
Towards Scenario-Based Testing of UML Diagrams?

Petra Brosch2, Uwe Egly1, Sebastian Gabmeyer2, Gerti Kappel2, Martina Seidl3, Hans
Tompits1, Magdalena Widl1, and Manuel Wimmer2

1 Institute for Information Systems, Vienna University of Technology, Austria
{uwe,tompits,widl}@kr.tuwien.ac.at

2 Business Informatics Group, Vienna University of Technology, Austria
{brosch,gabmeyer,gerti,wimmer}@big.tuwien.ac.at

3 Institute of Formal Models and Verification, Johannes Kepler University, Austria
martina.seidl@jku.at

Abstract. In model-driven engineering, models are not primarily developed for
documentation and requirement specification purposes, but promoted to first-class
artifacts, from which executable code is generated. As a consequence, typical
development activities like testing must be performed on the model level. In this
paper, we propose to use overlapping information inherent in multiple views of
models for automatic testing. Using a prototype based on the model checker SPIN

we show the feasibility of this approach and identify future challenges.

1 Introduction

Multi-view modeling languages like UML [6] offer different diagram types to lower the
complexity of describing software systems. Each diagram provides a distinct view on
the system, allowing for splitting a complex model into various areas of concern [4].
In that way, the diagrams complement one another, altogether providing a holistic
representation of the system. The views are connected by information redundant in the
different diagrams and consistency has to be assured [4]. In this paper, we investigate
how this information can be used as test data.

Consider the following example modeled in Fig. 1. Two state machines show a typical
behavior of a PhD student (PhD) and a coffee machine (CM). Both state machines
change their states according to the messages they receive. Conditions for the state
transitions are given in terms of transition labels. The transition labels consist of two
parts: The left part denotes an action triggering the transition, and the right part indicates
a set of actions performed during the transition. If no triggering action is defined (“−”),
the transition is executed unconditionally. Starting in state Tired , the PhD student turns
the coffee machine on and optimistically waits until it is ready. If she receives the error()
message, she becomes desperate, then tired and tries again. Otherwise, she is happy,
demands coffee, and waits until it is completed. The sequence diagram in Fig. 1 models
a forbidden scenario inside a neg fragment: After the coffee machine has sent an error, it
? This work was partially funded by the Vienna Science and Technology Fund (WWTF) through

project ICT10-018, by the fFORTE WIT Program of the Vienna University of Technology
and the Austrian Federal Ministry of Science and Research, and by the Austrian Science Fund
(FWF) under grants P21698, J3159-N23, and S11409-N23.

OffOff HeatingHeating

BrokenBrokenIdleIdle

PreparingCoffeePreparingCoffee

on()/−

−/error()off()/−

coffee()/− −/coffeeComplete()

repaired()/−

−/ready()

TiredTired

OptimisticOptimistic

HappyHappyWaitingWaiting

DesperateDesperateWorkingWorking

notTired()/on()

error()/−

notDesperate()/−

ready()/−

notHappy()/coffee()

coffeeComplete()/−

−/−

+ entry / off()

cm:CM alice:PhD

error()

coffee()

coffeeComplete()

neg

CM PhD

Fig. 1: Sequence diagram modeling a forbidden interaction for two state machines.

receives a coffee request and then sends a coffeeComplete() message. Obviously, during
the parallel execution of the state machines the forbidden sequence can occur.

In model-driven engineering, models are not only used as mere design documents
but they serve as artifacts from which code is generated. It is important to detect faults
in the models; otherwise they may propagate to the code. Designing test cases on the
model level has been subject to extensive research, but often testing itself is transferred
to the code level or requires a simulation engine. To circumvent this problem, we use
communication scenarios modeled in sequence diagrams. Testing is thus shifted to model
level. Hence, serious design and implementation errors in the model are detected at an
early point in time by using the information available due to multi-view modeling.

We start from a restricted subset of UML state machines and sequence diagrams for
which we provide a formal description. This description is designed in such a way that
it is extensible. The concept of model checking UML interactions has been described
in [8]. We formulate an alternative encoding more natural for our use case with multiple
communicating state machines. For experimental evaluation, we built a first prototype
with PROMELA, the input language of SPIN, a highly configurable, state-of-the-art model
checker. This allows us to derive challenges which have to be solved to put our vision of
testing multi-view models into practice.

