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Abstract. An effective way to model message exchange in complex set-
tings is to use UML sequence diagrams in combination with state ma-
chine diagrams. A natural question that arises in this context is whether
these two views are consistent, i.e., whether a desired or forbidden sce-
nario modeled in the sequence diagram can be or cannot be executed by
the state machines. In case of an inconsistency, a concrete communication
trace of the state machines can give valuable information for debugging
purposes on the model level. This trace either hints to a message in the
sequence diagram where the communication between the state machines
fails, or describes a concrete forbidden communication trace between the
state machines. To detect and explain such inconsistencies, we propose a
novel SAT-based formalization which can be solved automatically by an
off-the-shelf SAT solver. To this end, we present the formal and technical
foundations needed for the SAT-encoding, and an implementation inside
the Eclipse Modeling Framework (EMF). We evaluate the effectiveness
of our approach using grammar-based fuzzing.

1 Introduction

The abstraction power of multi-view modeling languages like UML comes along
with the possibility of inconsistencies in the description of the system under
development [18]. On the one hand, different diagram types lower the complexity
of describing and understanding large software systems by providing focused
views on specific aspects like, for example, interprocess communication [2]. On
the other hand, performing modifications on one diagram may require changes
in other diagrams. If these changes are not implemented carefully in the other
diagrams as well, the model can contain inconsistent information which, in the
worst case, might propagate up to the running application. Hence, if the diagrams
do not complement one another in a consistent manner, then the benefits of
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multi-view modeling are rendered void [23]. Especially when the models are not
directly executable or when no simulation environment is available, then testing
and debugging is difficult.

Therefore, mechanisms are required which support the evolution of a model [10]
and ensure consistency. In this paper, we are concerned with the consistency
between state machines and sequence diagrams. State machines describe the in-
ternal behavior of objects and sequence diagrams focus on interaction scenarios
between different instances of the objects. These scenarios model either required
or forbidden message exchange. Our approach verifies whether the communica-
tion described by a sequence diagram can be executed by a given set of state
machines. If a sequence of messages can be executed although it is forbidden
by the sequence diagram, then a concrete communication trace is returned. If a
sequence of messages is not possible although according to the sequence diagram
it should be, then a reason for the failure is given. On this basis, inconsistencies
introduced during the evolution of a model cannot only be discovered easily,
but also be corrected immediately. Hence, sequence diagrams are test cases de-
scribing desired or undesired behavior of the state machines. With our approach
the test cases can be evaluated even if no execution environment for the state
machines is available.

For solving this consistency checking problem, we propose to use an approach
based on the satisfiability problem of propositional logic (SAT) [3]. For SAT pow-
erful solvers are available which are successfully used out of the box in many ver-
ification applications. For instance, we have made very positive experiences with
using SAT encodings to solve the merging problem in the context of optimistic
model versioning [30] as well as for reachability checking of composite state ma-
chines [14]. Based on these experiences, we developed the consistency checking
encoding presented in this paper. This considerably improves our previous work
on consistency checking using the model checker Spin [4,5]. Spin offers the high
level input language Promela which seems to be very appealing for formulat-
ing the consistency checking problem. However, due to the semantic differences
of Promela and UML-like languages the encoding becomes rather complicated.
In SAT, however, we do not have any semantical restrictions. With a concise
problem formulation together with encoding techniques borrowed from planning
applications [21] the SAT encoding turns out intuitive and flexible. Further, the
SAT-based approach integrates smoothly into our model evolution framework
FAME 5.

This paper is structured as follows. First, we review related approaches in
Section 2. Then we motivate this work with a concrete example in Section 3
and informally explain the modeling language concepts relevant for this work.
In Section 4 we give a concise formal problem definition. To this end, we formally
describe the sequence diagram and the state machine along with their interplay.
Further, we introduce the notion of lifeline consistency, which is what we want
to check. This problem definition directly allows us to derive a problem encoding
to SAT which can be handed to a SAT solver (Section 5). Section 6 discusses
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the implementation based on the Eclipse Modeling Framework and Section 7
presents a detailed evaluation of our approach based on grammar-based white-
box fuzzing. Finally, we conclude this paper with an outlook on future work.

2 Related Work

The problem tackled in this paper is a typical model checking problem. There-
fore, it is not surprising that different works [5,13,15,20,22] propose a formulation
in languages like Promela, the input language of the popular model checker Spin.
Due to semantical differences of state machines and Promela, it turns out that
an equivalence preserving translation capturing all language concepts is chal-
lenging. For example, in our previous work [4,5], we employed Spin to ensure
that given traces do not occur during the execution of a set of state machines,
but with this encoding we could not ensure that a given message sequence is
possible.

