
QRAT Polynomially Simulates ∀-Exp+Res?

Benjamin Kiesl1,2 and Martina Seidl3

1 Institute of Logic and Computation, TU Wien
2 CISPA Helmholtz Center for Information Security

3 Institute for Formal Models and Verification, JKU Linz

Abstract. The proof system ∀-Exp+Res formally captures expansion-
based solving of quantified Boolean formulas (QBFs) whereas the QRAT
proof system captures QBF preprocessing. From previous work it is
known that certain families of formulas have short proofs in QRAT but
not in ∀-Exp+Res. However, it was not known if the two proof systems
were incomparable (i.e., if there also existed QBFs with short ∀-Exp+Res
proofs but without short QRAT proofs), or if QRAT polynomially simu-
lates ∀-Exp+Res. We close this gap of the QBF-proof-complexity land-
scape by presenting a polynomial simulation of ∀-Exp+Res in QRAT. Our
simulation shows how definition introduction combined with extended-
universal reduction can mimic the concept of universal expansion.

1 Introduction

Proof systems for quantified Boolean formulas (QBFs) have been extensively
studied to obtain a better understanding of the strengths and limitations of
different QBF-solving approaches (e.g., [5, 10, 8, 3, 13, 25]). Much is known about
instantiation-based proof systems [16, 4, 5], which provide the foundation for
expansion-based solvers [15, 7], and about Q-resolution systems [13, 20, 28, 1, 26,
2, 6, 14, 23], which provide the foundation for search-based solvers [21, 22]. There
is, however, one other practically useful proof system that is quite different from
the aforementioned ones and whose exact place in the complexity landscape is
still unclear: the QRAT proof system [12].

The QRAT proof system is a generalization of DRAT [27] (the de-facto stan-
dard for proofs in practical SAT solving) that has its strengths when it comes to
preprocessing: Many QBF solvers benefit from preprocessing techniques to sim-
plify a QBF before they actually evaluate its truth. With the QRAT system, it
is possible to certify the correctness of virtually all preprocessing simplifications
performed by state-of-the-art QBF solvers and preprocessors. Recently, it has
been shown that QRAT can polynomially simulate the long-distance-resolution
calculus, a strictly stronger extension of the Q-Resolution calculus [18]. So far,
however, it has not been known if QRAT can also polynomially simulate the
instantiation-based calculus ∀-Exp+Res [16]. In this short paper, we show that
this is indeed the case by providing a simulation whose resulting QRAT proof is
only linear in the size of the original ∀-Exp+Res proof.

? This work has been supported by the Austrian Science Fund (FWF) projects W1255-
N23 and S11408-N23 and the LIT AI Lab funded by the State of Upper Austria.



2 Preliminaries

We consider quantified Boolean formulas in prenex conjunctive normal form
(PCNF), which are of the form Q.ψ, where Q is a quantifier prefix and ψ, called
the matrix of the QBF, is a propositional formula in conjunctive normal form
(CNF); we define propositional formulas and quantifier prefixes in the following.

Propositional formulas in CNF are built from variables and logical operators
as follows. A literal is either a variable x (a positive literal) or the negation x̄
of a variable x (a negative literal). The complement l̄ of a literal l is defined as
l̄ = x̄ if l = x and l̄ = x if l = x̄. A clause is a finite disjunction of the form
(l1 ∨ · · · ∨ ln) where l1, . . . , ln are literals. We denote the empty clause by ⊥. A
clause with exactly one literal is a unit clause. A formula is a finite conjunction
of the form C1∧· · ·∧Cm where C1, . . . , Cm are clauses. Clauses can be viewed as
sets of literals, and formulas can be viewed as sets of clauses. For an expression
(i.e., a literal, formula, etc.) E, we denote the set of variables occurring in E by
var(E). If var(E) is a singleton set, we sometimes treat it like a variable.

