCUIT POLYNOMIALS**

Let 
$$X = a_0, \dots, a_{n-1}, b_0, \dots, b_{n-1}, g_1, \dots, g_k, s_0, \dots, s_{2n-1}$$
.







$$\begin{array}{lll} s_3 = g_1 \wedge g_4 & -s_3 + g_1 g_4, \\ s_2 = g_1 \oplus g_4 & -s_2 + g_1 + g_4 - 2g_1 g_4, \\ g_4 = g_2 \wedge g_3 & -g_4 + g_2 g_3, \\ s_1 = g_2 \oplus g_3 & -s_1 + g_2 + g_3 - 2g_2 g_3, \\ g_1 = a_1 \wedge b_1 & -g_1 + a_1 b_1, \\ g_2 = a_0 \wedge b_1 & -g_2 + a_0 b_1, \\ g_3 = a_1 \wedge b_0 & -g_3 + a_1 b_0, \\ s_0 = a_0 \wedge b_0 & -s_0 + a_0 b_0 \end{array}$$

## Definition 2 (Field polynomial).

Polynomial  $p \in \mathbb{Q}[X]$  which models the domain.

$$a_1, a_0 \in \mathbb{B}$$
  $a_1(1-a_1), a_0(1-a_0),$   
 $b_1, b_0 \in \mathbb{B}$   $b_1(1-b_1), b_0(1-b_0)$ 

## **CIRCUIT POLYNOMIALS**

Let 
$$X = a_0, \dots, a_{n-1}, b_0, \dots, b_{n-1}, g_1, \dots, g_k, s_0, \dots, s_{2n-1}$$
.







| $s_3 = g_1 \wedge g_4$ | $-s_3+g_1g_4,$           |
|------------------------|--------------------------|
| $s_2=g_1\oplus g_4$    | $-s_2+g_1+g_4-2g_1g_4,$  |
| $g_4 = g_2 \wedge g_3$ | $-g_4+g_2g_3,$           |
| $s_1 = g_2 \oplus g_3$ | $-s_1+g_2+g_3-2g_2g_3$ , |
| $g_1 = a_1 \wedge b_1$ | $-g_1+a_1b_1,$           |
| $g_2 = a_0 \wedge b_1$ | $-g_2+a_0b_1,$           |
| $g_3 = a_1 \wedge b_0$ | $-g_3+a_1b_0,$           |
| $s_0 = a_0 \wedge b_0$ | $-s_0+a_0b_0$            |

#### Definition 2 (Field polynomial).

Polynomial  $p \in \mathbb{Q}[X]$  which models the domain.

$$a_1, a_0 \in \mathbb{B}$$
  $a_1(1-a_1), a_0(1-a_0),$   
 $b_1, b_0 \in \mathbb{B}$   $b_1(1-b_1), b_0(1-b_0)$ 

## **IDEALS ASSOCIATED TO CIRCUITS**

#### **Definition 3 (Polynomial Circuit Constraints).**

A polynomial  $p \in \mathbb{Q}[X]$  is a *polynomial circuit constraint (PCC)* if for all

$$(a_0,\ldots,a_{n-1},b_0,\ldots,b_{n-1})\in\{0,1\}^{2n}$$

and resulting values  $g_1, \ldots, g_k, s_0, \ldots, s_{2n-1}$  implied by the gates of the circuit C the substitution of these values into p gives zero.

- The set of all PCCs for C is denoted by I(C).
- I(C) contains all relations that hold in the circuit.
- I(C) is an ideal.

**Definition 4 (Ideal).** A nonempty subset  $I \subseteq \mathbb{Q}[X]$  is called an *ideal* if

- $\forall p, q \in I : p + q \in I$
- $\forall p \in \mathbb{Q}[X] \ \forall q \in I : pq \in I$

## **IDEALS ASSOCIATED TO CIRCUITS**



#### Examples for PCCs:

- $s_0 a_0 b_0$
- $a_1^2 a_1$
- $g_2^2 g_2$
- $s_1g_4$
- ...

and gate

a<sub>1</sub> boolean

g<sub>2</sub> boolean

xor-and constraint

**Definition 5 (Multiplier).** A circuit C is called a multiplier if

$$\sum_{i=0}^{2n-1} 2^i s_i - \left(\sum_{i=0}^{n-1} 2^i a_i\right) \left(\sum_{i=0}^{n-1} 2^i b_i\right) \quad \in \quad \mathit{I}(C).$$

## GRÖBNER BASIS

#### Definition 6 (Term order).

An order  $\leq$  is fixed on the set of terms compatible with multiplication.

- every ideal I of  $\mathbb{Q}[X]$  has a Gröbner basis G with  $I = \langle G \rangle$ .
- ideal membership test
  - multivariate polynomial division with remainder
  - remainder r contains no term that is a multiple of any of the leading terms of G
- construction algorithm by Buchberger which given an arbitrary basis of an ideal / computes a Gröbner basis of it (doubly exponential)

## GRÖBNER BASIS

We can deduce at least some elements of I(C):

- $\blacksquare$  G = Gate Polynomials + (Input) Field Polynomials
- Let  $J(C) = \langle G \rangle$ .
- Term order: output variable of a gate is greater than input variables

#### **THEOREM**

G is a Gröbner basis for J(C).

Proof idea: Application of Buchberger's Product criterion.