In the past, many other formal approaches have been presented, but most of
the implementations do not seem to have gone beyond a proof of concept state
and are either not updated to UML 2 or are not available at all. We summa-
rize the approaches most related to our work in the following. For a detailed
discussion we refer the interested reader to specific surveys like [18]. Lam and
Vitus [16] present an algebraic approach to express the consistency checking
problem in the π-calculus. The practical realizability of the approach is not dis-
cussed. Van der Straeten et al. [27] propose to use description logics to formally
describe the consistency between class diagrams, sequence diagrams, and state
machines. Compared to SAT, description logics are more expressive in general,
but their satisfiability checking problem is located in higher complexity classes
than NP. Bernardi et al. propose to use petri nets for checking the consistency
between different diagrams [1]. Communication, however, is only considered at
the class level and not at the object level. Engels et al. [8] propose to check
consistency by evaluating dedicated consistency constraints represented in form
of collaborations. Therefore, an interpreter is provided. Egyed [7] applies instant
consistency validation by rules formulated in OCL which shows to be very effi-
cient on large models. For capturing the same kind of inconsistency, which we
deal with in this paper, however, a temporal extension of OCL is necessary.

A different approach for consistency checking is presented by Graaf and Van
Deursen [12] who suggest to synthesize a state machine from the given sequence
diagram as in [28] and then compare the automatically generated state ma-
chine to the given state machine. Therefore, they realize normalization, trans-
formation, and comparison steps, respectively. In [12], however, the comparison
requires manual intervention. Feng and Vangheluwe propose to use a simulation-
based approach for consistency checking [9].

Besides checking the consistency between state machine diagrams and se-
quence diagrams, a lot of effort has been spent for consistency checking between
other diagrams like class diagrams, collaboration diagrams, activity diagrams,
etc. We refer to [11,26] for detailed surveys.
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Fig. 1. Three state machines modeling a PhD student, a coffee machine, and a main-
tenance unit.
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Fig. 2. (Left) A sequence diagram depicting a desired scenario that is inconsistent
with the state machines of Fig. 1. The state machines have to be changed in order to
allow the scenario. (Right) A sequence diagram depicting a forbidden scenarios that is
inconsistent with the state machines of Fig. 1. No changes are required.

3 A Motivating Example

To motivate our work and to illustrate useful application scenarios we present
the following example. Fig. 1 shows three state machines that describe the be-
haviors of a PhD student, a coffee machine, and a maintenance unit for the coffee
machine. As typical for the UML state machine view, rectangles with rounded
corners present states which are connected by transitions. Each transition car-
ries a label consisting of a trigger on the left side of the “/” and an effect on
the right side. The special symbol ε on the left side of the “/” indicates that no
trigger is necessary for the transition to fire. The initial state is indicated by an
incoming arc from a black dot.

Instances of state machines communicate with each other by message passing.
They change states according to messages that are sent and received. A state
change is initiated by the receipt of a symbol indicated as trigger in one of the
outgoing transitions of the current state. An outgoing transition carrying the
special symbol ε as trigger can be initiated without receiving any symbol. The
transition is fully executed only if the effect can be sent successfully, i.e., if it
also can be received by another instance of a state machine.
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Fig. 2 shows two sequence diagrams that describe communication scenarios
between instances of the state machines in Fig. 1. A state machine is instantiated
by one or more lifelines. Similar as in UML, they are shown as rectangles with a
dashed vertical line underneath. Each lifeline’s name is shown inside the rectangle
before the “:”, followed by the name of the state machine it instantiates after
the “:”. For space reasons, we have abbreviated these names. Along the lifelines,
a sequence of messages is shown. A message is depicted as an arrow from the
sender lifeline to the receiver lifeline labeled with the symbol being sent. The set
of symbols used in the sequence diagrams is the same as the set of symbols used
in the state machines.

In order to be consistent with the state machines, the message sequence of
a sequence diagram must be executable from some global state of the lifelines
which is reachable from the global initial state, where a global state is a tuple
of states of the state machines instantiated by the lifelines. More precisely, from
such a global state it must be possible for each message after another to be a
trigger in the sending lifeline’s state machine instantiation and to be an effect
in the receiving lifeline’s state machine instantiation.

We present two possible application scenarios for checking a set of state ma-
chine diagrams and a sequence diagram for consistency. (1) A desired scenario
is depicted in the sequence diagram. If the sequence diagram is consistent with
the state machines, then we know that the state machines fulfill the scenario.
Otherwise, we can obtain information about the global state of the state ma-
chines where the sequence first fails, which helps to discover erroneous or missing
transitions in the state machines view. (2) An unwanted scenario is depicted in
the sequence diagram. If a sequence diagram is consistent with the state ma-
chines, then we know that there is a bug in the state machines and we can
obtain a counter-trace, namely a sequence of global states which follows from
the application of the message sequence.

In Fig. 2 an example for each scenario is depicted. The left sequence diagram
shows a desired scenario. However, it is inconsistent with the state machines for
the following reason: The PhD student “alice” changes into state “desperate” af-
ter receiving the symbol “error” from the coffee machine. She must remain there
until the symbol “repaired” is received. According to the sequence diagram,
the coffee machine never sends this symbol. This also means, that the coffee
machine never returns to state “idle” and therefore cannot receive the symbol
“wantCoffee” from PhD student “bob”. Therefore, the message sequence of the
sequence diagram can only be executed up to and including the fourth message,
“done”. In this case, our tool returns the sequence of messages up to the message
that cannot be sent or received, in this case, up to and including “done” from
“m:Maintenance” to “cm:CM”. A possible fix for this broken scenario would be
to remove the state “desperate” from the PhD student and to connect the tran-
sition with trigger “error” from the state “waiting” directly to state “working”.
Further, in the coffee machine the effect of the transition with trigger “done”
from state “maintenance” to state “idle” would have to be replaced by ε.
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Similarly to the “neg” fragment used in UML sequence diagrams, we mark
the negative scenario in the right diagram of Fig. 2 using this notation. Note
that we refer to a complete application scenario rather than to a subsequence of
a sequence diagram. Hence, the second diagram shows an unwanted scenario. It
allows the coffee machine to prepare coffee while being in the error state. This
scenario is not implemented in the state machines, so no bug can be found. If
it was implemented, the tool would return a sequence of global states of the
instances of the state machines representing this message sequence.