2 Preliminaries

We consider a subset of the UML state machine and sequence diagrams modeling only
forbidden scenarios. Note that, to model forbidden scenarios, we consider only sequences
that are enclosed in a neg fragment. The model is consistent if the sequences given in the
sequence diagrams do not occur on any path of the state machines executing in parallel.
The problem is formally defined as follows: A software model is a triple (M,S,A)
whereM is a set of state machines, S is a set of sequence diagrams, and A is a set of
actions, including the empty action ε, necessary to model that a transition is triggered
by a completion event (denoted by “−” in Fig. 1). Note that we omitted the actions
within the states which cause the completion event, because they are not relevant for
our purposes. For example, Fig. 1 shows a software model of two state machines and
one sequence diagram. The set of actions comprises all method calls indicated on the
transitions and entry or exit actions inside states.

Definition 1. A state machine is a tuple M = (S, ι, AT , AP , T), where S is a set of
states, ι ∈ S is a designated initial state, AT ⊆ A, AP ⊆ A, and T ⊆ S × AT ×
P(AP)×S is a transition relation. Each transition contains a triggering action a ∈ AT ,
called event, which triggers a state transition, and a set B ∈ P(AP) of actions, called
effects, which are performed when the transition is executed.

Note that this definition also handles entry and exit actions defined inside states: An
entry action in state si is included in the effects of each incoming transition to si, and an
exit action in the effects of each outgoing transition from si.

Figure 1 shows six states for the state machine MPhD = (S, ι, AT , AP , T). The
initial state ι = Tired is denoted by an incoming transition from the black circle. The
transition labels consist of two parts, separated by a backslash. The set AT contains the
string on the left side of the transition labels, and AP the set of strings indicated on the
right side of the transition labels or as entry or exit actions. For example, the transition
from Waiting to Working is (Waiting , coffeeComplete(), {off ()},Working).

Definition 2. A neg fragment in a sequence diagram S ∈ S is a triple (L,m,N), where
L is a set of lifelines, m : L→M is a bijective function assigning a state machine to
each lifeline, and N is a forbidden sequence of triples L×A× L.

In the sequence diagram of our running example, there are two lifelines, cm and alice .
The state machine assigned to alice is m(alice) = PhD . The sequence of messages is
N = (〈cm, error(), alice〉, 〈alice, coffee(), cm〉, 〈cm, coffeeComplete(), alice〉).

The behavior of a setM of synchronously communicating parallel state machines is
defined as the compositionM|| as follows [2].

Definition 3. Let Mk = (Sk, ιk, A
T
k , A

P
k , Tk), k ∈ {1, . . . , n}, be n state machines, let

Ak = AT
k ∪AP

k , and let two state machines Mi,Mj , i 6= j, synchronize over all actions
in Hij = ((AT

i ∩ AP
j) ∪ (AT

j ∩ AP
i))\{ε} such that communication is pairwise, i.e.,

Hij ∩Al = ∅ for l 6∈ {i, j} (obviously, Hij = Hji). Then, the composition of a setM
of state machines is given byM|| = (S1×. . .×Sn, 〈ι1, . . . , ιn〉, A1 ∪ . . .∪An, R) with

1. (〈s1, . . . , si, . . . , sn〉, a, 〈s1, . . . , s′i, . . . , sn〉) ∈ R iff (si, a, E, s′i) ∈ Ti and a ∈
(A1 ∪ . . . ∪An) \

⋃
0<j≤n,i 6=j Hij with 1 ≤ i ≤ n. The action a is called local.

2. (〈s1, . . . si, . . . , sj , . . . , sn〉, b, 〈s1, . . . , s′i, . . . , s′j , . . . , sn〉) ∈ R iff b ∈ Hij and
there exist transitions (si, v, B, s

′
i) ∈ Ti and (sj , b, G, s

′
j) ∈ Tj with b ∈ B and

1 ≤ i, j ≤ n and i 6= j. The action b is called global.

Definition 4. A sequence π = 〈a1, a2, . . . , al〉 is a path inM|| = (S, ι, A,R) iff there
exist triples (s, ai, s′), (s′, ai+1, s

′′) ∈ R for all i where 1 ≤ i < l. A software model
(M,S,A) is consistent iff for any neg fragment (L,m,N) in any sequence diagram
with N = 〈n1, n2, . . . , nk〉 and nj = (lj , aj , l

′
j) for all j where 1 ≤ j < k, its sequence

of actions 〈a1, a2, . . . , ak〉 does not occur as subsequence of any path inM||.