A quantifier prefix has the form Q1X1 . . .QqXq where all the Xi are mutually
disjoint sets of variables, Qi ∈ {∀,∃}, and Qi 6= Qi+1. The quantifier of a literal
l is Qi if var(l) ∈ Xi. Given a literal l with quantifier Qi and a literal k with
quantifier Qj , we write l ≤Q k if i ≤ j, and l <Q k if i < j. We sometimes write
l ≤ k instead of l ≤Q k, and we write l < k instead of l <Q k if Q is clear from
the context. If l ≤ k, we say that l occurs left of k.

Given a literal l and a propositional formula ψ, we define ψ[l] to be the
formula obtained from ψ by first removing all clauses that contain l and then
removing l̄ from all remaining clauses. The result of applying the unit-clause rule
to ψ is the formula ψ[l] where (l) is a unit clause in F . The iterated application
of the unit-clause rule, until either the empty clause is derived or no unit clauses
are left, is called unit propagation. In case unit propagation derives the empty
clause, we say that unit propagation derived a conflict on ψ.

Given a propositional formula ψ and a clause (l1 ∨ · · · ∨ lk), we say that ψ
implies (l1 ∨ · · · ∨ lk) via unit propagation—denoted by ψ 1̀ (l1 ∨ · · · ∨ lk)—
if unit propagation derives a conflict on ψ ∧ (l̄1) ∧ · · · ∧ (l̄k). For example, the
formula (x̄ ∨ z) ∧ (ȳ ∨ z̄) implies the clause (x̄ ∨ ȳ) via unit propagation since
unit propagation derives a conflict on (x̄ ∨ z) ∧ (ȳ ∨ z̄) ∧ (x) ∧ (y).

A QBF ∃xQ.ψ is true if at least one of Q.ψ[x] and Q.ψ[x̄] is true, otherwise
it is false. Respectively, a QBF ∀xQ.ψ is true if both Q.ψ[x] and Q.ψ[x̄] are true,
otherwise it is false. If the matrix ψ of a QBF Q.ψ is the empty formula, then
Q.ψ is true. If φ contains the empty clause, then Q.ψ is false.

An assignment is a function from variables to the truth values 1 (true) and
0 (false). We denote assignments by the sequences of literals they satisfy. E.g.,
xȳ denotes the assignment that assigns 1 to x and 0 to y.

Finally, for the formal definition of polynomial simulations between proof
systems we refer to Cook and Reckhow [9]. An informal summary is this: A proof
system f polynomially simulates a proof system g if there exists a polynomial-
time procedure that transforms g-proofs into f -proofs.

2



3 The QRAT Proof System

Here, we introduce the basics of the QRAT proof system [12]. The two main con-
cepts behind QRAT are QRAT literals and universal reduction via the reflexive-
resolution-path dependency scheme [11].

The definition of QRAT literals is based on the notion of an outer resolvent.
Given two clauses C ∨ l,D ∨ l̄ of a QBF Q.ψ, the outer resolvent C ∨ l ./lQ D ∨ l̄
of C∨ l with D∨ l̄ upon l is the clause consisting of all literals in C together with
those literals of D that occur left of l, i.e., the clause C∪{k | k ∈ D and k ≤Q l}.
If all outer resolvents upon a literal are implied via unit propagation, then that
literal is a QRAT literal [12]:

Definition 1. A literal l is a QRAT literal in a clause C ∨ l with respect to a
QBF Q.ψ if, for every clause D∨ l̄ ∈ ψ\{C∨ l}, it holds that ψ 1̀ C∨ l ./lQ D∨ l̄.

Example 1. Let C = (b∨ x∨ y) and let φ = ∃ab∀xQy∃c.(b̄∨ ȳ ∨ c)∧ (a∨ ȳ ∨ c)∧
(a ∨ b ∨ x), where Q ∈ {∃,∀}. The literal y is a QRAT literal in C with respect
to φ since there are two outer resolvents: the tautology (b ∨ b̄ ∨ x), obtained by
resolving with (b̄ ∨ ȳ ∨ c), and the clause (a ∨ b ∨ x), obtained by resolving with
(a ∨ ȳ ∨ c). The matrix of φ implies both outer resolvents via unit propagation.