4 Problem Definition

Given a sequence diagram and a set of communicating state machines modeling
the behavior of the sequence diagram’s lifelines, the Multiview Sequence Con-
sistency Problem (MSCP) asks whether the communication sequence modeled
in the sequence diagram is executable by the state machines. If this is the case,
then we call the two views consistent. The desired outcome of a positive sce-
nario (no “neg” label) depicted in a sequence diagram is to be consistent with
the state machine view, i.e., the desired scenario is indeed implemented in the
state machines. The desired outcome of a negative scenario (“neg” label) is to be
inconsistent with the state machine view, which means, that the state machines
do not implement the undesired trace. In the following, we present a precise
definition of the semantics of the state machine view and of the sequence view
in order to present the formal definition of MSCP.

The core elements for defining state machines, sequence diagrams, and their
interaction are the symbols of the alphabets ΣA and ΣL where the special sym-
bol ε is in ΣA. The alphabet ΣA contains symbols which label messages in the
sequence diagrams and which trigger transitions and occur as effects in the state
machines. The special symbol ε is the “empty symbol” used for transitions trig-
gered by on-completion-events and for empty events on transitions. The alphabet
ΣL contains names for the instances of the state machines, also called lifelines.
Based on ΣA we define state machines as follows.

Definition 1 (State Machine). Given an alphabet ΣA, a state machine M is
a quadruple (S, ι, A, T ), where

– S is a finite set of states,
– ι ∈ S is a designated initial state,
– A ⊆ ΣA with ε ∈ A is the alphabet of M , and
– T ⊆ S × A × A × S is a transition relation such that for all s, s′ ∈ S there

is no transition (s, ε, ε, s′) ∈ T .

A state machine consists of a set of states, a designated initial state, an
alphabet, and a transition relation which connects the states. The rightmost
state machine shown in Fig. 1 which is called Maintenance, contains the set
S = {idle, repairing} of states, the initial state ι = idle, and the alphabet A =
{ε, repair, done}. For a transition t ∈ T with t = (s, tr , eff , s′), s is the source
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state of the transition, s′ is the target state, tr is a symbol (trigger) which
upon receipt triggers the execution of transition t, and eff is a symbol (effect)
that is sent and has to be received by another state machine when the transi-
tion is executed. The state machine Maintenance in Fig. 1 has two transitions:
(idle, repair, ε, repairing), (repairing, ε, done, idle) ∈ T .

For a transition to be executed in a state machine M , the trigger symbol of
the transition must be received byM from a state machine different toM and the
effect symbol must be received by a state machine different to M . Either trigger
or effect can be the special symbol ε which stands for an empty trigger or effect.
A transition containing ε as trigger is triggered without receiving any symbol,
e.g., by an on-completion-event, and the execution of a transition containing ε as
effect can be finished without sending any symbol. We assume that no transition
of a state machine contains ε as both trigger and effect. Such transitions can be
eliminated by contracting the connected states. Furthermore notice that the
requirement of having a single effect does not impose a strong restriction as
multiple effects can be simulated by a state machine that sends a predefined
sequence of effects upon receiving a designated trigger symbol.

In order to give a precise semantics to the interaction between state machines,
we introduce the notion of an extended state machine.

Definition 2 (Extended State Machine). Given a state machine M , the
extended state machine M∗ of M = (S, ι, A, T ) is a quadruple (S ∪ S∗, ι, A, T ∗)
where

– S∗ = {s∗t | t ∈ T} and

– T ∗ = {(s, tr , ε, s∗t ), (s∗t , ε, eff , s′) | t = (s, tr , eff , s′) ∈ T}

An extended state machine introduces an intermediate state s∗t for each tran-
sition t. This intermediate state has exactly one incoming transition, which is
triggered by the trigger of t and contains the effect ε, i.e., has no effect. It also
has exactly one outgoing transition, which leads to the target state of t with ε
as trigger and the effect of t. We call S the original states and S∗ the interme-
diate states.

The extended state machine helps to distinguish between the event of having
received the trigger and the event of being able to send the effect. Note that
any state machine can be translated to exactly one extended state machine
and vice versa. Fig. 3 depicts the extended state machine of the state machine
PhD Student. The intermediate states are represented by black diamonds with
rounded corners.

Next we formally define sequence diagrams, starting with the concept of
lifelines.

Definition 3 (Lifeline). Given a set M of extended state machines and the
alphabet ΣL, a lifeline is a pair L = (l ,M∗) where l ∈ ΣL is the name of the
lifeline and M∗ ∈M is associated with the lifeline.
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Fig. 3. Extended state machine corresponding to the state machine “PhD student”.