3 Formulation of the Model Checking Problem

Inspired by previous work [8], we use the model checker SPIN [7] and its input language
PROMELA to verify whether a set of state machines fulfills a safety property described

as neg fragment of a sequence diagram. To this end, we encode the state machine
as a set of active PROMELA processes and the neg fragment as notrace assertion.
In verification mode, SPIN checks whether the behavior specified in the assertion oc-
curs on any execution trace of the processes executing in parallel. If this is the case,
SPIN returns the erroneous execution path on which the notrace behavior occurred.
Otherwise, it returns no error. We evaluated this approach on several examples. The
following elements of PROMELA are relevant for our encoding: active proctype
(process behavior automatically instantiated at program start), label (identifier of a
unique control state), mtype (declaration of symbolic names for constant values), chan
(asynchronous or synchronous channel), and notrace (assertion defining unwanted
sequences of channel activities). A software model (M,S,A) is encoded in PROMELA
as follows: Each action label a ∈ A \ ε is encoded as an element of mtype. For each
state machine M ∈ M we define an active proctype and a synchronous global
channel chan of type mtype. Each active proctype representing a state machine
M = (S, ι, AT , AP , T) contains a label for each state s ∈ S. The label representing ι
is placed at the beginning of the process to be executed first. For each state machine, each
transition T = (si, a, B, sj) is implemented within the PROMELA label representing
state si: A transition consists of a receive statement for a if a 6= ε or nothing otherwise,
a statement for each b ∈ B \ ε or nothing if B = {ε}, and a goto statement directing to
the label representing sj . If si has more than one outgoing transition, the set of transitions
is put inside an if statement. The sequence of messages on each lifeline is encoded as
PROMELA notrace assertion. A notrace assertion is defined over some or all global
channels and monitors all actions on these channels during program execution. When all
channel actions defined by the assertion have been executed, an error is returned. Note
that notrace assertions can contain accept labels to model forbidden infinite behav-
ior. The encoding of Fig. 1 is available online at http://www.modelevolution.
org/media/scenario-based-testing/coffee.pml.

4 Related Work

In the following, we focus on works which present results on the successful application of
verification techniques for multi-view system specifications. Cimatti et al. [5] use Hybrid
Automata (HA) to describe a system of message exchanging components and verify
the system against a scenario-based specification modeled with a Message Sequence
Chart (MSC). They present an extension to bounded model checking using k-induction
to prove that there exists no trace which satisfies a given scenario. Li et al. [9] use MSCs
as scenario-based specifications for concurrent systems modeled with Petri nets and
discuss an approach to check if a Petri net either satisfies a mandatory scenario on all
of its traces, a forbidden scenario on none of its traces, or a dependent scenario on all
traces once a given, other scenario is satisfied. The CHARMY tool suite [10] offers a
modeling, simulation, and verification environment for software architectures (SA). SAs
describe the static and behavioral structures of systems with component, state transition,
and sequence diagrams. CHARMY employs SPIN and translates the SA to PROMELA
to detect deadlocks and unreachable states. The work most closely related to ours is
the one by Schäfer et al. [11]. They propose to verify a set of message-exchanging

state machines against a specification described by UML collaboration diagrams. They
implement their approach in HUGO, which automatically translates the state machine
diagrams to PROMELA and generates Büchi automata, so-called “never claims”, from the
collaboration diagrams. The generated artifacts form the input for SPIN, which performs
the verification. Knapp and Wuttke [8] extend the approach of Schäfer et al. [11] to
accommodate UML 2.0 sequence diagrams. Their encoding focuses on integrating
many language concepts, while we present an encoding suitable for our testing use case.

Another, more widely related research area is the synthesis of state machines from
sequence diagrams. Synthesis aims at automatically deriving design models from re-
quirements given as scenarios, as described by Whittle and Schumann [14]. An extension
of the latter synthesis algorithm is proposed by Grønmo and Møller-Pedersen [13] by
considering also combined fragments in sequence diagrams. The synthesis of model
transition systems from scenarios is discussed by Uchitel et al. [12] who also consider
safety properties besides scenarios. Common to all these approaches is that the consis-
tency between the scenarios and the state machines are given by construction. However,
the synthesis rules may form an important input for the extension of our approach.

