Advanced Model Checking
 \#342.202
 http://fmv.jku.at/amc

SS 2016
Johannes Kepler University

Linz, Austria

Prof. Dr. Armin Biere
Institute for Formal Models and Verification
http://fmv.jku.at

- more and more complex systems

Moore's Law \Rightarrow soon we will have 10^{30} transistors / processor multi-million LOC / OS
\Rightarrow exploding testing costs (in general not linear in system size)

- increased dependability
everything important depends on computers:
stir by wire, banking, stock market, workflow, ...
\Rightarrow quality concerns
- increased functionality
security, mobility, new business processes, ...

Test

standard definition: dynamic execution / simulation of a system
integration in development process necessary
extreme position: testing should actually "drive" the development process

Verification

standard definition: static checking, symbolic execution
hardware design: verification is the process of testing

$$
\Rightarrow \text { our view: } \quad \text { Test }=\text { Verification }
$$

- not unusual to have more than 50% of resources allocated to testing
- testing and verification are (becoming) the bottleneck of development
- quality dilemma (drop quality for more features)
- more efficient methods for test and verification needed \Rightarrow formal verification is the most promising approach
- experts in new testing and verification methods are lacking
- long term: more formal development process not just formal verification
- formal = mathematical
- mathematical models \Rightarrow precise semantics
- emphasizes static / symbolic reasoning about programs (so standard definition of verification falls into this category)
- rather narrow view in digital design: equivalence and model checking
- not esoteric: compilation in a broad sense is a formal method (high-level description is translated into low-level description)
- our view: use tools for reasoning (i.e. programs are formal entities)

Formal
 Specification

- abstracts from unnecessary implementation details
- high-level mathematical model of the system
- very useful for high-level design
- catches ambiguous or inconsistent specifications
- formal specification per se: no tools for refinement / checking
- good example: ASM

- integrates verification in the development process
- usually pure top-down design and incremental refinement steps
- splits large verification tasks (divide et impera) ...
- ... but forces dramatic change in development process
- it works but is costly
- each refinement step uses formal verification methods \Rightarrow more powerfull verification algorithms allow more automation
- good example: B-Method

Synthesis
HW

Architecture
RTL
Gate
Transitor

Requirements
High-Level Design
Low-Level Design
Implementation

Verification

1. no implementation without Synthesis
2. Verification is added value (Quality)
3. both processes are incremental
4. both processes can be formal

- assumptions: specification and system are given
- formal verification checks formally that system fulfills specification
- least change in development process
- full blown verification is really difficult: "post mortem verification"
- simplifications: focus on simple partial specifications (type safety, functional equivalence of two systems, ...)
- methods (implemented in tools):
simple algorithms for deducing properties directly complex algorithms for hard or even undecidable problems
- boolean methods:

SAT, BDDs, ATPG, Combinational Equivalence Checking

- finite state methods:

Bisimulation and Equivalence Checking of Automata, Model Checking

- term based methods:

Term Rewriting, Resolution, Tableaux, Theorem Proving

- Abstraction (e.g. SLAM uses BDDs, Model Checking, Theorem Proving)
- how does it work?
(algorithms and data structures)
- necessary background for use of formal verification (and formal methods in general)
- capacity and restrictions
- first step to become an expert in a fast expanding area

optimization of if-then-else chains

original C code

```
if(!a && !b) h();
else if(!a) g();
else f();
```

 \(\Downarrow\)
 if(!a) \{
if (! b) h () ; \Rightarrow
else 9() ;
$\}$ else $f() ;$
if(a) f();
if(a) f();

How to check that these two versions are equivalent?

1. represent procedures as independent boolean variables

$$
\begin{array}{cc}
\text { original }:= & \text { optimized }:= \\
\text { if } \neg a \wedge \neg b \text { then } h & \text { if } a \text { then } f \\
\text { else if } \neg a \text { then } g & \text { else if } b \text { then } g \\
\text { else } f & \text { else } h
\end{array}
$$

2. compile if-then-else chains into boolean formulae

$$
\text { compile }(\text { if } x \text { then } y \text { else } z) \equiv(x \wedge y) \vee(\neg x \wedge z)
$$