A lifeline is an instance of an extended state machine. The name l of a lifeline
is used to distinguish different instances of the same state machine and M∗ is
the extended state machine the lifelines refers to. In the sequel, we refer to M∗ of
a lifeline L by sm(L). The communication between lifelines takes place through
messages, which are defined as follows.

Definition 4 (Message). Given an alphabet ΣA and a set L of lifelines such
that each lifeline’s extended state machine is defined over ΣA, a message is a
triple (σ, a, ρ) where

– σ ∈ L ∪ {ε} is the sending lifeline,
– a ∈ ΣA is the message symbol, and
– ρ ∈ L \ {σ} is the receiving lifeline

such that σ = ε if and only if a = ε.

For a message (σ, a, ρ), the sender lifeline σ either refers to an extended state
machine or is the empty sender ε when the empty symbol ε is received. Note that
for better readability, we do not show empty messages in the concrete syntax
of the sequence diagrams. The receiver lifeline ρ refers to an extended state
machine.

Based on the definition of a lifeline and of a message, we can now formally
define a sequence diagram.

Definition 5 (Sequence Diagram). Given the alphabets ΣA and ΣL, and a
set M of extended state machines over ΣA, a sequence diagram is a pair (L, µ)
where

– L is a set of lifelines over M and ΣL
– the names of the lifelines are pairwise distinct
– µ = [m1, . . . ,mn] is a sequence of messages such that for each (σ, a, ρ) ∈ µ

it holds that σ, ρ ∈ L and a ∈ ΣA.

The right-hand sequence diagram of Fig. 2 contains the set L = {(alice,PhD),
(cm,CM), (bob,PhD)} of lifelines and the sequence µ = [((alice,PhD),wantCoffee,
(cm,CM)), . . . , ((cm,CM), coffeeDone, (bob,PhD))].
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To describe the interaction between lifelines via messages we define a global
state which captures a configuration of a set of lifelines.

Definition 6 (Global State). Given a set L = {L1, . . . , Ll} of lifelines, let
sm(Li) = (Si, ιi, Ai, Ti) be the extended state machine of lifeline Li, for 1 ≤ i ≤ l.
Then a global state ŝ is a tuple (s1, . . . , sl) ∈ S1 × · · · × Sl.

For three lifelines instantiating the three state machines of Fig. 1, an example
for a global state is (desperate, <maintenance/done/repaired/idle>, idle) where the
second state refers to the intermediate state on the transition from maintenance
to idle in state machine CM.

In each global state, there exists a (possibly empty) set of messages that can
be sent and a set of messages that can be received. After sending or receiving a
message out of these sets, a different global state is reached. This semantics is
described in the following definition.

Definition 7 (Admissibility and Application of a Message). Given the
alphabet ΣA, a set L = {L1, . . . , Ll} of lifelines with sm(Li) = (Si, ιi, Ai, Ti),
and a global state ŝ = (s1, . . . , sl) ∈ S1 × · · · × Sl, the message m = (Ls, a, Lr)
with Ls ∈ L ∪ {ε}, Lr ∈ L, Ls 6= Lr, and a ∈ ΣA is admissible in ŝ if the
following holds: If Ls 6= ε, then

1. (ss, ε, a, s
′
s) ∈ Ts, and

2. (sr, a, ε, s
′
r) ∈ Tr.

Otherwise, i. e., if m = (ε, ε, Lr), then (sr, ε, ε, s
′
r) ∈ Tr.

By applying the admissible message m in the global state ŝ, a global successor
state ŝ′ = (s1, . . . , s

′
s, . . . , s

′
r . . . , sl) ∈ S1 × · · · × Sl is reached.

A message is admissible in some global state if (1) (for Ls 6= ε) the state
of the sender lifeline is an intermediate state whose outgoing transition has the
message symbol a as effect and (2) unless Ls = ε, the state of the receiver lifeline
is an original state which has as least one outgoing transition with the message
symbol a as trigger. If Ls = ε, the receiver can also be in an intermediate state.

In the global state s = (desperate, <maintenance/done/repaired/idle>, idle) of
the lifelines (alice,PhD), (cm,CM), (m,Maintenance) the set of applicable mes-
sages contains only one message, namely {m = ((cm,CM), repaired, (alice,PhD))}.

Note that lifelines refer to extended state machines, which means that a
transition cannot carry a trigger symbol other than ε together with an effect
other than ε. Therefore, it can never happen that a receiver lifeline sends any
effect while executing a transition triggered by a symbol other than ε.

The global successor state ŝ′ is reached by applying a message. Then, ŝ′

differs from ŝ in the states of the sender and the receiver lifeline: The sender’s
state changes from an intermediate state to its only successor state, and the
receiver’s state changes accordingly to the received symbol into an intermediate
state. Applying the above message m to the global state ŝ reaches the global
successor state (<desperate/repaired/ε/working>, idle, idle).
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The set of admissible messages in a global state can contain a subset of
messages that are independent, i.e., that have no sender or receiver in common.
The messages in such a set can be executed simultaneously. We call a set of
independent messages a transaction. It is defined as follows.

