
MiniLearningHeapExpSimp / SAT4J

Daniel Le Berre
CRIL-CNRS FRE2499, Université d’Artois, 62300 Lens, FRANCE

1 The SAT4J library

The SAT4J library [1] is an open source library
of efficient SAT solvers in Java dedicated to peo-
ple willing to embed SAT technology into their
application without worrying about the details.
SAT4J is currently used in model verification
[10], ontology matching [5], requirements engi-
neering [11], software product line configuration
[2], etc. It started as a Java implementation
of the MiniSAT specification [3], and evolved
as a library when the solver was modularized
to provide several heuristics, conflict analysis
schemes, data structures, etc. One of the main
feature in SAT4J solvers is the possibility to fil-
ter the constraints to learn after conflict anal-
ysis, since learning is not mandatory for back-
tracking, which is in contrast with usual conflict
driven clause learning solvers [7].

The library can also handle cardinality or
pseudo boolean constraints using full cutting
planes reasoning. The library provides built-
in CSP to SAT translators. Finally, a simple
optimization scheme is provided, allowing basic
MaxSAT and Weighted-MaxSAT solving.

2 The MiniLearning SAT
solvers

MiniLearning inherits from Chaff [8] most of its
features (first UIP learning, VSIDS heuristics,
restarts strategy with increasing cutoff, etc.). It
can selectively learn clauses, on syntactical ba-
sis (its length for instance) or on a more sophis-
ticated heuristics (based on the activity of the
variables). The version submitted to the SAT
race, compared to the versions submitted to the
SAT Competitions 2004 and 2005, inherits from
last year winner MiniSAT 1.14 [4] both a heap
based VSIDS heuristics and reason simplifica-
tion during conflict analysis.

The main differences between MiniSAT 1.14
and MiniLearning (despite the programming

language used) are the following:

backjumping The non chronological back-
tracking is done thanks to the first UIP con-
flict analysis scheme inherited from GRASP
and Chaff but without having to learn a
clause: backjumping and learning are de-
coupled in MiniLearning.

learning The asserting clauses found during
conflict analysis are added to the current
set of clauses or discarded according to their
size or other heuristics. In the solver sub-
mitted to the SAT Race, only clauses of
length less than 10% of the total number
of variables are recorded. Note that if an
asserting clause is not added to the set
of clauses, it is recorded as the reason for
propagating its unassigned literal, else the
conflict analysis and backjumping scheme
could not work. As a consequence, there
is no gain in memory, rather a gain in the
number of watched clauses.

heuristics As for VSIDS, each variable (not
literal) has its activity increased if it ap-
pears in a learned clause, and divided by
a constant periodically. That way, impor-
tant variables should emerge after a few
conflicts. In our settings, the activity is
increased for each occurrence of a literal
met during conflict analysis, while in Min-
iSAT it is done only once. The idea is to
give more credit to literals that have been
merged during resolution.

branching If a variable never appeared in a
conflict, we branch first on its negative
literal, else we branch on the literal that
appeared in the last learnt clause. This
is an easy way to implement that latest
learnt clauses should be satisfied, instead
of keeping a record of those clauses as in
Berkmin[6].

1



reason simplification Once conflict analysis
is performed using the First UIP scheme,
the derived clause is simplified using the
recursive approach proposed in MiniSAT
1.14[4], without the abstraction on decision
levels. That simplification has a side effect
in MiniLearning since reducing the size of
the clauses will increase the chances for a
given clause to be learnt. Note that only
a light version of that simplification was
available in the versions used for the quali-
fication (MiniLearningHeapEZSimp).

memory/clause management Learnt se-
lected clauses are kept as much as possible.
The solver removes half of the clauses
learnt (the less active) when available
memory is under 5 MB. This is in contrast
with most SAT solvers that clear learnt
clauses periodically. We got mixed results
using that strategy on medium size bench-
marks, but it is the best option for us to
deal with huge benchmarks.

Note that the library contains more than 20
pre-built SAT solvers, with various options en-
abled. Not all of them are compatible: it is for
instance impossible for the moment to enable
reason simplification with the specific structure
to handle binary clauses proposed in [9]. The
SAT solver submitted to the competition is the
one that provided the best results on the tests
sets.

3 Expected behavior

We expect SAT4J to show reasonable perfor-
mances during the SAT Race. We did not intro-
duce any specific heuristics for solving the test
sets, so the solver should have a similar behav-
ior during the race. The solver should perform a
bit better during the race than during the qual-
ifications since the full reason simplification was
not implemented in the solvers submitted for the
qualifications. That feature gave better results
on the race test sets. The new upcoming Java
Virtual Machine (Java 6 “Mustang” beta 2) pro-
vides a 10% to 20% speedup compared to the
JVM used for the SAT Race (Java 1.5.0 04).

References

[1] SAT4J: The SATisfiability library for Java,
2004. http://www.sat4j.org/.

[2] Don Batory. Feature models, grammars,
and propositional formulas. In Proceedings
of SPLC 2005, volume 3714 of LNCS, pages
7–20, 2005.

[3] Niklas Eén and Niklas Sörensson. An ex-
tensible sat solver. In Proceedings of the
Sixth International Conference on Theory
and Applications of Satisfiability Testing,
LNCS 2919, pages 502–518, 2003.

[4] Niklas Eén and Niklas Sörensson. Minisat
1.14, a sat solver with conflict-clause min-
imization. SAT Competition 2005 Solver
Description, 2005.

[5] Fausto Giunchiglia, Mikalai Yatskevich,
and Enrico Giunchiglia. Efficient seman-
tic matching. In Proceedings of ESWC’05,
volume 3714 of LNCS, pages 272–289, 2005.

[6] E. Goldberg and Y. Novikov. BerkMin: A
fast and robust SAT-solver. In Design, Au-
tomation, and Test in Europe (DATE ’02),
pages 142–149, March 2002.

[7] Joao P. Marques-Silva and Karem A.
Sakallah. GRASP - A New Search Al-
gorithm for Satisfiability. In Proceedings
of IEEE/ACM International Conference
on Computer-Aided Design, pages 220–227,
November 1996.

[8] M. W. Moskewicz, C. F. Madigan, Y. Zhao,
L. Zhang, and S. Malik. Chaff: Engineer-
ing an efficient SAT solver. In Proceedings
of the 38th Design Automation Conference
(DAC’01), pages 530–535, June 2001.

[9] Lawrence Ryan. Efficient algorithms
for clause learning sat solvers. Master’s
thesis, SFU, February 2004. Available at
http://www.cs.sfu.ca/ mitchell/papers/ryan-
thesis.ps.

[10] Emina Torlak. Kodkod: a sat-
based model finder for first order
logic with relations, transitive clo-
sure, and partial instances, 2006.
http://www.mit.edu/people/emina/kodkod.html.

[11] Yijun Yu, Alexei Lapouchnian,
Sotirios Liaskos, and John Mylopou-
los. Requirements-driven configura-
tion of software systems. In Proceed-
ings of RETR’05, November 2005.
http://www.cs.toronto.edu/km/retr/camera/yu05retr.pdf.

2