5 Discussion and Future Challenges

In this paper, we discussed the use of model checking to detect errors in multi-view
system specifications expressed with UML diagrams. We employ sequence diagrams
to model test cases, which express forbidden scenarios with neg fragments. As this
allows us to perform testing on the level of models, modelers remain within one level of
abstraction. Our current prototype is a proof of concept and restricted to the modeling
language elements discussed in this paper. Yet, it serves as test bed for various interesting
application scenarios. In future work, we plan to integrate positive scenarios in sequence
diagrams and additional constructs of state machines, like hierarchies, asynchronous
communication, or transition guards, into our framework. Also, other techniques to
assemble the information of the sequence diagram and more advanced encodings (includ-
ing model checkers other than SPIN) will be considered. Further, we intend to compare
our encoding with the one of Knapp and Wuttke [8] with respect to scalability and ease
of information extraction. We conclude with lessons learned from building our prototype.
Variations in Semantics. The UML standard’s informal definition of its diagrams’ seman-
tics leaves much room for varying and even contradicting interpretations. For example, a
scenario modeled by a sequence diagram describing the interaction of a set of parallel
state machines may be interpreted such that either (i) at least one execution path over
the set of state machines must satisfy the scenario, (ii) all possible execution paths must
satisfy the scenario, or (iii) the occurrence of the scenario’s first element implies the
occurrence of all subsequent elements on all execution paths. By its very nature, the
encoding provides one such interpretation that has to eliminate all semantic variation
points. This in turn requires a rigorous formalization of the UML standard which should
incorporate the smallest set of unambiguous constructs that retain a maximum of the
UML’s expressiveness. Presently, we started from a simplified version of UML with
a concise semantics, but for more language features we will consider works on UML
formalization [1, 3].

Incomplete Information. In general, models do not describe a system in full detail, but
capture only certain aspects. This way, the modeler is not distracted by temporarily
irrelevant details. For building an executable system, the missing information is then
gathered in multiple refinement steps, eventually at the code level. For automated testing,
this kind of information may be necessary and has therefore to be collected.
State-Space Explosion. The most significant problem in model checking is the large
state space to be searched. To shrink the state space, techniques like partial order reduc-
tion have been proposed, where equivalent traces are considered only once. Although
implemented in model checkers like SPIN, we assume that such optimizations may be
performed at the encoding level by exploiting particularities of the modeling language.
Co-Evolution of Code. So far, we have treated sequence diagrams as a visualization
of safety properties. Alternatively, sequence diagrams may be used as visualizations
of excerpts of a program. Then, the role of sequence diagrams and state machines is
inverted, and sequence diagrams are verified against the state machine. In this manner,
we shift the focus to the detection of inconsistencies between the model and the code,
which may be introduced due to the evolution of the software system.
Presentation Issues. When a model checker determines that a specification is not
satisfied, it returns a counterexample, which explains the cause of the problem. Providing
an adequate representation of the counterexample, e.g., in the concrete syntax of the
employed modeling language, is indispensable for user-friendliness.

References
1. F.S. de Boer, M.M. Bonsangue, M. Steffen, E. Brahm. A Fully Abstract Semantics for UML

Components. FMCO, 2004.
2. C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.
3. M. Broy and M. Cengarle. UML Formal Semantics: Lessons Learned. SoSyM, 10(4), 2011.
4. J. Rivera, J. Romero, A. Vallecillo. Behavior, Time and Viewpoint Consistency: Three

Challenges for MDE. MoDELS 2008 Workshops, pages 60–65, Springer, LNCS 5421, 2009.
5. A. Cimatti, S. Mover, and S. Tonetta. Proving and Explaining the Unfeasibility of Message

Sequence Charts for Hybrid Systems. FMCAD. 2011
6. OMG. Unified Modeling Language (UML), Superstructure V2.4.1. http://www.omg.

org/spec/UML/2.4.1/, August 2011.
7. G. J. Holzmann. The Model Checker SPIN. TSE, 23(5):279–295, 1997.
8. A. Knapp and J. Wuttke. Model Checking of UML 2.0 Interactions. Models in Software

Engineering, pages 42–51, Springer, LNCS 4364, 2006.
9. X. Li, J. Hu, L. Bu, J. Zhao, and G. Zheng. Consistency Checking of Concurrent Models for

Scenario-Based Specifications. SDL, pages 298–312, Springer, LNCS 3530, 2005.
10. P. Pelliccione, P. Inverardi, and H. Muccini. CHARMY: A Framework for Designing and

Verifying Architectural Specifications. TSE, 35(3):325–346, 2008.
11. T. Schäfer, A. Knapp, and S. Merz. Model Checking UML State Machines and Collaborations.

ENTCS, 55(3):357–369, 2001.
12. S. Uchitel, J. Kramer, and J. Magee. Synthesis of Behavioral Models from Scenarios. TSE,

29(2):99–115, 2003.
13. R. Grønmo, and B. Møller-Pedersen. From UML 2 Sequence Diagrams to State Machines by

Graph Transformation. JOT, 10(8):1–22, 2011.
14. J. Whittle, and J. Schumann. Generating Statechart Designs from Scenarios. ICSE, pages

314–323, ACM, 2000.