Definition 8 (Transaction). Let L = {L1, . . . , Ll} be a set of lifelines. A
transaction is a nonempty set m = {m1, . . . ,mt} of messages such that for
distinct i, j ∈ {1, . . . , t}, mi = (σi, ai, ρi), and mj = (σj , aj , ρj) it holds that all
σi, σj, ρi, and ρj are pairwise distinct.

A transaction is admissible if all its messages are admissible. The global state
reached by applying a transaction is the global state reached by applying each of
the transaction’s messages. Note that a sequence of messages can also be seen as
a sequence of transactions that are singletons, i.e., each transaction contains a
single message. A sequence of messages, such as depicted in a sequence diagram,
can therefore be seen as a sequence of singleton transactions.

We further define a path as a sequence of transactions connecting global
states as follows.

Definition 9 (Path). A path µ from a global state ŝ0 to a global state ŝk is
a sequence µ = [m1, . . . ,mk] of transactions such that there exists a sequence
[ŝ0, . . . , ŝk] of global states where for all 1 ≤ i ≤ k, mi is admissible in state ŝi−1
and ŝi is the global successor state of ŝi−1 after applying mi.

A global state ŝj is reachable from ŝi if there is a path from ŝi to ŝj . The
length of a path is the number of its transactions.

The Multiview Sequence Consistency Problem (MSCP) deals with the ques-
tion whether from some global state that is reachable from the global initial
state, i.e., ŝι = (ι1, . . . , ιl) for the initial states of the state machines of l life-
lines, there is a path representing the sequence of messages described in the
sequence diagram. In order to be able to express this problem as a propositional
formula of polynomial size with respect to the input, we have to bound the length
of the path leading to the beginning of the sequence. This bound is included in
the k-Multiview Sequence Consistency Problem (k-MSCP).

Definition 10 (k-Multiview Sequence Consistency). Given a sequence di-
agram SD = (L, µ) with L = {L1, . . . , Ll} and sm(Li) = (Si, ιi, Ai, Ti) for
1 ≤ i ≤ l over a set M of extended state machines and the alphabets ΣA and
ΣL, SD andM are k-consistent if there exists a path of length at most k starting
at ŝ = (ι1, . . . , ιl) and leading to a global state ŝ′ such that a global state ŝ′′ is
reachable from ŝ′ by applying the sequence of messages µ.

Finally, the k-Multiview Sequence Consistency Problem is defined as follows.

k-Multiview Sequence Consistency Problem (k-MSCP)

Instance: A sequence diagram SD = (L, µ) over a set M of state
machines and the alphabets ΣA and ΣL.

Question: Are SD and M k-consistent?
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5 Encoding

To solve the k-MSCP problem we propose to encode it to the satisfiability
problem of propositional logic (SAT). We assume the reader to be familiar with
the basics of propositional logic and SAT-solvers (for details we refer to [3,19]).
To this end, we build a propositional formula representing an instance of the k-
MSCP problem and hand it to a SAT solver. The solver returns SAT and a logical
model if the sequence diagram of the k-MSCP problem instance can be executed
after at most k transactions between the lifelines. The logical model can then be
translated back into a concrete sequence of transactions between the lifelines as
well as to the state transitions triggered by the application of the messages. The
solver returns UNSAT if the sequence diagram cannot be executed by the lifelines
after at most k message exchanges. In this case, we remove trailing messages one
after another from the sequence diagram and call the solver again until the first
failing message is found. The encoding presented below is an extension of the
encoding discussed in [14, Section 4] where we check the reachability of a global
state regardless of a particular message sequence.

We encode an instance of the k-MSCP as the propositional formula ϕ over a
set of variables representing original states, intermediate states, transitions, and
alphabet symbols. We assume that all states of all lifelines are pairwise distinct.
This natural assumption can be achieved by indexing the states with the name
of the respective lifeline. Observe that this also ensures that all transitions of
all lifelines are pairwise distinct. Let M be a set of extended state machines
over the alphabet ΣA, let SD = (L, µ) be a sequence diagram over M with
L = {L1, . . . , Ll} and µ = [m1, . . . ,mn], let T :=

⋃
1≤i≤l Ti be the set of all

transitions in all extended state machines, let S :=
⋃

1≤i≤l Si be the set of
all original states of all lifelines (all instances of extended state machines), let
S∗ :=

⋃
1≤i≤l S

∗
i be the set of all intermediate states of all lifelines, and let

A := ΣA \ {ε}. Recall that k is an integer defining the maximum length of
the path leading to a global state from which the message sequence in SD is
executed. Further, let k′ := k+4n be the maximum number of timesteps needed
to apply n messages after a path of a maximum length of k. The factor 4 is
necessary because moving forward on a transition with the empty symbol ε as
trigger or effect requires additional timesteps. Then the set of variables occurring
in the encoding is given by {vi | v ∈ (T ∪A∪S ∪S∗), 0 ≤ i ≤ k′}. That is, each
transition, symbol, original state, and intermediate state together with an index
up to k′ is represented by a variable. We refer to this index as timestep.