3. check equivalence of boolean formulae

$$
\text { compile(original) } \Leftrightarrow \text { compile(optimized) }
$$

$$
\begin{aligned}
\text { original } & \equiv \text { if } \neg a \wedge \neg b \text { then } h \text { else if } \neg a \text { then } g \text { else } f \\
& \equiv(\neg a \wedge \neg b) \wedge h \vee \neg(\neg a \wedge \neg b) \wedge \text { if } \neg a \text { then } g \text { else } f \\
& \equiv(\neg a \wedge \neg b) \wedge h \vee \neg(\neg a \wedge \neg b) \wedge(\neg a \wedge g \vee a \wedge f)
\end{aligned}
$$

optimized \equiv if a then f else if b then g else h

$\equiv a \wedge f \vee \neg a \wedge$ if b then g else h
$\equiv a \wedge f \vee \neg a \wedge(b \wedge g \vee \neg b \wedge h)$

$$
(\neg a \wedge \neg b) \wedge h \vee \neg(\neg a \wedge \neg b) \wedge(\neg a \wedge g \vee a \wedge f) \quad \Leftrightarrow \quad a \wedge f \vee \neg a \wedge(b \wedge g \vee \neg b \wedge h)
$$

Reformulate it as a satisfiability (SAT) problem:

Is there an assignment to a, b, f, g, h, which results in different evaluations of original and optimized?
or equivalently:

Is the boolean formula compile(original) \nless compile (optimized) satisfiable?
such an assignment would provide an easy to understand counterexample

Note: by concentrating on counterexamples we moved from Co-NP to NP (this is just a theoretical note and not really important for applications)

$b \vee a \wedge c$

$(a \vee b) \wedge(b \vee c)$
equivalent?
$b \vee a \wedge c$
\Leftrightarrow
$(a \vee b) \wedge(b \vee c)$

SAT (Satisfiability) the classical NP complete Problem:

Given a propositional formula f over n propositional variables $V=\{x, y, \ldots\}$.

Is there an assignment $\sigma: V \rightarrow\{0,1\}$ with $\sigma(f)=1$?

SAT belongs to NP

There is a non-deterministic Touring-machine deciding SAT in polynomial time:
guess the assignment σ (linear in n), calculate $\sigma(f)$ (linear in $|f|$)

Note: on a real (deterministic) computer this would still require 2^{n} time

SAT is complete for NP (see complexity / theory class)

Implications for us:

general SAT algorithms are probably exponential in time (unless NP = P)

Definition

a formula in Conjunctive Normal Form (CNF) is a conjunction of clauses

$$
C_{1} \wedge C_{2} \wedge \ldots \wedge C_{n}
$$

each clause C is a disjunction of literals

$$
C=L_{1} \vee \ldots \vee L_{m}
$$

and each literal is either a plain variable x or a negated variable \bar{x}.

Example $\quad(a \vee b \vee c) \wedge(\bar{a} \vee \bar{b}) \wedge(\bar{a} \vee \bar{c})$

Note 1: two notions for negation: in \bar{x} and \neg as in $\neg x$ for denoting negation.

Note 2: the original SAT problem is actually formulated for CNF

Note 3: SAT solvers mostly also expect CNF as input

Assumption: we only have conjunction, disjunction and negation as operators.
a formula is in Negation Normal Form (NNF), if negations only occur in front of variables
\Rightarrow all internal nodes in the formula tree are either ANDs or ORs
linear algorithms for generating NNF from an arbitrary formula
often NNF generations includes elimination of other non-monotonic operators:

$$
\text { NNF of } \quad f \leftrightarrow g \quad \text { is NNF of } \quad f \wedge g \vee \bar{f} \wedge \bar{g}
$$

in this case the result can be exponentially larger (see parity example later).

```
Formula
formula2nnf (Formula f, Boole sign)
{
    if (is_variable (f))
        return sign ? new_not_node (f) : f;
    if (op (f) == AND || op (f) == OR)
        {
            l = formula2nnf (left_child (f), sign);
            r = formula2nnf (right_child (f), sign);
            flipped_op = (op (f) == AND) ? OR : AND;
            return new_node (sign ? flipped_op : op (f), l, r);
        }
    else
        {
            assert (op (f) == NOT);
            return formula2nnf (child (f), !sign);
        }
}
```

```
Formula
formula2cnf_aux (Formula f)
{
    if (is_cnf (f))
        return f;
    if (op (f) == AND)
        {
            l = formula2cnf_aux (left_child (f));
            r = formula2cnf_aux (right_child (f));
            return new_node (AND, l, r);
        }
    else
    {
            assert (op (f) == OR);
            l = formula2cnf_aux (left_child (f));
            r = formula2cnf_aux (right_child (f));
            return merge_cnf (l, r);
    }
}
```

```
Formula
formula2cnf (Formula f)
{
    return formula2cnf_aux (formula2nnf (f, 0));
}
```

```
Formula
```