Let φ = Q.ψ be a QBF. If a universal literal u is a QRAT literal in a clause
C ∈ ψ, the removal of u from C is called QRAT-literal elimination. If, after
adding a universal literal u to a clause C ∈ ψ, u becomes a QRAT literal, then
this addition is called QRAT-literal addition. If a clause contains an existential
QRAT literal, it is called a QRAT clause (or simply a QRAT) with respect to φ;
its addition to a QBF is called QRAT addition and its removal is called QRAT
elimination. It can be shown that QRAT-literal addition and elimination as well
as QRAT-clause addition and elimination preserve the truth value of a QBF.

The introduction of definition clauses of the form (x̄∨ y), (x∨ ȳ) (where x is
a fresh variable not occurring in φ), is an instance of QRAT addition if we put x
into the same quantifier block as y: (x̄ ∨ y) is a QRAT since x is fresh and thus
there are no outer resolvents upon x̄; (x∨ ȳ) is then a QRAT since the only outer
resolvent upon x is the tautology (ȳ ∨ y), obtained by resolving with (x̄ ∨ y).

The reflexive-resolution-path dependency scheme (short, Drrs) is based on
the notion of a resolution path [11]. Intuitively, a QBF contains a resolution
path between a universal literal u and an existential literal e if we can start
with a clause that contains u and perform a number of resolution steps over
existential literals that occur right of u to obtain a clause that contains both u
and e. An example of a resolution path is given in Fig. 1.

u ∨ · · · ∨ e1︸ ︷︷ ︸
C1

ē1 ∨ · · · ∨ e2︸ ︷︷ ︸
C2

ē2 ∨ · · · ∨ e3︸ ︷︷ ︸
C3

ē3 ∨ · · · ∨ e4︸ ︷︷ ︸
C4

Fig. 1. A resolution path from u to e4.

3



Definition 2. Given a QBF φ = Q.ψ, a universal literal u, and an existential
literal en, φ contains a resolution path from u to en if there exists a sequence
C1, . . . , Cn of clauses and a sequence e1, . . . , en−1 of existential literals such that

(1 ) u ∈ C1 and en ∈ Cn,
(2 ) e1, . . . , en occur right of u,
(3 ) ei ∈ Ci, ēi ∈ Ci+1, for i ∈ 1, . . . , n− 1, and
(4 ) var(ei) 6= var(ei+1) for i ∈ 1, . . . , n− 1.

The reflexive-resolution-path dependency scheme defines that a literal e depends
on a literal u if and only if e is existential, u is universal, and at least one of
the following conditions holds: (1) There exist resolution paths from u to e and
from ū to ē. (2) There exist resolution paths from u to ē and from ū to e.

Next we define the QRAT proof system. In the QRAT proof system, a deriva-
tion for a QBF φ = Q.ψ is a sequence M1, . . . ,Mn of proof steps. Starting with
φ0 = φ, every Mi modifies φi−1 in one of the following five ways, which results
in a new formula φi = Qi.ψi, which we call the accumulated formula at step i:

(1) Add a clause that is implied by ψi−1 via unit propagation.

(2) Add a clause that is a QRAT clause with respect to φi−1.

(3) Remove an arbitrary clause from φi−1.

(4) Remove a QRAT literal from a clause in φi−1.

(5) Remove a universal literal u from a clause C ∨ u ∈ φi−1 where all l ∈ C
are independent of u according to Drrs (“extended universal reduction”).

A QRAT derivation M1, . . . ,Mn thus derives new formulas φ1, . . . , φn from φ.
If the final formula φn contains ⊥, then the derivation is a (refutation) proof of φ.
To simplify the presentation, we do not specify in detail how the modification
steps Mi are represented syntactically, but it should be clear that their size needs
to be at most linear with respect to the involved clauses and literals. Note that
certain proof steps can modify the quantifier prefix.