We further use the following functions to simplify the presentation of the
formula. Let L = (S, ι, A, T ) be a lifeline, (s, tr , ε, s∗t ) and (s∗t , ε, eff , s′) be tran-
sitions of the extended state machine sm(L). Recall that the states of sm(L)
are made distinct by indexing as described above. The two transitions corre-
spond to a transition t = (s, tr , eff , s′) of a non-extended state machine. Ad-
ditionally, let m = (σ, a, ρ) be a message. Then trans(L) = T , src(t) := s,
int(t) := s∗t , trg(t) := tr , eff(t) := eff , tgt(t) := s′, snd(m) := σ, rec(m) := ρ, and
symb(m) := a.

The formula ϕ is given by a conjunction of the following subformulas.
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ϕinit :=

l∧
i=1

(
ι0i ∧

∧
s∈Si∪S∗i ,s6=ιi

s0
)
∧
∧
a∈A

a0

ϕ1 :=

k′−1∧
i=0

∧
t∈T

[
ti →

(
src(t)i ∧ int(t)i+1 ∧(

trg(t)i 6= ε→
(

trg(t)i ∧ trg(t)
i+1
))

∧(
eff(t)i 6= ε→

(
eff(t)

i
∧ eff(t)i+1

)))]

ϕ2 :=

k′−1∧
i=0

∧
trg∈A

[
trg i ∧ trg

i+1 →
( ∨

t∈T ,
trg(t)=trg

ti
∧

t1,t2∈T ,
trg(t1)=trg(t2)=trg

(t1
i ∨ t2i)

)]

ϕ3 :=

k′−1∧
i=0

∧
eff∈A

[
eff

i ∧ eff i+1 →
( ∨

t∈T ,
eff =eff(t)

ti
∧

t1,t2∈T ,
eff(t1)=eff(t2)=eff

(t1
i ∨ t2i)

)]

ϕ4 :=

k′−1∧
i=0

∧
s∈S

[
si ∧ si+1 →

∨
t∈T ,s=src(t)

ti
]

ϕ5 :=

k′−1∧
i=0

∧
t∈T ,eff(t)6=ε

[(
int(t)i ∧ int(t)i+1

)
→ eff(t)i+1

]

ϕ6 :=

k′−1∧
i=0

∧
t∈T ,eff(t)6=ε

[(
int(t)i ∧ int(t)

i+1
)
→ eff(t)

i+1
]

ϕ7 :=

k′−1∧
i=0

∧
t∈T

[(
int(t)i ∧

(
eff(t)i+1 6= ε→ eff(t)

i+1
))

→
(

int(t)
i+1

∧ tgt(t)i+1

)]

ϕ8 :=

k′−1∧
i=0

l∧
j=1

[ ∨
s∈(Sj∪S∗j )

si ∧
∧

s1,s2∈(Sj∪S∗j ),

s1 6=s2

(
s1
i ∨ s2i

)]

ϕseq :=
∧

i∈[1,...,n],
j∈[k,k+4,...,k+4n]

[
symb(mi)

j ∧ symb(mi)
j+1

∧

∨
t∈trans(snd(mi)),

eff(t)=mi

(
int(t)j ∧ int(t)

j+1
)
∧

∧
a∈A
a6=mi

((
aj → aj+1

)
∧
(
aj+1 → aj+2

)
∧
(
aj+2 → aj+3

))]

The formula ϕ is satisfiable if and only if a state ŝ is reachable by a path of
length at most k starting at the global initial state such that starting from ŝ,
the messages in µ are applicable one after another, i. e., there exists a solution
to the k-MSCP instance. The intuition behind the encoding can be explained
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as follows: A state s ∈ S is active at timestep i if si is true. A symbol a ∈ A
is waiting to be received at timestep i if ai is true. This way, when a transition
with a as an effect is triggered at timestep i, then ai is set to true. A state
machine which is currently in a state with an outgoing transition with a as a
trigger, can consume a in the same or a following timestep j ≥ i. By doing so,
aj is set to false, i.e., it cannot be consumed anymore. Then the subformulas
can be understood as follows.

– ϕinit sets the global state at timestep 0 to the initial states of the lifelines.
All other variables representing states and symbols are set to false.

– ϕ1 ensures that whenever a transition is triggered, the corresponding lifeline
changes to the respective intermediate state. Then the trigger symbol is set
to false and the effect symbol is set to true.

– The subformulas ϕi with i ∈ {2, . . . , 6} are also called framing axioms. They
ensure that each change of a symbol or of a state has a cause.
• ϕ2 and ϕ3 make sure that whenever the polarity of a symbol is changed,

there has also been a transition causing this change.
• ϕ4 ensures that a state is only left if a transition causes the change.
• ϕ5 and ϕ6 encode that whenever a lifeline leaves an intermediate state,

the corresponding symbol is consumed; otherwise the symbol stays avail-
able.

– ϕ7 forces a lifeline to move to the target state if the effect symbol has been
consumed.

– ϕ8 ensures that each lifeline is in exactly one state at each timestep.
– Finally, ϕseq forces the sequence of messages µ to be executed after the

preparation phase.

In formulas ϕ1 and ϕ7, the expressions trg(t)i 6= ε and eff(t)i 6= ε occurring
in the formula are replaced by the corresponding logical constants (> and ⊥)
during generation of the formula. The formula is converted to conjunctive normal
form, the input format of most SAT solvers. To this end, we apply the Tseitin
transformation [25] where necessary.