Formula
merge_cnf (Formula f, Formula g)
merge_cnf (Formula f, Formula g)
{
{
res = new_constant_node (TRUE);
res = new_constant_node (TRUE);
for (c = first_clause (f); c; c = next_clause (f, c))
for (c = first_clause (f); c; c = next_clause (f, c))
for (d = first_clause (g); d; d = next_clause (g, d))
for (d = first_clause (g); d; d = next_clause (g, d))
res = new_node (AND, res, new_node (OR, c, d));
res = new_node (AND, res, new_node (OR, c, d));
return res;
return res;
}

```
}
```


DAG may be exponentially more succinct than expanded Tree

Examples: adder circuit, parity, mutual exclusion

```
Boole
parity (Boole a, Boole b, Boole c, Boole d, Boole e,
        Boole f, Boole g, Boole h, Boole i, Boole j)
{
    tmp0 = b ? !a : a;
    tmp1 = c ? !tmp0 : tmp0;
    tmp2 = d ? !tmp1 : tmp1;
    tmp3 = e ? !tmp2 : tmp2;
    tmp4 = f ? !tmp3 : tmp3;
    tmp5 = g ? !tmp4 : tmp4;
    tmp6 = h ? !tmp5 : tmp5;
    tmp7 = i ? !tmp6 : tmp6;
    return j ? !tmp7 : tmp7;
}
```

Eliminiate the tmp... variables through substitution.

What is the size of the DAG vs the Tree representation?

- through caching of results in algorithms operating on formulas (examples: substitution algorithm, generation of NNF for non-monotonic ops)
- when modeling a system: variables are introduced for subformulae (then these variables are used multiple times in the toplevel formula)
- structural hashing: detects structural identical subformulae (see Signed And Graphs later)
- equivalence extraction: e.g. BDD sweeping, Stålmarcks Method (we will look at both techniques in more detail later)

CNF

1. for each non input circuit signal s generate a new variable x_{s}
2. for each gate produce complete input / output constraints as clauses
3. collect all constraints in a big conjunction
the transformation is satisfiability equivalent:
the result is satisfiable iff the original formula is satisfiable
not equivalent in the classical sense to original formula: it has new variables
extract satisfying assignment for original formula, from one of the result (just project satisfying assignment onto the original variables)

Negation:

$$
\begin{aligned}
x \leftrightarrow \bar{y} & \Leftrightarrow(x \rightarrow \bar{y}) \wedge(\bar{y} \rightarrow x) \\
& \Leftrightarrow(\bar{x} \vee \bar{y}) \wedge(y \vee x)
\end{aligned}
$$

Disjunction:

$$
\begin{aligned}
x \leftrightarrow(y \vee z) & \Leftrightarrow(y \rightarrow x) \wedge(z \rightarrow x) \wedge(x \rightarrow(y \vee z)) \\
& \Leftrightarrow(\bar{y} \vee x) \wedge(\bar{z} \vee x) \wedge(\bar{x} \vee y \vee z)
\end{aligned}
$$

Conjunction: $\quad x \leftrightarrow(y \wedge z) \Leftrightarrow(x \rightarrow y) \wedge(x \rightarrow z) \wedge((y \wedge z) \rightarrow x)$

$$
\Leftrightarrow \quad(\bar{x} \vee y) \wedge(\bar{x} \vee z) \wedge(\overline{(y \wedge z)} \vee x)
$$

$$
\Leftrightarrow(\bar{x} \vee y) \wedge(\bar{x} \vee z) \wedge(\bar{y} \vee \bar{z} \vee x)
$$

