COMPLEXITY OF CIRCUIT IDEAL MEMBERSHIP TESTING

<u>Daniela Ritirc</u>, Armin Biere, Manuel Kauers Johannes Kepler University Linz, Austria

SC-Square Workshop 2017 University of Kaiserslautern, Germany 29. July 2017

MOTIVATION & SOLVING TECHNIQUES

Given: a (gate level) multiplier circuit *C* for fixed-size bitwidth *n*

Question: For all $a_i, b_i \in \mathbb{B}$: $\sum_{i=0}^{2n-1} 2^i s_i - \left(\sum_{i=0}^{n-1} 2^i a_i\right) \left(\sum_{i=0}^{n-1} 2^i b_i\right)$?

Motivation

verify circuits to avoid issuses like Pentium FDIV bug

Solving Techniques

- SAT using CNF encoding
- Binary Moment Diagrams (BMD)
- Algebraic reasoning

MOTIVATION & SOLVING TECHNIQUES

SAT

- verifying even small multipliers (16 Bit) is challenging (empirically)
- conjecture [Biere'16]: even simple ring-properties, e.g., $x \cdot y = y \cdot x$, require exponential sized resolution proofs (for gate-level CNF encoding)
- recent theoretical result [BeameLiew'17]: polynomial sized resolution proofs for simple ring-properties exist
- no theoretical nor practical results on general multiplier verification

MOTIVATION & SOLVING TECHNIQUES

SAT

- verifying even small multipliers (16 Bit) is challenging (empirically)
- conjecture [Biere'16]: even simple ring-properties, e.g., $x \cdot y = y \cdot x$, require exponential sized resolution proofs (for gate-level CNF encoding)
- recent theoretical result [BeameLiew'17]: polynomial sized resolution proofs for simple ring-properties exist
- no theoretical nor practical results on general multiplier verification

BMD

- approach not robust
- requires structural knowledge
- only works for simple (clean) multipliers

IN A NUTSHELL

Multiplier

IN A NUTSHELL

Multiplier

Translation

AIGMULTOPOLY

$$B = \{ x - a_0 * b_0, y - a_1 * b_1, s_0 - x * y, \}$$

IN A NUTSHELL

Multiplier

Translation

AIGMULTOPOLY

Gröbner basis

$$B = \{ x - a_0 * b_0, y - a_1 * b_1, s_0 - x * y, \}$$

Verification

CA System

$$f = 2x + 4y + 3 \in \mathbb{Q}[x, y]$$

$$g = y + 1 \in \mathbb{Q}[x, y]$$

- Ring $\mathbb{Q}[x,y]$ ring of polynomials with variables x,y and coefficients in \mathbb{Q}
- **Polynomial** *f* , *g* finite sum of monomials

$$f = 2x + 4y + 3 \in \mathbb{Q}[x, y]$$

$$g = y + 1 \in \mathbb{Q}[x, y]$$

- Monomial constant multiple of a term
- **Term** power product $x^{e_1}y^{e_2}$ for $e_1, e_2 \in \mathbb{N}$
- **Term order** well-defined, x > y > 1
- Leading monomial/term/coefficient

$$f = 2x + 4y + 3 \in \mathbb{Q}[x, y]$$

$$g = y + 1 \in \mathbb{Q}[x, y]$$

Ideal generated by f,g

$$I = \{q_1f + q_2g \mid q_1, q_2 \in \mathbb{Q}[x, y]\} = \langle f, g \rangle$$

$$I = \langle f, g \rangle = \langle 2x + 4y + 3, y + 1 \rangle$$

Ideal generated by f,g

$$I = \{q_1f + q_2g \mid q_1, q_2 \in \mathbb{Q}[x, y]\} = \langle f, g \rangle$$

"I contains all elements which evaluate to 0, when f and g evaluate to 0"

$$I = \langle f, g \rangle = \langle 2x + 4y + 3, y + 1 \rangle$$

Ideal membership problem

Question:
$$h = 6x + y^3 + y^2 + 12y + 9 \in I$$
?

$$I = \langle f, g \rangle = \langle 2x + 4y + 3, y + 1 \rangle$$

Ideal membership problem

Question:
$$h = 6x + y^3 + y^2 + 12y + 9 \in I$$
?

- for I: a priori not obvious how to check this
- for a Gröbner basis G: "easy" reduction method really?

$$I = \langle f, g \rangle = \langle 2x + 4y + 3, y + 1 \rangle$$

Ideal membership problem

Question:
$$h = 6x + y^3 + y^2 + 12y + 9 \in I$$
?

- for I: a priori not obvious how to check this
- for a Gröbner basis G: "easy" reduction method really?

