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MOTIVATION & SOLVING TECHNIQUES

Given: a (gate level) multiplier circuit C
for fixed-size bitwidth n
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Question: For all ai ,bi ∈ B:
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Motivation

verify circuits to avoid issuses
like Pentium FDIV bug

Solving Techniques

SAT using CNF encoding

Binary Moment Diagrams
(BMD)

Algebraic reasoning
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MOTIVATION & SOLVING TECHNIQUES

SAT

verifying even small multipliers (16 Bit) is challenging (empirically)

conjecture [Biere’16]: even simple ring-properties, e.g., x · y = y · x ,
require exponential sized resolution proofs (for gate-level CNF encoding)

recent theoretical result [BeameLiew’17]:
polynomial sized resolution proofs for simple ring-properties exist

no theoretical nor practical results on general multiplier verification

BMD

approach not robust

requires structural knowledge

only works for simple (clean) multipliers
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IN A NUTSHELL

Multiplier
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Translation

Gröbner basis

B = {
x−a0 ∗b0,
y−a1 ∗b1,
s0− x ∗ y ,
}

Verification
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ALGEBRA

f = 2x +4y +3 ∈Q[x ,y ]
g = y +1 ∈Q[x ,y ]

Ring Q[x ,y ]
ring of polynomials with variables x ,y and coefficients in Q

Polynomial f ,g
finite sum of monomials
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ALGEBRA

f = 2x +4y +3 ∈Q[x ,y ]
g = y +1 ∈Q[x ,y ]

Monomial
constant multiple of a term

Term
power product xe1ye2 for e1,e2 ∈ N

Term order
well-defined, x > y > 1

Leading monomial/term/coefficient
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ALGEBRA

f = 2x +4y +3 ∈Q[x ,y ]
g = y +1 ∈Q[x ,y ]

Ideal generated by f,g
I = {q1f +q2g | q1,q2 ∈Q[x ,y ]}= 〈f ,g〉
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ALGEBRA

I = 〈f ,g〉= 〈2x +4y +3,y +1〉

Ideal generated by f,g
I = {q1f +q2g | q1,q2 ∈Q[x ,y ]}= 〈f ,g〉

“I contains all elements which evaluate to 0, when f and g evaluate to 0”
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ALGEBRA

I = 〈f ,g〉= 〈2x +4y +3,y +1〉

Ideal membership problem
Question: h = 6x + y3 + y2 +12y +9 ∈ I ?

for I: a priori not obvious how to check this
for a Gröbner basis G: “easy” reduction method really?

Gröbner basis

every ideal of Q[X ] has a Gröbner basis
construction algorithm by Buchberger
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ALGEBRA

I = 〈f ,g〉= 〈2x +4y +3,y +1〉

G = {2x +4y +3,y +1}

Ideal membership problem
Question: h = 6x + y3 + y2 +12y +9 ∈ I ?

for I: a priori not obvious how to check this
for a Gröbner basis G: “easy” reduction method really?

Gröbner basis

every ideal of Q[X ] has a Gröbner basis
construction algorithm by Buchberger
special case:
leading terms of ideal generators have no variables in common

G = {f ,g} is a Gröbner basis for I
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ALGEBRA

I = 〈f ,g〉= 〈2x +4y +3,y +1〉
G = {2x +4y +3,y +1}

Ideal membership problem
Question: h = 6x + y3 + y2 +12y +9 ∈ I ?

for I: a priori not obvious how to check this
for a Gröbner basis G: “easy” reduction method really?

Reduction
multivariate version of polynomial division with remainder

divide h by elements of G
remainder r contains no term that is a multiple
of any of the leading terms of G
Notation: r = Remainder(h,G)
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ALGEBRA

I = 〈f ,g〉= 〈2x +4y +3,y +1〉
G = {2x +4y +3,y +1}

Ideal membership problem
Question: h = 6x + y3 + y2 +12y +9 ∈ I ?

Answer: Yes
h = 3∗ (2x +4y +3)+ y2 ∗ (y +1)
Remainder(h,G)=0
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ALGEBRA

I = 〈f ,g〉= 〈2x +4y +3,y +1〉
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ALGEBRA

I = 〈f ,g〉= 〈2x +4y +3,y +1〉
G = {2x +4y +3,y +1}

Ideal membership problem
Question: h = 6x + y3 + y2 +12y +10 ∈ I ?