Note that the encoding allows that nothing happens, i. e., no transaction takes
place at a timestep. It is ensured by the framing axioms that in this case, the
global state remains the same. This relaxation implicitly encodes the “at most
k” steps formulation. If at x indices nothing happens and the execution of the
message sequence starts at index k, it means that the length of the transaction
sequence executed before the message sequence of the sequence diagram is of
length k − x. The framing axioms also ensure that lifelines not participating in
a transaction do not change.

A solution returned by the SAT solver consists of a set of positive and nega-
tive literals representing variables set to true or false. By extracting the positive
literals whose variables represent states and transitions (sets S, S∗, and T ) we
obtain the path of at most k steps leading to the execution of the sequence
diagram, as well as the state changes of the lifelines during the execution of
the sequence diagram. If the length of the path is less than k, then for some
consecutive indices the state variables represent identical states.

13



Fig. 4. Screenshot of the graphical user interface.

In order to simplify the encoding, we assume that after applying a transaction
each symbol can be consumable only once at a timestep. Allowing a symbol to
be consumable multiple times requires the integration of counters, which can be
realized, e.g., by building upon ideas presented in [24].

6 Implementation

We implemented a tool to solve k-MSCP instances based on the SAT encoding
presented above as plugin for the Eclipse framework6. It can be downloaded from

http://modelevolution.org/updatesite/

To define the input language of our tool, i.e., the language of state machines
and sequence diagrams, we formulated a metamodel in Ecore, the modeling
language of the Eclipse modeling framework (EMF)7. This metamodel contains
all language concepts discussed in this paper. Strongly inspired by the UML
metamodel, it is designed for the easy integration of future language extensions.

The input models provided by the user of our tool are automatically trans-
lated to propositional logic using the encoding described above. After the encod-
ing phase, the obtained formula is passed to the solver Sat4j [17], a Java-based
SAT solver integrated in our tool.

6 http://www.eclipse.org/
7 http://www.eclipse.org/emf/

14

http://www.eclipse.org/
http://www.eclipse.org/emf/


If the SAT solver returns SAT, then at least one execution path in the state
machines exists which conforms to the message sequence in the sequence dia-
gram. If the SAT solver returns UNSAT then the state machines and the sequence
diagram are inconsistent. In this case, the last message is removed, and the SAT
solver is called again, until it eventually returns SAT. The remaining sequence
diagram is consistent with the state machines, and the information about the
removed messages can be used for debugging purposes.

Then the solution returned by the SAT solver is mapped back to the model
elements and visualized in the graphical user interface as shown in Fig. 4. Our
user interface allows the user to step through a whole trace by coloring the
current messages, transitions, and states. This visualization is very useful to
understand the interplay and the behavior of the different state machines and
provides valuable debugging assistance.

7 Evaluation

We thoroughly tested our tool using a grammar-based white-box fuzzing ap-
proach [29]. This method generates random input models based on a grammar
provided by an EMF metamodel. We employed a random input model generator
based on the tool presented in [29] but using a different definition of consistency
between sequence diagrams and state machines. Other than taking into account
only the receive event of a message exchange as is the case in [29], we consider
both the send and the receive events. The tool consists of two components, a
generator to build syntactically correct diagrams, and a simulator to ensure that
a message sequence can be executed after a certain number of steps.

We applied white-box fuzzing for both debugging and performance evaluation
purposes of our SAT encoding of k-MSCP. In the following we describe the
random generation of instances and the results of the evaluation of our SAT-
based k-MSCP solving tool.

7.1 Random instance generation

The instance generation tool first builds a set of state machines and then gen-
erates a sequence diagram consistent with these state machines. Consistency is
ensured by the simulator following the generated sequence and proposing sub-
sequent messages. In order to also generate inconsistent diagrams, messages are
removed at random from an already generated message sequence. Further, if the
considered bound for the generation of the diagrams is higher than the bound
set in the encoding, the SAT solver may return UNSAT even though the message
sequence is executable. The tool takes the following parameters to define the two
views:

– nrStateMachines: Number of state machines to be created.
– minNrStates and maxNrStates: Bounds on the number of states per state ma-

chine. The actual number of states is chosen randomly between and including
these bounds for each state machine.
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– minNrTrans and maxNrTrans: Bounds on the number of transitions per state
machine. The actual number of transitions is chosen randomly between and
including these bounds for each state machine.

– nrSymbols: The size of the alphabet the state machines are defined over.
– probTrigger: The probability of a transition to contain a trigger symbol other

than ε.
– probEff: The probability of a transition to contain an effect symbol other

than ε.
– nrLifelines: The number of lifelines to be contained in the sequence view.
– nrMessages: The number of messages to be contained in the sequence view.

For each state machine, the algorithm randomly chooses a number of states
and transitions in between the bounds minNrStates, maxNrStates, minNrTrans,
and maxNrTrans, and connects the states by transitions randomly in a way such
that no state is isolated. To at least one outgoing transition of the initial state,
the trigger ε is added, and to all other transitions, a trigger other than ε is
added with probability probTrigger. To each transition containing ε as trigger an
effect other than ε is added, and to all other transitions an effect other than ε is
added with probability probEff. Each time a trigger or an effect is added, a fresh
symbol is created and added to the alphabet until the alphabet has reached size
nrSymbols. After that, the trigger and effect symbols are chosen randomly.