- every ideal of $\mathbb{Q}[X]$ has a Gröbner basis
- construction algorithm by Buchberger

$$I = \langle f, g \rangle = \langle \underline{2x} + 4y + 3, \underline{y} + 1 \rangle$$

Ideal membership problem

Question: $h = 6x + y^3 + y^2 + 12y + 9 \in I$?

- for I: a priori not obvious how to check this
- for a Gröbner basis G: "easy" reduction method really?

- every ideal of $\mathbb{Q}[X]$ has a Gröbner basis
- construction algorithm by Buchberger
- special case: leading terms of ideal generators have no variables in common

$$I = \langle f, g \rangle = \langle \underline{2x} + 4y + 3, \underline{y} + 1 \rangle$$

$$G = \{2x + 4y + 3, y + 1\}$$

Ideal membership problem

Question: $h = 6x + y^3 + y^2 + 12y + 9 \in I$?

- for I: a priori not obvious how to check this
- for a Gröbner basis G: "easy" reduction method really?

- every ideal of $\mathbb{Q}[X]$ has a Gröbner basis
- construction algorithm by Buchberger
- special case: leading terms of ideal generators have no variables in common

$$G = \{f, g\}$$
 is a Gröbner basis for I

$$I = \langle f, g \rangle = \langle 2x + 4y + 3, y + 1 \rangle$$
$$G = \{2x + 4y + 3, y + 1\}$$

Ideal membership problem

Question: $h = 6x + y^3 + y^2 + 12y + 9 \in I$?

- for I: a priori not obvious how to check this
- for a Gröbner basis G: "easy" reduction method really?

Reduction

multivariate version of polynomial division with remainder

- divide h by elements of G
- remainder r contains no term that is a multiple of any of the leading terms of G
- Notation: r = Remainder(h, G)

$$I = \langle f, g \rangle = \langle 2x + 4y + 3, y + 1 \rangle$$
$$G = \{2x + 4y + 3, y + 1\}$$

Ideal membership problem

Question:
$$h = 6x + y^3 + y^2 + 12y + 9 \in I$$
?

$$I = \langle f, g \rangle = \langle 2x + 4y + 3, y + 1 \rangle$$
$$G = \{2x + 4y + 3, y + 1\}$$

Ideal membership problem

Question:
$$h = 6x + y^3 + y^2 + 12y + 9 \in I$$
?

Answer: Yes

$$h = 3*(2x+4y+3)+y^2*(y+1)$$

Remainder(h, G)=0

$$I = \langle f, g \rangle = \langle 2x + 4y + 3, y + 1 \rangle$$
$$G = \{2x + 4y + 3, y + 1\}$$

Ideal membership problem

Question:
$$h = 6x + y^3 + y^2 + 12y + 10 \in I$$
?

$$I = \langle f, g \rangle = \langle 2x + 4y + 3, y + 1 \rangle$$
$$G = \{2x + 4y + 3, y + 1\}$$

Ideal membership problem

Question:
$$h = 6x + y^3 + y^2 + 12y + 10 \in I$$
?

Answer: No

$$h = 3*(2x+4y+3)+y^2*(y+1)+1$$

Remainder(h, G)=1

Polynomial Representation of Circuit Gates

Polynomial Representation of Circuit Gates

Boolean Gate Polynomials

$$u = \neg v$$
 implies $0 = -u + 1 - v$
 $u = v \land w$ implies $0 = -u + vw$
 $u = v \lor w$ implies $0 = -u + v + w - vw$
 $u = v \oplus w$ implies $0 = -u + v + w - 2vw$

Polynomial Representation of Circuit Gates

Boolean Gate Polynomials

$$u=\neg v$$
 implies $0=-u+1-v$
 $u=v\wedge w$ implies $0=-u+vw$
 $u=v\vee w$ implies $0=-u+v+w-vw$
 $u=v\oplus w$ implies $0=-u+v+w-2vw$

■ Field Polynomials

"
$$u \in \mathbb{B}$$
" implies $0 = u(u-1)$ $0 = u^2 - u$

n-Bit Multipliers

- n*n=2n
- **2** 2*n* inputs: $a_0, \ldots, a_{n-1}, b_0, \ldots, b_{n-1}$
- 2n outputs: s₀,...,s_{2n−1}
- one variable to each internal gate output: g_0, \ldots, g_k

n-Bit Multipliers

- n*n=2n
- **2** 2*n* inputs: $a_0, \ldots, a_{n-1}, b_0, \ldots, b_{n-1}$
- 2n outputs: s₀,...,s_{2n−1}
- one variable to each internal gate output: g_0, \ldots, g_k

Values of g_0, \ldots, g_k and s_0, \ldots, s_{2n-1} are uniquely determined as soon as $a_0, \ldots, a_{n-1}, b_0, \ldots, b_{n-1}$ are fixed.

