Propositional logic has been recognized throughout the centuries as one of the cornerstones of reasoning in philosophy and mathematics. Over time, its formalization into Boolean algebra was accompanied by the recognition that a wide range of combinatorial problems can be expressed as propositional satisfiability (SAT) problems. Because of this dual role, SAT developed into a mature, multi-faceted scientific discipline, and from the earliest days of computing a search was underway to discover how to solve SAT problems in an automated fashion.

This book, the *Handbook of Satisfiability*, is the second, updated and revised edition of the book first published in 2009 under the same name. The handbook aims to capture the full breadth and depth of SAT and to bring together significant progress and advances in automated solving. Topics covered span practical and theoretical research on SAT and its applications and include search algorithms, heuristics, analysis of algorithms, hard instances, randomized formulae, problem encodings, industrial applications, solvers, simplifiers, tools, case studies and empirical results. SAT is interpreted in a broad sense, so as well as propositional satisfiability, there are chapters covering the domain of quantified Boolean formulae (QBF), constraints programming techniques (CSP) for word-level problems and their propositional encoding, and satisfiability modulo theories (SMT). An extensive bibliography completes each chapter.

This second edition of the handbook will be of interest to researchers, graduate students, final-year undergraduates, and practitioners using or contributing to SAT, and will provide both an inspiration and a rich resource for their work.

Edmund Clarke, 2007 ACM Turing Award Recipient: “SAT solving is a key technology for 21st century computer science.”

Donald Knuth, 1974 ACM Turing Award Recipient: “SAT is evidently a killer app, because it is key to the solution of so many other problems.”

Stephen Cook, 1982 ACM Turing Award Recipient: “The SAT problem is at the core of arguably the most fundamental question in computer science: What makes a problem hard?”
Contents

Part I. Theory and Algorithms

Chapter 1. A History of Satisfiability
John Franco and John Martin, with sections contributed by Miguel Anjos, Holger Hoos, Hans Kleine Bünning, Ewald Speckenmeyer, Alasdair Urquhart, and Hantao Zhang

Chapter 2. CNF Encodings
Steven Prestwich

Chapter 3. Complete Algorithms
Adnan Darwiche and Knot Pipatsrisawat

Chapter 4. Conflict-Driven Clause Learning SAT Solvers
Joao Marques-Silva, Ines Lynce, and Sharad Malik

Chapter 5. Look-Ahead Based SAT Solvers
Marijn J.H. Heule and Hans van Maaren

Chapter 6. Incomplete Algorithms
Henry Kautz, Ashish Sabharwal, and Bart Selman

Chapter 7. Proof Complexity and SAT Solving
Sam Buss and Jakob Nordström

Chapter 8. Fundamentals of Branching Heuristics
Oliver Kullmann

Chapter 9. Preprocessing in SAT Solving
Armin Biere, Matti Järvisalo, and Benjamin Kiesl

Chapter 10. Random Satisfiability
Dimitris Achlioptas

Chapter 11. Exploiting Runtime Variation in Complete Solvers
Carla P. Gomes and Ashish Sabharwal

Chapter 12. Automated Configuration and Selection of SAT Solvers
Holger H. Hoos, Frank Hutter, and Kevin Leyton-Brown

Chapter 13. Symmetry and Satisfiability
Karem A. Sakallah

Chapter 14. Minimal Unsatisfiability and Autarkies
Hans Kleine Bünning and Oliver Kullmann

Chapter 15. Proofs of Unsatisfiability
Marijn J.H. Heule

Chapter 16. Worst-Case Upper Bounds
Evgemy Dantsin and Edward A. Hirsch

Chapter 17. Fixed-Parameter Tractability
Marko Samer(1977-2010) and Stefan Szeider

Part II. Applications and Extensions

Chapter 18. Bounded Model Checking
Armin Biere

Chapter 19. Planning and SAT
Jussi Rintanen

Chapter 20. Software Verification
Daniel Kroening

Chapter 21. Combinatorial Designs by SAT Solvers
Hantao Zhang

Chapter 22. Connections to Statistical Physics
Fabrizio Altarelli, Rémi Monasson, Guilhem Semerjian, and Francesco Zamponi

Chapter 23. MaxSAT, Hard and Soft Constraints
Chu Min Li and Felip Manyà

Chapter 24. Maximum Satisfiability
Fahiem Bacchus, Matti Järvisalo, and Ruben Martins

Chapter 25. Model Counting
Carla P. Gomes, Ashish Sabharwal, and Bart Selman

Chapter 26. Approximate Model Counting
Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi

Chapter 27. Non-Clausal SAT and ATPG
Rolf Drechsler, Tommi Junttila and Ilkka Niemelä

Chapter 28. Pseudo-Boolean and Cardinality Constraints
Olivier Roussel and Vasco Manquinho

Chapter 29. Theory of Quantified Boolean Formulas
Hans Kleine Bünning and Uwe Bubeck

Chapter 30. Reasoning with Quantified Boolean Formulas
Enrico Giunchiglia, Paolo Marin, and Massimo Narizzano

Chapter 31. Quantified Boolean Formulas
Olaf Beyersdorff, Mikoláš Janota, Florian Lonsing, Martina Seidl

Chapter 32. SAT Techniques for Modal and Description Logics
Roberto Sebastiani and Armando Tacchella

Chapter 33. Satisfiability Modulo Theories
Clark Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli

Chapter 34. Stochastic Boolean Satisfiability
Stephen M. Majercik

Subject Index

Cited Author Index

Contributing Authors and Affiliations