4 The ∀-Exp+Res Proof System

A ∀-Exp+Res proof of a QBF φ = Q.ψ is a sequence C1, . . . , Cn of clauses
where each clause is obtained either via the axiom rule or the resolution rule.
The axiom rule is as follows:

C (Ax)
{lτl | l ∈ C, l is existential}

Here, C is a clause of ψ, τ is an assignment that falsifies all universal literals of
C, and τl denotes the assignment τ restricted to the universal variables u with
u < l. Intuitively, τl can be seen as an annotation of the literal l. For example,
the axiom rule allows us to use the assignment τ = uv̄ for deriving the clause
xu ∨ ȳuv̄ from the formula ∀u∃x∀v∃y.(ū ∨ x ∨ v ∨ ȳ). The resolution rule of
∀-Exp+Res is just the usual resolution rule from propositional logic—it derives
a new clause Ck from two earlier clauses Ci, Cj with i, j < k:

4



C ∨ lτ D ∨ l̄τ (Res)
C ∨D

We next illustrate the intuition behind the simulation of ∀-Exp+Res by QRAT.

5 Simulating ∀-Exp+Res by QRAT: Intuition

To simulate ∀-Exp+Res by QRAT, we need to find a way to simulate applications
of the axiom rule. Intuitively, the axiom rule introduces multiple instantiations
of a single existential variable because, in satisfying assignments of the formula,
this variable might take different truth values depending on the truth values of
the universal variables that occur left of it. We can introduce these instantiations
in QRAT by first adding definitions of the new variables and then eliminating
the superfluous universal variables with extended-universal reduction. Once this
is done, we can just straightforwardly perform the remaining resolution steps in
QRAT since resolvents are implied via unit propagation. Assume a ∀-Exp+Res
proof uses the axiom rule as follows, where the quantifier prefix is ∀u∃x∀v∃y:

ū ∨ x ∨ v ∨ y
(Ax)

xu ∨ yuv̄

We simulate the derivation of (xu ∨ yuv̄) in QRAT as follows:

(1) Add definitions for the new variables xu and yuv̄, where xu goes to the
same quantifier block as x and yuv̄ goes to the same quantifier block as y.
The new clauses are (x̄ ∨ xu), (x ∨ x̄u), (ȳ ∨ yuv̄), (y ∨ ȳuv̄).

(2) Add a clause that is similar to the original clause (ū∨ x∨ v ∨ y), with the
only difference that we now use the new annotated variables instead of the
original ones. Observe that we can resolve (x̄∨ xu) with (ū∨ x∨ v ∨ y) to
replace x by xu; likewise for y and yuv̄. Because of this, (ū∨x∨v∨y) and
the definition clauses together imply the new clause, (ū ∨ xu ∨ v ∨ yuv̄),
via unit propagation.

(3) Eliminate (ū ∨ x ∨ v ∨ y) and the definition clauses introduced in step 1.
(4) Eliminate the universal literals ū and v from (ū∨xu∨v∨yuv̄) by extended

universal reduction, resulting in the clause (xu ∨ yuv̄).

The correctness of the fourth step is a consequence of Lemma 1, which we prove
in the next section, where we define our simulation.

6 Simulating ∀-Exp+Res by QRAT

We start with a QBF Q.ψ and a ∀-Exp+Res proof π of Q.ψ. We then construct
a QRAT proof Π of Q.ψ as follows:

Step 1 (Introduction of Definitions): For each annotated variable xτ in the
∀-Exp+Res proof π, we introduce a definition of the form (x̄ ∨ xτ ), (x ∨ x̄τ ).
We also put xτ into the same quantifier block as x. Note that each annotated

5



variable must have been obtained by an application of the axiom rule. The
definition introductions are QRAT additions, as explained on page 3. We denote
the resulting accumulated formula by Q′.ψ1.