Then a sequence diagram consistent with the state machine view is created
according to the two parameters nrLifelines and nrMessages. In order to ensure
the consistency, a model simulator keeps track of the global state of the lifelines’
state machines. For each lifeline, a state machine is chosen at random from
the state machine view. If nrLifelines > nrStateMachines then it is ensured that
each state machine is instantiated at least once. The main data structure in the
simulator represents possible global states as a hashmap with lifelines as keys
and a set of states of the state machine instanced by the lifeline as value. For each
lifeline, the hashmap is initialized with all original and intermediate states of the
respective state machine. All admissible messages are calculated according to the
current global state stored in the simulator. One message is chosen at random
and the simulator is updated according to all possible successor states with
respect to the application of the chosen message. Note that the state machines
are non-deterministic, and therefore the number of possible states and admissible
messages can become very large.

To obtain unsatisfiable instances, we generate one more message than re-
quired and remove one message at random among all messages except the first
one. This procedure, however, still results in a satisfiable instance in many cases
because a different path than the one followed by the simulator might be possible.

7.2 Testing environment and results

We selected a set of parameter values for the parameters described in Section 7.1
in order to generate sets of instances. The parameter values influence each other
to a great extent, and it can easily happen that no or only a small message se-
quence can be generated for the sequence diagram. For example, a high value for
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small medium large

minNrStates 2 4 7
maxNrStates 3 6 10
minNrTrans 4 8 21
maxNrTrans 6 12 30
nrLifelines 3 5 8
nrMessages 4 10 20

Table 1. Parameter settings.

probTrigger along with a high value for nrSymbols results in transitions containing
different triggers and effects, making the generation of a consistent communica-
tion sequence difficult.

We grouped instances created according to different parameter sets into three
different groups according to their size. Table 1 describes the parameter settings
for each group. The following parameters have been set to the same values for
all instances. nrStateMachines has been set to 3 for all instances because the size
of the instance is regulated by the nrLifelines, i.e., the number of instantiations
of the state machines, nrSymbols has been set to minNrStates, probTrigger and
probEff have been set to 0.9, and k has been set to maxNrStates.

The experiments were executed on a computer with an Intel Core i5-540M
CPU with 2.53GHz and 8GB of RAM. Table 2 describes the results of our exper-
iments over 1,000 randomly generated instances in each category. We distinguish
both encoding and solving time by UNSAT and SAT instances. The time required
to determine the failing message in an UNSAT instance is significantly longer than
the time required to determine satisfiability and to return a model. This is the
case because unsatisfiable instances are modified by removing the last message
and are sent back to the SAT solver until the failing message is found. The
numbers of clauses and numbers of variables refer to the initial encoding of each
instance, not taking into account the modified instances after unsatisfiability is

small medium large

Encoding time SAT (ms) 11 180 2,543
Solving time SAT (ms) 4 201 9,476
Encoding time UNSAT (ms) 34 970 27,848
Solving time UNSAT (ms) 8 727 179,914
Nr variables 1,802 12,746 88,560
Nr clauses 9,652 118,245 1,700,101
Nr instances SAT 837 750 803
Nr instances UNSAT 163 250 197

Table 2. Average results over 1,000 runs for each category.
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detected, as the re-encoding results in less variables and clauses than the initial
encoding.

The difference in numbers of SAT instances and UNSAT instances can be ex-
plained by the way instances are created. In order to generate a sequence diagram
at random without too much overhead, the state machines need many transi-
tions with not too many symbols. However, in this case, when a valid sequence
is found and a message removed, chances are high, that this “cropped” sequence
can still be found by a path other than the one followed by the simulator, because
of the previous requirement to have many transitions and few symbols.

It can be seen that the overall runtimes are acceptable even if executed on
an standard hardware. As can be expected, the solving time scales worse than
the encoding time. The overall runtime for UNSAT instances could probably be
improved by implementing a binary search to find the failing message, instead
of removing trailing messages one after another. This way, the SAT solver has
to be called less often.

8 Conclusion and Future Work

We presented a novel SAT-based approach to check the consistency between
state machines and sequence diagrams. To this end, we concisely formulated a
formal semantics of the considered modeling language concepts. On this basis
we were able to obtain an exact formal description of the consistency checking
problem which was then directly mapped to SAT. The encoding reuses ideas and
techniques well established for formulating planning problems. We obtained an
encoding which is extremely flexible, efficiently processable, and still keeps the
information necessary to map the solutions obtained from the SAT solver back
to the modeling environment.

With our current solution we have a powerful tool for checking the consistency
between different views in UML models. In combination with our other SAT-
based encodings [14,30] we have now the means to establish a uniform framework
supporting safe model evolution.

In future work, we plan to consider additional modeling language concepts
like hierarchical states in the state machines or combined fragments in the se-
quence diagrams. Especially for the latter case which introduces programming
language constructs like loops into the diagram, techniques applied in software
verification must be considered. Also it is possible to apply ideas from this en-
coding to other diagram types like the UML activity diagram. Further, we plan
to extend our approach for automatic repair. In particular, the encoding can
be modified such that missing messages in the sequence diagram can be filled.
This scenario can happen in automated merging environments as, for instance,
in model versioning systems [6].
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