
zChaff SAT Solver

Zhaohui Fu Yogesh Marhajan Sharad Malik
Department of Electrical Engineering

Princeton University
Princeton, NJ 08544, USA

{zfu,yogism,sharad}@Princeton.EDU

I. I NTRODUCTION

zChaff is a SAT solver that targets the industrial category and
hopes to be reasonably successful in the handmade category.It
implements the well known Chaff algorithm [1] which includes the
innovative VSIDS decision strategy and a very efficient Boolean
constraint propagation procedure. zChaff is a popular solver whose
source is available to the public. It is possible to compile zChaff
into a linkable library for easy integration with other applications and
successful integration examples include the BlackBox AI planner [2],
NuSMV model checker [3], GrAnDe theorem prover [4], and others.
Performance-wise, zChaff compares well with other SAT solvers –
versions of zChaff have emerged as the Best Complete Solver in
the industrial and handmade instances categories in the SAT2002
Competition [5] and as the Best Complete Solver in the industrial
category in the 2004 SAT Competition [6].

II. OVERVIEW OF THE ZCHAFF SOLVER

We will present a quick overview of the main features of the zChaff
solver. The detailed information can be found at [7].

A. Decision Strategy - VSIDS

The Chaff [1] solver proposed the use of a heuristic called Variable
State Independent Decaying Sum (VSIDS). VSIDS keeps a scorefor
each literal of a variable.

B. Boolean Constraint Propagation - Two Literal Watching

zChaff uses the Two Literal Watching scheme [1] for BCP as
proposed by Chaff [1]. A key benefit of the two literal watching
scheme is that at the time of backtracking, there is no need tomodify
the watched literals in the clause database. This reduces the total
number of memory accesses.

C. Conflict Driven Clause Learning and Non-chronological Back-
tracking - Learning the FirstUIP Conflict Clause

Conflict driven clause learning along with non-chronological back-
tracking were first incorporated into a SAT solver in GRASP [8]
and relsat [9]. These techniques are essential for efficientsolving of
structured problems.

D. Increased Search Locality

When VSIDS was first proposed, it turned out to be very successful
in increasing the locality of the search by focusing on the recent
conflicts. However, recent experiments show that branchingwithin
greater locality helps dramatically to prune the search space.

1) Variable Ordering Scheme for VSIDS:This is the default
decision heuristic for zChaff. One way of trying to make VSIDS
more local is to increase the frequency of score decay.

2) BerkMin Type Decision Heuristic:The use of the most recent
unsatisfied conflict clauses as is done by BerkMin also turns out to
be a good cost-effective approach to estimate the locality.The main
ideas of this approach are described by the authors of BerkMin [10].

3) Conflict Clause Based Assignment Stack Shrinking:This is
related to one of the techniques used by the Jerusat solver [11]. When
the newly learned firstUIP clause exceeds a certain lengthL, we use
it to drive the decision strategy.

E. Learning Shorter Clauses

Short clauses potentially prune large spaces from the search. They
lead to faster BCP and quicker conflict detection. Conflict driven
learning derives new (conflict) clauses by successively resolving the
clauses involved in the current conflict.

1) Short Antecedent Clauses are Preferred:When the clauses do
not share many common literals, the sum of the lengths of all the
involved clauses will determine the length of the learned conflict
clause. We can directly influence the choice of clauses for the
resolution by preferring shorter antecedent clauses.

2) Multiple conflict analysis:This is a more costly technique than
replacing antecedents. It is often observed that BCP returns not one
but many conflicting clauses (most of which are derived from some
common resolvents). For each conflicting clause, zChaff finds the
length of the firstUIP clause to be learned, and only records the one
with the shortest length.

F. Aggressive Clause Deletion

As in BerkMin, zChaff periodically deletes some learned clauses
using usage statistics and clause lengths to estimate the usefulness of
a clause.

G. Frequent Restarts

Luck plays an important role in determining the solving timeof a
SAT solver. zChaff also uses a rapid fixed interval restart policy. The
frequent restarts are observed to make the solver more robust.

REFERENCES

[1] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: Engineering an Efficient SAT Solver,” in38th DAC, 2001.

[2] http://www.cs.washington.edu/homes/kautz/blackbox/.
[3] NuSMW Home Page, http://nusmv.irst.itc.it/.
[4] GrAnDe, http://www.cs.miami.edu/∼tptp/ATPSystems/GrAnDe/.
[5] SAT Competition 2002, http://www.satlive.org/SATCompetition/2002/.
[6] SAT Competition 2004, http://www.satlive.org/SATCompetition/2004/.
[7] Y. S. Mahajan, Z. Fu, and S. Malik, “Zchaff2004: An efficient sat

solver.” Lecture Notes in Computer Science: Theory and Applicationsof
Satisfiability Testing, 7th International Conference, Invited Paper, vol.
3542, pp. 360–375, 2005.

[8] J. P. Marques-Silva and K. A. Sakallah, “GRASP - A New Search
Algorithm for Satisfiability,” in IEEE International Conf. on Tools with
Artificial Intelligence, 1996.

[9] R. Bayardo and R. Schrag, “Using CSP look-back techniques to solve
real-world SAT instances,” inNational Conference on Artificial Intelli-
gence (AAAI), 1997.

[10] E. Goldberg and Y. Novikov, “BerkMin: A Fast and Robust SAT Solver,”
in DATE, 2002.

[11] A. Nadel, “The Jerusat SAT Solver,” Master’s thesis, Hebrew University
of Jerusalem, 2002.