Equivalence:

$$
\begin{aligned}
x \leftrightarrow(y \leftrightarrow z) & \Leftrightarrow(x \rightarrow(y \leftrightarrow z)) \wedge((y \leftrightarrow z) \rightarrow x) \\
& \Leftrightarrow(x \rightarrow((y \rightarrow z) \wedge(z \rightarrow y)) \wedge((y \leftrightarrow z) \rightarrow x) \\
& \Leftrightarrow(x \rightarrow(y \rightarrow z)) \wedge(x \rightarrow(z \rightarrow y)) \wedge((y \leftrightarrow z) \rightarrow x) \\
& \Leftrightarrow(\bar{x} \vee \bar{y} \vee z) \wedge(\bar{x} \vee \bar{z} \vee y) \wedge((y \leftrightarrow z) \rightarrow x) \\
& \Leftrightarrow(\bar{x} \vee \bar{y} \vee z) \wedge(\bar{x} \vee \bar{z} \vee y) \wedge(((y \wedge z) \vee(\bar{y} \wedge \bar{z})) \rightarrow x) \\
& \Leftrightarrow(\bar{x} \vee \bar{y} \vee z) \wedge(\bar{x} \vee \bar{z} \vee y) \wedge((y \wedge z) \rightarrow x) \wedge((\bar{y} \wedge \bar{z}) \rightarrow x) \\
& \Leftrightarrow(\bar{x} \vee \bar{y} \vee z) \wedge(\bar{x} \vee \bar{z} \vee y) \wedge(\bar{y} \vee \bar{z} \vee x) \wedge(y \vee z \vee x)
\end{aligned}
$$

- goal is smaller CNF (less variables, less clauses)
- extract multi argument operands (removes variables for intermediate nodes)
- half of AND, OR node constraints can be removed for unnegated nodes a node occurs negated if it has an ancestor which is a negation half of the constraints determine parent assignment from child assignment those are unnecessary if node is not used negated [PlaistedGreenbaum'86] and then [ChambersManoliosVroon'09]
- structural circuit optimizations like in the ABC tool from Berkeley
- however might be simulated on CNF level [JärvisaloBiereHeule-TACAS'10]
- compact technology mapping based encoding [EénMishchenkoSörensson’07]
- encoding directly into CNF is hard, so we use intermediate levels:

1. application level
2. bit-precise semantics world-level operations: bit-vector theory
3. bit-level representations such as AIGs
or vectors of AIGs
4. CNF

- encoding application level formulas into word-level:
as generating machine code
- word-level to bit-level: bit-blasting similar to hardware synthesis
- encoding "logical" constraints is another story
addition of 4-bit numbers x, y with result s also 4-bit: $\quad s=x+y$

$$
\left[s_{3}, s_{2}, s_{1}, s_{0}\right]_{4}=\left[x_{3}, x_{2}, x_{1}, x_{0}\right]_{4}+\left[y_{3}, y_{2}, y_{1}, y_{0}\right]_{4}
$$

$$
\begin{aligned}
& {\left[s_{3}, \cdot\right]_{2}=\text { FullAdder }\left(x_{3}, y_{3}, c_{2}\right)} \\
& {\left[s_{2}, c_{2}\right]_{2}=\text { FullAdder }\left(x_{2}, y_{2}, c_{1}\right)} \\
& {\left[s_{1}, c_{1}\right]_{2}=\text { FullAdder }\left(x_{1}, y_{1}, c_{0}\right)} \\
& {\left[s_{0}, c_{0}\right]_{2}=\text { FullAdder }\left(x_{0}, y_{0}, \text { false }\right)}
\end{aligned}
$$

where

$$
\begin{aligned}
{[s, o]_{2} } & =\text { FullAdder }(x, y, i) \quad \text { with } \\
s & =x \text { xor } y \text { xor } i \\
o & =(x \wedge y) \vee(x \wedge i) \vee(y \wedge i)=((x+y+i) \geq 2)
\end{aligned}
$$

- widely adopted bit-level intermediate representation
- see for instance our AIGER format http://fmv.jku.at/aiger
- used in Hardware Model Checking Competition (HWMCC)
- also used in the structural track in SAT competitions
- many companies use similar techniques
- basic logical operators: conjunction and negation
- DAGs: nodes are conjunctions, negation/sign as edge attribute bit stuffing: signs are compactly stored as LSB in pointer
- automatic sharing of isomorphic graphs, constant time (peep hole) simplifications
- or even SAT sweeping, full reduction, etc ...

