
TINISAT in SAT-Race 2006

Jinbo Huang
Logic and Computation Program

National ICT Australia
Canberra, ACT 0200 Australia

jinbo.huang@nicta.com.au

The development ofTINISAT (pronounced “teeny sat”)
was started as part of an investigation of the effect of restart
policies on clause learning (Huang 2006). The version en-
tering the race,TINISAT 0.2, is written in about 760 lines
of C++ including comments. The top-level procedure of the
solver is given in Algorithm 1, which operates on an implicit
CNF formula whose satisfiability is in question.

The following components of a typical clause learn-
ing SAT solver can be identified in Algorithm 1: deci-
sion heuristic (selectLiteral), unit propagation (decide,
assertLearnedClause), clause learning (learnClause,
backtrack), restarts (restartPoint, backtrack). We note
thatTINISAT 0.2 uses the 1-UIP (Zhanget al. 2001) learning
scheme, does not delete clauses, and does not use random-
ness. The functions involved have the following semantics:

• selectLiteral uses some decision heuristic to select a free
variable and then select one of its two literals, and returns
it, or returnsnil if no free variables exist.

• decide increments the decision level, sets the given literal
to true, and performs unit propagation; it returns true iff
no empty clause is derived.

• learnClause performs 1-UIP learning to derive an impli-
cate of the CNF formula, and sets the assertion level (i) to
0 if the empty clause is derived, (ii) to 1 if a unit clause is
derived, and otherwise (iii) to the second highest decision
level among literals of the derived clause.

• assertionLevel returns the assertion level, which has

Algorithm 1 TINISAT

1: loop
2: if (literal = selectLiteral()) ==nil then
3: return SATISFIABLE
4: if !decide(literal) then
5: repeat
6: learnClause()
7: if assertionLevel() == 0then
8: return UNSATISFIABLE
9: if restartPoint()then

10: backtrack(1)
11: else
12: backtrack(assertionLevel())
13: until assertLearnedClause()

been set by the last call tolearnClause.

• restartPoint returns true iff the solver is to restart now
according to some restart policy.

• backtrack(k) undoes all variable assignments in decision
levels> k, and sets the decision level tok.

• assertLearnedClause adds the learned clause to the
clause pool, performs unit propagation if the current deci-
sion level equals the assertion level (this is the condition
under which the learned clause becomes unit), and returns
true iff no empty clause is derived.

Decision Heuristic TINISAT 0.2 uses the following deci-
sion heuristic: For each literal we keep a score that is ini-
tially the number of its occurrences in the original clauses.
On learning a clause, we increment the score of every lit-
eral by 1 for each of its occurrences in clauses that are in-
volved in the resolution process. The scores of all literals are
halved once every 128 conflicts. When a decision is called
for (Line 2 of Algorithm 1), we pick a (free) literal with the
highest score from the most recently learned clause that has
not been satisfied, and set it to true; if no such clause exists
(at most 256 clauses are searched for this purpose) we pick
any (free) literal with the highest score.

Restart Policy TINISAT 0.2 uses an instance of a class
of restart policies proposed in (Luby, Sinclair, & Zucker-
man 1993) based on the following sequence of run lengths:
1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, . . ., formally defined as
the sequencet1, t2, t3, . . . such that:

ti =
{

2k−1, if i = 2k − 1;
ti−2k−1+1, if 2k−1 ≤ i < 2k − 1.

TINISAT 0.2 takes a “unit run” in this sequence to
be 32 conflicts. Hence the actual restart intervals are:
32, 32, 64, 32, 32, 64, 128, . . .

References
Huang, J. 2006. The effect of restarts on the efficiency of clause
learning. InAAAI-06 Workshop on Learning for Search.
Luby, M.; Sinclair, A.; and Zuckerman, D. 1993. Optimal
speedup of Las Vegas algorithms.Information Processing Let-
ters47(4):173–180.
Zhang, L.; Madigan, C.; Moskewicz, M.; and Malik, S. 2001. Ef-
ficient conflict driven learning in a Boolean satisfiability solver. In
Proceedings of the International Conference on Computer Aided
Design (ICCAD).