#### THEOREM (SOUNDNESS AND COMPLETENESS)

For all acyclic circuits C, we have J(C) = I(C).

## NON-INCREMENTAL ALGORITHM

## Algorithm 1 (Non-Incremental Checking Algorithm).

Divide polynomial  $\sum_{i=0}^{2n-1} 2^i s_i - (\sum_{i=0}^{n-1} 2^i a_i) (\sum_{i=0}^{n-1} 2^i b_i)$  by elements of G until no further reduction is possible, then C is a multiplier iff remainder is zero.

#### **Implications**

- Leading coefficient -1 of all gate polynomials, computation stays in  $\mathbb{Z}$ .
- Completeness proof allows to derive input assignment if C is incorrect.
- Still can use rational coefficients  $\mathbb{Q}$  (important for Singular).

Generally the size of intermediate results in Algorithm 1 increases drastically:

- 8-bit multiplier can not be verified within 20 minutes.
- Tailored heuristics become very important.

## ROWS AND COLUMNS





## **ROW-WISE ORDER**





#### not robust under permutation

## COLUMN-WISE ORDER





robust under permutation

**Definition 7 (Partial Products).** Let 
$$P_k = \sum_{k=i+j} a_i b_j$$
.

## SLICING

#### **Definition 8 (Input Cone).**

For each output bit  $s_i$  we determine its input cone

 $I_i = \{ \text{gate } g \mid g \text{ is in input cone of output } s_i \}$ 

#### Definition 9 (Slice).

Slices  $S_i$  are defined as the difference of consecutive cones  $I_i$ :

$$S_0 = I_0$$
  $S_{i+1} = I_{i+1} \setminus \bigcup_{j=0}^i S_j$ 

#### Definition 10 (Sliced Gröbner Bases).

Let  $G_i$  be the set of polynomial representations of the gates in slice  $S_i$ .

## CARRY RECURRENCE RELATION

#### **Definition 11 (Carry Recurrence Relation).**

- A sequence of 2n+1 polynomials  $C_0, \ldots, C_{2n}$  over the variables of C is called a *carry sequence* of *carry polynomials*.
- For  $0 \le i < 2n$ , carry polynomial  $C_i$  and output  $s_i$  let

$$-C_i+2C_{i+1}+s_i-P_i$$

denote the *carry recurrence relation*  $R_i$  for column i.

■ Then  $R_i$  holds on C if it vanishes in I(C), i.e.,  $R_i \in I(C)$ .

#### **THEOREM**

Let C be a circuit where all carry recurrence relations hold. Then C is a multiplier in the sense of Def. 6, iff  $C_0 - 2^{2n}C_{2n} \in I(C)$ .

## INCREMENTAL ALGORITHM

#### Algorithm 2 (Incremental Checking Algorithm).

input: Circuit C with sliced Gröbner bases  $G_i$  output: Determine whether C is a multiplier

 $C_{2n} \leftarrow 0$ 

for  $i \leftarrow 2n-1$  to 0

 $C_i \leftarrow \text{Remainder} (2C_{i+1} + s_i - P_i, G_i \cup F)$ 

return  $C_0 = 0$ 

# **MULTIPLIERS**





## **ENGINEERING**



## **EXPERIMENTS**

|            |           | Mathematica |     |        | Singular |     |        |
|------------|-----------|-------------|-----|--------|----------|-----|--------|
| multiplier | Bit width | Alg. 1      |     | Alg. 2 | Alg. 1   |     | Alg. 2 |
|            |           | col         | row |        | col      | row |        |
| btor       | 16        | 12          | 12  | 4      | 2        | 2   | 1      |
| btor       | 24        | 102         | 101 | 14     | 12       | 13  | 4      |
| btor       | 32        | 531         | 491 | 35     | 53       | 58  | 16     |
| btor       | 40        | ТО          | ТО  | 78     | 210      | 219 | 55     |
| btor       | 48        | ТО          | TO  | 156    | 602      | 621 | 145    |
| btor       | 56        | MO          | MO  | 263    | MO       | MO  | 226    |
| btor       | 64        | MO          | MO  | 409    | MO       | MO  | MO     |
| sp-ar-rc   | 8         | TO          | TO  | 2      | TO       | TO  | 1      |
| sp-ar-rc   | 16        | ТО          | ТО  | 7      | ТО       | TO  | 1      |
| sp-ar-rc   | 32        | ТО          | TO  | 67     | ТО       | TO  | 39     |
| sp-ar-rc   | 64        | MO          | MO  | 841    | MO       | MO  | MO     |

TABLE: time in sec; TO = 1200 sec, MO = 14 GB

## CONCLUSION & FUTURE WORK

#### Conclusion:

- simple and precise mathematical formulation
- new incremental column-based verification approach
- magnitude faster than previous non-incremental approach
- using computer algebra systems

#### **Future Work:**

- other word-level operators (shift, division, ...)
- more complex multipliers
- extend our methods to floating points
- negative numbers

Experimental data, source code, benchmarks, and scripts are available at http://fmv.jku.at/cwmulverca.

# COLUMN-WISE VERIFICATION OF MULTIPLIERS USING COMPUTER ALGEBRA

<u>Daniela Ritirc</u>, Armin Biere, Manuel Kauers Johannes Kepler University Linz, Austria







## **FMCAD 2017**

October 02 - 06, 2017 Vienna, Austria