negation/sign are edge attributes
not part of node
x xor $y \equiv(\bar{x} \wedge y) \vee(x \wedge \bar{y}) \equiv \overline{\overline{(\bar{x} \wedge y)} \wedge \overline{(x \wedge \bar{y})}}$

```
typedef struct AIG AIG;
struct AIG
{
    enum Tag tag; /* AND, VAR */
    void *data[2];
    int mark, level; /* traversal */
    AIG *next; /* hash collision chain */
};
#define sign_aig(aig) (1 & (unsigned) aig)
#define not_aig(aig) ((AIG*) (1 ^ (unsigned) aig))
#define strip_aig(aig) ((AIG*) (~1 & (unsigned) aig))
#define false_aig ((AIG*) 0)
#define true_aig ((AIG*) 1)
```

assumption for correctness:

```
sizeof(unsigned) == sizeof(void*)
```


bit-vector of length 16 shifted by bit-vector of length 4

- Tseitin's construction suitable for most kinds of "model constraints"
- assuming simple operational semantics: encode an interpreter
- small domains: one-hot encoding large domains: binary encoding
- harder to encode properties or additional constraints
- temporal logic / fix-points
- environment constraints
- example for fix-points / recursive equations: $\quad x=(a \vee y), \quad y=(b \vee x)$
- has unique least fix-point $\quad x=y=(a \vee b)$
- and unique largest fix-point $\quad x=y=$ true but unfortunately
- only largest fix-point can be (directly) encoded in SAT
- given a set of literals $\left\{l_{1}, \ldots l_{n}\right\}$
- constraint the number of literals assigned to true
- $\left|\left\{l_{1}, \ldots, l_{n}\right\}\right| \geq k \quad$ or $\quad\left|\left\{l_{1}, \ldots, l_{n}\right\}\right| \leq k$ or $\left|\left\{l_{1}, \ldots, l_{n}\right\}\right|=k$
- multiple encodings of cardinality constraints
- naïve encoding exponential: at-most-two quadratic, at-most-three cubic, etc.
- quadratic $O(k \cdot n)$ encoding goes back to Shannon
- linear $O(n)$ parallel counter encoding [Sinz'05]
- for an $O(n \cdot \log n)$ encoding see Prestwich's chapter in our Handbook of SAT
- generalization Pseudo-Boolean constraints (PB), e.g. $2 \cdot \bar{a}+\bar{b}+c+\bar{d}+2 \cdot e \geq 3$ actually used to handle MaxSAT in SAT4J for configuration in Eclipse

$$
2 \leq\left|\left\{l_{1}, \ldots, l_{9}\right\}\right| \leq 3
$$

"then" edge downward, "else" edge to the right

- dates back to the 50ies:
- original version is resolution based (successful only in preprocessors)
- improved DPLL: case analysis (try $x=0,1$ in turn and recurse)
- evolved to CDCL (conflict driven clause learning): state-of-the-art
- recent (≤ 20 years) optimizations:
- backjumping, learning, UIPs, dynamic splitting heuristics, fast data structures we will have a look at each of them
- elimination procedure of original DP is similar to
- Gaussian elimination on linear real equalities
- Fourier-Motzikin on linear real inequalities
- Buchberger's algorithm on polynomial equations
- basis for first (less successful) resolution based DP
- can be extended to first order logic
- helps to explain learning

Resolution Rule

$$
C \cup\{v\} \quad D \cup\{\neg v\}
$$

$$
\{v, \neg v\} \cap C=\{v, \neg v\} \cap D=\emptyset
$$

$$
C \cup D
$$

Read: resolving the clause $C \cup\{v\}$ with the clause $D \cup\{\neg v\}$, both above the line, on the variable v, results in the clause $D \cup C$ below the line.

Usage of such rules: if you can derive what is above the line (premise) then you are allowed to deduce what is below the line (conclusion).

Theorem. (premise satisfiable \Rightarrow conclusion satisfiable)

$$
\sigma(C \cup\{v\})=\sigma(D \cup\{\neg v\})=1 \quad \Rightarrow \quad \sigma(C \cup D)=1
$$

Proof.

let $c \in C, d \in D$ with $\quad(\sigma(c)=1$ or $\sigma(v)=1) \quad$ and $\quad(\sigma(d)=1$ or $\sigma(\neg v)=1)$
if $\quad \sigma(c)=1$ or $\sigma(d)=1 \quad$ conclusion follows immediately
otherwise $\quad \sigma(v)=\sigma(\neg v)=1 \quad \Rightarrow$ contradiction

Theorem. (conclusion satisfiable \Rightarrow premise satisfiable)

$$
\sigma(C \cup D)=1 \quad \Rightarrow \quad \exists \sigma^{\prime} \quad \text { with } \quad \sigma^{\prime}(C \cup\{v\})=\sigma^{\prime}(D \cup\{\neg v\})=1
$$

Proof.