Polynomial Circuit Constraints

A polynomial p is called a polynomial circuit constraint (PCC) for a circuit
 C if for every choice of

$$(a_0,\ldots,a_{n-1},b_0,\ldots,b_{n-1})\in\{0,1\}^{2n}$$

and resulting values $g_1, \ldots, g_k, s_0, \ldots, s_{2n-1}$ implied by the gates of C the substitution of these values into p gives zero.

Polynomial Circuit Constraints

A polynomial p is called a polynomial circuit constraint (PCC) for a circuit
 C if for every choice of

$$(a_0,\ldots,a_{n-1},b_0,\ldots,b_{n-1})\in\{0,1\}^{2n}$$

and resulting values $g_1, \ldots, g_k, s_0, \ldots, s_{2n-1}$ implied by the gates of C the substitution of these values into p gives zero.

- The set of all PCCs for C is denoted by I(C).
- I(C) is an ideal.

Examples for PCCs:

$$p_0 = s_0 - a_0 b_0$$

$$p_1 = a_1^2 - a_1$$

$$p_2 = g_2^2 - g_2$$

$$p_3 = s_1 g_4$$

and gate

a₁ boolean

g₂ boolean

xor-and constraint

Examples for PCCs:

$$p_0 = s_0 - a_0 b_0$$

and gate

$$p_1 = a_1^2 - a_1$$

a₁ boolean

$$p_2 = g_2^2 - g_2$$

g₂ boolean

$$p_3 = s_1 g_4$$

xor-and constraint

• • •

A circuit C is called a multiplier if

$$\sum_{i=0}^{2n-1} 2^i s_i - \left(\sum_{i=0}^{n-1} 2^i a_i\right) \left(\sum_{i=0}^{n-1} 2^i b_i\right) \quad \in \quad \mathit{I}(C).$$

Problem: Definition of I(C) does not provide a basis

Problem: Definition of I(C) does not provide a basis

We can deduce at least some elements of I(C):

- $G = \{\text{Gate Polynomials}\} \cup \{\text{Field Polynomials for inputs}\}$
- The ideal generated by G is denoted by J(C).

Problem: Definition of I(C) does not provide a basis

We can deduce at least some elements of I(C):

- $G = \{\text{Gate Polynomials}\} \cup \{\text{Field Polynomials for inputs}\}$
- The ideal generated by G is denoted by J(C).
- Reverse topological order: output variable of a gate is greater than input variables \rightarrow Then G is a Gröbner basis for J(C).

THEOREM

For all acyclic circuits C, we have J(C) = I(C).

THEOREM

For all acyclic circuits C, we have J(C) = I(C).

- $J(C) \subseteq I(C)$: corresponds to soundness
- $I(C) \subseteq J(C)$: corresponds to completeness

$$J(C) = \langle$$

$$J(C) = \langle -s_3 + g_1 g_4, -s_2 + g_1 + g_4 - 2g_1 g_4,$$

$$J(C) = \langle \\ -s_3 + g_1 g_4, \\ -s_2 + g_1 + g_4 - 2g_1 g_4, \\ -g_4 + g_2 g_3, \\ -s_1 + g_2 + g_3 - 2g_2 g_3,$$

$$J(C) = \langle \\ -s_3 + g_1 g_4, \\ -s_2 + g_1 + g_4 - 2g_1 g_4, \\ -g_4 + g_2 g_3, \\ -s_1 + g_2 + g_3 - 2g_2 g_3, \\ -g_1 + a_1 b_1, \\ -g_2 + a_0 b_1, \\ -g_3 + a_1 b_0, \\ -s_0 + a_0 b_0,$$

$$J(C) = \langle \\ -s_3 + g_1 g_4, \\ -s_2 + g_1 + g_4 - 2g_1 g_4, \\ -g_4 + g_2 g_3, \\ -s_1 + g_2 + g_3 - 2g_2 g_3, \\ -g_1 + a_1 b_1, \\ -g_2 + a_0 b_1, \\ -g_3 + a_1 b_0, \\ -s_0 + a_0 b_0, \\ -a_1^2 + a_1, -a_0^2 + a_0, \\ -b_1^2 + b_1, -b_0^2 + b_0 \rangle$$

$$J(C) = \langle \\ -s_3 + g_1 g_4, \\ -s_2 + g_1 + g_4 - 2g_1 g_4, \\ -g_4 + g_2 g_3, \\ -s_1 + g_2 + g_3 - 2g_2 g_3, \\ -g_1 + a_1 b_1, \\ -g_2 + a_0 b_1, \\ -g_3 + a_1 b_0, \\ -s_0 + a_0 b_0, \\ -a_1^2 + a_1, -a_0^2 + a_0, \\ -b_1^2 + b_1, -b_0^2 + b_0 \rangle$$