Step 2 (Introduction of Annotated Clauses): For each clause Cτ ∈ π that
was obtained from a clause C ∈ ψ by applying the axiom rule with the assign-
ment τ , we add the clause Cτ ∨ ū1 ∨ · · · ∨ ūk. Since C and the definitions of the
annotated literals of Cτ are in ψ1, the clause Cτ ∨ ū1∨· · ·∨ ūk is implied via unit
propagation and thus it can be added as a QRAT. We denote the accumulated
formula after performing all these QRAT additions by Q′.ψ2

Step 3 (Elimination of Input Clauses and Definitions): We now eliminate
all clauses of ψ as well as the definitions introduced in step 1 since we don’t need
them anymore. Note that QRAT allows the elimination of arbitrary clauses. We
thus obtain the accumulated formula Q′.ψ3 with ψ3 := ψ2 \ ψ1.

Step 4 (Removal of Universal Literals): We now remove all universal literals
from the clauses in ψ3. We start by removing the occurrences of the right-most
variable u and apply extended universal reduction on all clauses in which it
occurs. Once u is eliminated, we move on to the new right-most variable and
eliminate it. We also remove eliminated variables from the quantifier prefix. We
repeat this for all universal literals and denote the resulting accumulated formula
by Q′′.ψ4. It remains to show that all the removal steps are valid extended-
universal-reduction steps. This is a consequence of the following lemma:

Lemma 1. If Q′.ψ3 contains a resolution path from u to e, then e must be an
annotated literal of the form lτ where the assignment τ falsifies u.

Proof. Suppose there exists a resolution path C1, . . . , Cn from u to e. We show
by induction on n that e is of the form lτ where τ falsifies u.

Base Case (n = 1): C1 contains both u and e. Hence, all the existential literals
of C1 must have been obtained by instantiating with an assignment that falsifies
all universal literals of C1. Moreover, by the definition of resolution paths, e must
occur right of u. Hence, e must be of the form lτ where τ falsifies u.

Induction Step (n > 1): Since C1, . . . , Cn is a resolution path from u to e, we
know that e ∈ Cn and that C1, . . . , Cn−1 is a resolution path from u to some
literal en−1 such that en−1 ∈ Cn−1 and ēn−1 ∈ Cn. By the induction hypothesis,
en−1 is of the form lτn−1 where τ falsifies u. But then, since ēn−1 ∈ Cn, we know
that Cn must have been obtained by instantiating it with an assignment that
falsifies u. It follows that e is of the form lτ where τ falsifies u. ut

Thus, whenever we eliminate a universal literal u from a clause C in step 4,
then Drrs defines each existential literal e ∈ C that occurs right of u to be
independent of u (literals to the left of u are trivially independent of u): Since
e ∈ C, we know that e is of the form lτ where τ falsifies u. Thus, there cannot
exist resolution paths from ū to e or to ē, for otherwise Lemma 1 would tell us
that e is of the form lσ where σ falsifies ū. Hence, e is independent of u according
to Drrs. Note that, strictly speaking, Lemma 1 would only guarantee that the

6



a ∨ x ∨ b ∨ y ∨ c

a ∨ bx̄ ∨ cx̄ȳ
a ∨ x ∨ b ∨ y ∨ c̄

a ∨ bx̄ ∨ c̄x̄ȳ

a ∨ bx̄
x ∨ b̄

b̄x̄

a

ȳ ∨ c

cxy
ā ∨ x̄ ∨ b ∨ c̄

ā ∨ bx ∨ c̄xy

ā ∨ bx

bx
x̄ ∨ b̄

b̄x

⊥

Fig. 2. Example of a ∀-Exp+Res refutation.

first elimination of a universal literal is a valid extended-universal-reduction
step (because the elimination modifies the formula Q′.ψ3). However, since the
elimination of universal literals does not introduce additional resolution paths,
all eliminations of universal literals are valid extended-universal-reduction steps.