Answer: No
h = 3∗ (2x +4y +3)+ y2 ∗ (y +1)+1
Remainder(h,G)=1
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ALGEBRA
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IDEALS ASSOCIATED TO CIRCUITS

Polynomial Representation of Circuit Gates

Boolean Gate Polynomials

u = ¬v implies 0 =−u+1− v
u = v ∧w implies 0 =−u+ vw
u = v ∨w implies 0 =−u+ v +w− vw
u = v⊕w implies 0 =−u+ v +w−2vw

Field Polynomials

“ u ∈ B ” implies 0 = u(u−1) 0 = u2−u
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IDEALS ASSOCIATED TO CIRCUITS

n-Bit Multipliers

a1 b1 a0 b1 a1 b0 a0 b0

g1 g2 g3

g4

s0s1s2s3

n ∗n = 2n

2n inputs: a0, . . . ,an−1,b0, . . . ,bn−1

2n outputs: s0, . . . ,s2n−1

one variable to each internal gate
output: g0, . . . ,gk

Values of g0, . . . ,gk and s0, . . . ,s2n−1 are uniquely determined as soon as
a0, . . . ,an−1,b0, . . . ,bn−1 are fixed.
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IDEALS ASSOCIATED TO CIRCUITS

Polynomial Circuit Constraints

A polynomial p is called a polynomial circuit constraint (PCC) for a circuit
C if for every choice of

(a0, . . . ,an−1,b0, . . . ,bn−1) ∈ {0,1}2n

and resulting values g1, . . . ,gk ,s0, . . . ,s2n−1 implied by the gates of C the
substitution of these values into p gives zero.

The set of all PCCs for C is denoted by I(C).

I(C) is an ideal.
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IDEALS ASSOCIATED TO CIRCUITS

a1 b1 a0 b1 a1 b0 a0 b0

g1 g2 g3

g4

s0s1s2s3

Examples for PCCs:

p0 = s0−a0b0 and gate

p1 = a2
1−a1 a1 boolean

p2 = g2
2−g2 g2 boolean

p3 = s1g4 xor-and constraint

. . .

A circuit C is called a multiplier if

2n−1

∑
i=0

2isi −
(n−1

∑
i=0

2iai

)(n−1

∑
i=0

2ibi

)
∈ I(C).
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IDEALS ASSOCIATED TO CIRCUITS

Problem: Definition of I(C) does not provide a basis

We can deduce at least some elements of I(C):

G = {Gate Polynomials}∪{Field Polynomials for inputs}
The ideal generated by G is denoted by J(C).

Reverse topological order:
output variable of a gate is greater than input variables
→Then G is a Gröbner basis for J(C).
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IDEALS ASSOCIATED TO CIRCUITS

THEOREM

For all acyclic circuits C, we have J(C) = I(C).

J(C)⊆ I(C): corresponds to soundness

I(C)⊆ J(C): corresponds to completeness
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IDEALS ASSOCIATED TO CIRCUITS

a1 b1 a0 b1 a1 b0 a0 b0

g1 g2 g3

g4

s0s1s2s3

J(C) = 〈

−s3 +g1g4,
−s2 +g1 +g4−2g1g4,
−g4 +g2g3,
−s1 +g2 +g3−2g2g3,
−g1 +a1b1,
−g2 +a0b1,
−g3 +a1b0,
−s0 +a0b0,
−a2

1 +a1,−a2
0 +a0,

−b2
1 +b1,−b2

0 +b0〉

Order: s3 > s2 > g4 > s1 > g1 > g2 > g3 > s0 > a1 > a0 > b1 > b0

⇒ Generators of J(C) form a Gröbner basis

Question: 8s3 +4s2 +2s1 + s0− (2a1 +a0)(2b1 +b0) ∈ J(C)?
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COMPLEXITY

COROLLARY

Checking non-ideal membership over Q[x1, . . . ,xn] even in terms of a given
Gröbner basis is NP-hard.

Connection between circuit SAT and ideal membership testing

known (circuit) SAT circuit ideal membership claim

NP-complete SAT not constant → x ,x 6= 0 NP-hard
Co-NP-complete UNSAT constant 0 → 0 Co-NP hard
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COMPLEXITY

NP-hard

transform circuit SAT problem into ideal non-membership testing

preserves NP-hardness

NP

open question: non-membership in NP (probably not)

h in ideal ⇔ h = ∑pi ∗gi for some pi (membership)

h not in ideal ⇔ h 6= ∑pi ∗gi for all pi (non-membership)
sufficient condition for membership being in NP:

or equivalently non-membership in Co-NP
pi can be restricted to have polynomial size (in our situation)
but then NP = Co-NP
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CONCLUSION & FUTURE WORK

Conclusion

simple and precise mathematical formulation

complexity result: circuit verification using computer algebra is hard
results part of an upcoming FMCAD’17 paper

with further experimental results and
a novel column-wise incremental verification approach

Future Work

modular multiplication (32×32→ 32 multiplier)

algebraic specification of other arithmetic operators

algebraically verifying ring-properties

upper bounds
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