Order:
$$s_3 > s_2 > g_4 > s_1 > g_1 > g_2 > g_3 > s_0 > a_1 > a_0 > b_1 > b_0$$

 \Rightarrow Generators of J(C) form a Gröbner basis

$$a_1 b_1$$
 $a_0 b_1$
 $a_1 b_0$
 $a_0 b_0$
 g_1
 g_2
 g_3
 g_4
 g_4
 g_3
 g_5
 g_1
 g_4
 g_5
 g_5

$$J(C) = \langle \\ -s_3 + g_1 g_4, \\ -s_2 + g_1 + g_4 - 2g_1 g_4, \\ -g_4 + g_2 g_3, \\ -s_1 + g_2 + g_3 - 2g_2 g_3, \\ -g_1 + a_1 b_1, \\ -g_2 + a_0 b_1, \\ -g_3 + a_1 b_0, \\ -s_0 + a_0 b_0, \\ -a_1^2 + a_1, -a_0^2 + a_0, \\ -b_1^2 + b_1, -b_0^2 + b_0 \rangle$$

Order:
$$s_3 > s_2 > g_4 > s_1 > g_1 > g_2 > g_3 > s_0 > a_1 > a_0 > b_1 > b_0$$

 \Rightarrow Generators of J(C) form a Gröbner basis

Question: $8s_3 + 4s_2 + 2s_1 + s_0 - (2a_1 + a_0)(2b_1 + b_0) \in J(C)$?

COROLLARY

Checking non-ideal membership over $\mathbb{Q}[x_1,\ldots,x_n]$ even in terms of a given Gröbner basis is NP-hard.

COROLLARY

Checking non-ideal membership over $\mathbb{Q}[x_1,\ldots,x_n]$ even in terms of a given Gröbner basis is NP-hard.

known	(circuit) SAT	circuit	ideal membership	claim

COROLLARY

Checking non-ideal membership over $\mathbb{Q}[x_1,\ldots,x_n]$ even in terms of a given Gröbner basis is NP-hard.

known	(circuit) SAT	circuit	ideal membership	claim
NP-complete	SAT	not constant		

COROLLARY

Checking non-ideal membership over $\mathbb{Q}[x_1,\ldots,x_n]$ even in terms of a given Gröbner basis is NP-hard.

known	(circuit) SAT	circuit	ideal membership	claim
NP-complete	SAT	not constant	$\rightarrow x, x \neq 0$	NP-hard

COROLLARY

Checking non-ideal membership over $\mathbb{Q}[x_1,\ldots,x_n]$ even in terms of a given Gröbner basis is NP-hard.

known	(circuit) SAT	circuit	ideal membership	claim
NP-complete	SAT	not constant	$\rightarrow x, x \neq 0$	NP-hard
Co-NP-complete	UNSAT	constant 0		

COROLLARY

Checking non-ideal membership over $\mathbb{Q}[x_1,\ldots,x_n]$ even in terms of a given Gröbner basis is NP-hard.

known	(circuit) SAT	circuit	ideal membership	claim
NP-complete	SAT	not constant	$\rightarrow x, x \neq 0$	NP-hard
Co-NP-complete	UNSAT	constant 0	\rightarrow 0	Co-NP hard

NP-hard

- transform circuit SAT problem into ideal non-membership testing
- preserves NP-hardness

NP-hard

- transform circuit SAT problem into ideal non-membership testing
- preserves NP-hardness

NP

- open question: non-membership in NP (probably not)
- h in ideal \Leftrightarrow $h = \sum p_i * g_i$ for some p_i (membership)
- h not in ideal \Leftrightarrow $h \neq \sum p_i * g_i$ for all p_i (non-membership)
- sufficient condition for membership being in NP:
 - or equivalently non-membership in Co-NP
 - p_i can be restricted to have polynomial size (in our situation)
 - but then NP = Co-NP

CONCLUSION & FUTURE WORK

Conclusion

- simple and precise mathematical formulation
- complexity result: circuit verification using computer algebra is hard
- results part of an upcoming FMCAD'17 paper
 - with further experimental results and
 - a novel column-wise incremental verification approach

Future Work

- modular multiplication (32 × 32 → 32 multiplier)
- algebraic specification of other arithmetic operators
- algebraically verifying ring-properties
- upper bounds

COMPLEXITY OF CIRCUIT IDEAL MEMBERSHIP TESTING

<u>Daniela Ritirc</u>, Armin Biere, Manuel Kauers Johannes Kepler University Linz, Austria

SC-Square Workshop 2017 University of Kaiserslautern, Germany 29. July 2017