Step 5 (Resolution Proof): In this last step, we perform all resolution steps
of π as QRAT additions to derive the empty clause. This is possible since ψ4

contains all clauses that are involved in the resolution proof. We thus conclude:

Theorem 2. Π is a QRAT refutation of Q.ψ.

We illustrate our simulation on an example before showing that it is polynomial:

Example 2. Fig. 2 shows a ∀-Exp+Res refutation of ∃a∀x∃b∀y∃c.ψ with

ψ = (a∨x∨ b∨y∨ c)∧ (a∨x∨ b∨y∨ c̄)∧ (x∨ b̄)∧ (ȳ∨ c)∧ (ā∨ x̄∨ b∨ c̄)∧ (x̄∨ b̄).

For simulating this proof in QRAT, we proceed as follows.

(1) We introduce definitions of the annotated variables by adding the following
eight QRAT clauses:

(b̄ ∨ bx̄) (b̄ ∨ bx) (c̄ ∨ cx̄ȳ) (c̄ ∨ cxy)
(b ∨ b̄x̄) (b ∨ b̄x) (c ∨ c̄x̄ȳ) (c ∨ c̄xy)

(2) We then introduce the following QRAT clauses, which correspond to appli-
cations of the axiom rule in ∀-Exp+Res:

(a ∨ x ∨ bx̄ ∨ y ∨ cx̄ȳ) (ȳ ∨ cxy) (x ∨ b̄x̄)
(a ∨ x ∨ bx̄ ∨ y ∨ c̄x̄ȳ) (ā ∨ x̄ ∨ bx ∨ c̄xy) (x̄ ∨ b̄x)

(3) We remove the original clauses and the clauses introduced in step 1. Only
the clauses introduced in step 2 remain.

(4) From the remaining clauses, we first remove all occurrences of y and then
all occurrences of x via extended universal reduction. We obtain the clauses
introduced by applications of the axiom rule in the ∀-Exp+Res proof.

(5) Finally, we can simply perform the resolution steps of the ∀-Exp+Res proof
to obtain a QRAT refutation of the input formula.

This concludes the example. ut

7



It remains to show that the simulation is polynomial. We first bound the size
(measured by the number of symbols) of the resulting QRAT proof:

Lemma 3. Π is linear in the size of π.

Proof. In step 1 (definition introduction), we perform two QRAT additions for
each annotated variable in the ∀-Exp+Res proof π. The size of the corresponding
QRAT derivation is clearly linear with respect to π. In step 2, we perform one
QRAT addition for each application of the axiom rule in π, again resulting in a
linear-size QRAT derivation. In step 3, we eliminate clauses of ψ and definitions—
also clearly linear. In step 4, we remove universal literals from existing clauses.
All these universal literals are contained in π as their respective clauses are
involved in applications of the axiom rule. Hence, also this step yields a QRAT
derivation of linear size. Finally, the resolution proof derived in step 5 is part of
π and thus also of linear size with respect to π. We conclude that the size of the
final QRAT proof is linear with respect to the size of π. ut

It should now be clear that our simulation can be performed in polynomial time:

Theorem 4. QRAT polynomially simulates ∀-Exp+Res.

7 Conclusion

We filled an empty spot in the QBF-proof-complexity landscape by showing
that QRAT polynomially simulates universal expansion in general, and the proof
system ∀-Exp+Res in particular. Our approach is similar to the approach in [12],
which mimics the expansion of inner-most universal variables in QRAT.

There are, however, some subtle but important differences to [12]. First,
in [12] the universal variables are fully expanded, which could potentially du-
plicate the whole formula. In contrast, we expand arbitrary variables and focus
only on the clauses that are used as axioms in the ∀-Exp+Res proof. By only
deriving these clauses (using new definitions), we can ensure that the resulting
proof is small. Second, in [12] the QRAT proof is generated during proof search,
when it is still unclear if the formula is true or false. In our simulation here, the
proof of unsatisfiability is given as input and therefore we know from the begin-
ning that the formula is false. This allows us to delete clauses eagerly (deletion
doesn’t have to preserve satisfiability), which is not the case in [12].

A closer look at our simulation shows that the only features of QRAT needed
for the simulation are Q-resolution, definition introduction, and extended univer-
sal reduction. A system that uses only these features could be seen as extended
Q(Drrs)-resolution in the dependency framework of Slivovsky and Szeider [24].
In propositional logic, we know that extended resolution polynomially simulates
DRAT [19] but it is not known if extended Q-resolution [17] or extended Q(Drrs)-
resolution can polynomially simulate QRAT. It is also still unclear how QRAT
is related to the stronger expansion-based systems IR-calc and IRM-calc [4].
Finally, since there exist efficient proof checkers for QRAT and since the size
increase induced by our simulation is only linear, our simulation could be used
in practice to validate the results of expansion-based solvers.

8



References

1. Balabanov, V., Jiang, J.R.: Unified QBF certification and its applications. Formal
Methods in System Design 41(1), 45–65 (2012)

2. Balabanov, V., Widl, M., Jiang, J.R.: QBF resolution systems and their proof
complexities. In: Proc. of the 17th Int. Conference on Theory and Applications of
Satisfiability Testing (SAT 2014). LNCS, vol. 8561, pp. 154–169. Springer (2014)

3. Beyersdorff, O., Bonacina, I., Chew, L.: Lower bounds: From circuits to QBF proof
systems. In: Proc. of the 2016 ACM Conference on Innovations in Theoretical
Computer Science (ITCS 2016). pp. 249–260. ACM (2016)

4. Beyersdorff, O., Chew, L., Janota, M.: On unification of QBF resolution-based
calculi. In: Proc. of the 39th Int. Symposium on Mathematical Foundations of
Computer Science (MFCS 2014). LNCS, vol. 8635, pp. 81–93. Springer (2014)

5. Beyersdorff, O., Chew, L., Janota, M.: Proof complexity of resolution-based QBF
calculi. In: Proc. of the 32nd Int. Symposium on Theoretical Aspects of Computer
Science (STACS 2015). LIPIcs, vol. 30, pp. 76–89. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2015)

6. Beyersdorff, O., Chew, L., Mahajan, M., Shukla, A.: Are short proofs narrow? QBF
resolution is not simple. In: Proc. of the 33rd Symposium on Theoretical Aspects of
Computer Science (STACS 2016). LIPIcs, vol. 47, pp. 15:1–15:14. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik (2016)

7. Bloem, R., Braud-Santoni, N., Hadzic, V., Egly, U., Lonsing, F., Seidl, M.:
Expansion-based QBF solving without recursion. In: Proc. of the Int. Conference
on Formal Methods in Computer Aided Design (FMCAD 2018). pp. 1–10. IEEE
(2018)

8. Chen, H.: Proof Complexity Modulo the Polynomial Hierarchy: Understanding
Alternation as a Source of Hardness. In: Proc. of the 43rd Int. Colloquium on
Automata, Languages, and Programming (ICALP 2016). LIPIcs, vol. 55, pp. 94:1–
94:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)

9. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems.
Journal of Symbolic Logic 44(1), 36–50 (1979)

10. Egly, U.: On stronger calculi for QBFs. In: Proc. of the 19th Int. Conference on
Theory and Applications of Satisfiability Testing (SAT 2016). LNCS, vol. 9710,
pp. 419–434. Springer (2016)

11. Gelder, A.V.: Variable independence and resolution paths for quantified boolean
formulas. In: Proc. of the 17th Int. Conference on Principles and Practice of Con-
straint Programming (CP 2011). LNCS, vol. 6876, pp. 789–803. Springer (2011)

12. Heule, M.J.H., Seidl, M., Biere, A.: Solution validation and extraction for QBF
preprocessing. Journal of Automated Reasoning 58(1), 1–29 (2016)

13. Janota, M.: On Q-Resolution and CDCL QBF solving. In: Proc. of the 19th Int.
Conference on Theory and Applications of Satisfiability Testing (SAT 2016). LNCS,
vol. 9710, pp. 402–418. Springer (2016)

14. Janota, M., Grigore, R., Marques-Silva, J.: On QBF proofs and preprocessing. In:
Proc. of the 19th Int. Conference on Logic for Programming, Artificial Intelligence,
and Reasoning (LPAR-19). LNCS, vol. 8312, pp. 473–489. Springer (2013)

15. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.M.: Solving QBF with coun-
terexample guided refinement. Artificial Intelligence 234, 1–25 (2016)

16. Janota, M., Marques-Silva, J.: On propositional QBF expansions and Q-resolution.
In: Proc. of the 16th Int. Conference on Theory and Applications of Satisfiability
Testing (SAT 2013). LNCS, vol. 7962, pp. 67–82. Springer (2013)

9



17. Jussila, T., Biere, A., Sinz, C., Kröning, D., Wintersteiger, C.M.: A first step
towards a unified proof checker for QBF. In: Proc. of the 10th Int. Conference on
Theory and Applications of Satisfiability Testing (SAT 2007). LNCS, vol. 4501,
pp. 201–214. Springer (2007)

18. Kiesl, B., Heule, M.J.H., Seidl, M.: A little blocked literal goes a long way. In: Proc.
of the 20th Int. Conference on Theory and Applications of Satisfiability Testing
(SAT 2017). LNCS, vol. 10491, pp. 281–297. Springer (2017)

19. Kiesl, B., Rebola-Pardo, A., Heule, M.J.H.: Extended resolution simulates DRAT.
In: Proc. of the 9th Int. Joint Conference on Automated Reasoning (IJCAR 2018).
LNCS, vol. 10900, pp. 516–531. Springer (2018)

20. Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified boolean
formulas. Information and Computation 117(1), 12–18 (1995)

21. Lonsing, F., Egly, U.: DepQBF 6.0: A Search-Based QBF Solver Beyond Tradi-
tional QCDCL. In: Proc. of the 26th Int. Conference on Automated Deduction
(CADE-26). LNCS, vol. 10395, pp. 371–384. Springer (2017)

22. Peitl, T., Slivovsky, F., Szeider, S.: Dependency learning for QBF. In: Proc. of the
20th Int. Conference on Theory and Applications of Satisfiability Testing (SAT
2017). LNCS, vol. 10491, pp. 298–313. Springer (2017)

23. Slivovsky, F., Szeider, S.: Variable dependencies and Q-resolution. In: Proc. of
the 17th Int. Conference on Theory and Applications of Satisfiability Testing
(SAT 2014). LNCS, vol. 8561, pp. 269–284. Springer (2014)

24. Slivovsky, F., Szeider, S.: Soundness of Q-resolution with dependency schemes.
Theoretical Computer Science 612, 83–101 (2016)

25. Tentrup, L.: On expansion and resolution in CEGAR based QBF solving. In: Proc.
of the 29th Int. Conference on Computer Aided Verification (CAV 2017). LNCS,
vol. 10427, pp. 475–494. Springer (2017)

26. Van Gelder, A.: Contributions to the theory of practical quantified boolean for-
mula solving. In: Proc. of the 18th Int. Conference on Principles and Practice
of Constraint Programming (CP 2012). LNCS, vol. 7514, pp. 647–663. Springer
(2012)

27. Wetzler, N., Heule, M.J.H., Hunt Jr., W.A.: DRAT-trim: Efficient checking and
trimming using expressive clausal proofs. In: Proc. of the 17th Int. Conference on
Theory and Applications of Satisfiability Testing (SAT 2014). LNCS, vol. 8561,
pp. 422–429. Springer, Cham (2014)

28. Zhang, L., Malik, S.: Conflict driven learning in a quantified boolean satisfiability
solver. In: Proc. of the 2002 IEEE/ACM Int. Conference on Computer-aided Design
(ICCAD 2002). pp. 442–449. ACM/IEEE Computer Society (2002)

10