with out loss of generality pick $c \in C$ with $\sigma(c)=1$
define $\quad \sigma^{\prime}(x)= \begin{cases}0 & \text { if } x=v \\ \sigma(x) & \text { else }\end{cases}$
since v and $\neg v$ do not occur in C, we still have $\sigma^{\prime}(C)=1$ and thus $\sigma^{\prime}(C \cup\{v\})=1$
by definition $\sigma^{\prime}(\neg v)=1$ and thus $\sigma^{\prime}(D \cup\{\neg v\})=1$

Example consider incorrect resolution $\frac{\{v\} \cup\{v\} \quad\{\neg v\}}{v} \quad$ violating side condition
consider the following resolution $\quad \frac{a \vee b \quad \neg \vee c}{a \vee c}$
in logical notation, not set notation for a change
let $\quad \sigma(x)=\left\{\begin{array}{ll}1 & \text { if } x=a \\ 1 & \text { if } x=b \\ 0 & \text { if } x=c\end{array} \quad\right.$ be a model of resolvent $\quad(a \vee c) \quad$ thus $\quad \sigma(a \vee c)=1$
note that $\quad \sigma(\neg b \vee c)=0 \quad$ and thus σ is not a model of 2nd antecedent (2nd premisse)
however σ satisfies remaining literal a of 1 st antecedent in resolvent
thus simply flip value of pivot b
(satisfy its occurrence in 2nd antecedent)
we get $\quad \sigma^{\prime}(x)=\left\{\begin{array}{ll}1 & \text { if } x=a \\ 0 & \text { if } x=b \\ 0 & \text { if } x=c\end{array} \quad\right.$ satisfying both antecedents $\quad \sigma^{\prime}(a \vee b)=\sigma^{\prime}(\neg b \vee c)=1$.

Idea: use resolution to existentially quantify out variables

1. if empty clause found then terminate with result unsatisfiable
2. find variables which only occur in one phase (only positive or negative)
3. remove all clauses in which these variables occur
4. if no clause left then terminate with result satisfiable
5. choose x as one of the remaining variables with occurrences in both phases
6. add results of all possible resolutions on this variable
7. remove all trivial clauses and all clauses in which x occurs
8. continue with 1.
check whether XOR is weaker than OR, i.e. validity of:

$$
a \vee b \rightarrow(a \oplus b)
$$

which is equivalent to unsatisfiability of the negation:

$$
(a \vee b) \wedge \neg(a \oplus b)
$$

since negation of XOR is XNOR (equivalence):

$$
(a \vee b) \wedge(a \leftrightarrow b)
$$

we end up checking the following CNF for satisfiability:

$$
(a \vee b) \wedge(\neg a \vee b) \wedge(a \vee \neg b)
$$

$$
(a \vee b) \wedge(\neg a \vee b) \wedge(a \vee \neg b)
$$

initially we can skip 1. - 4. of the algorithm and choose $x=b$ in 5.
in 6. we resolve $(\neg a \vee b)$ with $(a \vee \neg b)$ and $(a \vee b)$ with $(a \vee \neg b)$ both on b and add the results $(a \vee \neg a)$ and $(a \vee a)$:

$$
(a \vee b) \wedge(\neg a \vee b) \wedge(a \vee \neg b) \wedge(a \vee \neg a) \wedge(a \vee a)
$$

the trivial clause $(a \vee \neg a)$ and clauses with ocurrences of b are removed:

$$
(a \vee a)
$$

in 2. we find a to occur only positive and in 3. the remaining clause is removed
the test in 4. succeeds and the CNF turns out to be satisfiable (thus the original formula is invalid - not a tautology)

Proof. in three steps:
(A) show that termination criteria are correct
(B) each transformation preserves satisfiability
(C) each transformation preserves unsatisfiability

Ad (A):
an empty clause is an empty disjunction, which is unsatisfiable
if literals occur only in one phase assign those to $1 \Rightarrow$ all clauses satisfied

CNF transformations preserve satisfiability:

removing a clause does not change satisfiability
thus only adding clauses could potentially not preserve satisfiability
the only clauses added are the results of resolution
correctness of resolution rule shows:
if the original CNF is satisfiable, then the added clause are satisfiable (even with the same satisfying assignment)

CNF transformations preserve unsatisfiability:

adding a clause does not change unsatisfiability
thus only removing clauses could potentially not preserve unsatisfiability
trivial clauses $(v \vee \neg v \vee \ldots)$ are always valid and can be removed
let f be the CNF after removing all trivial clauses (in step 7.)
let g be the CNF after removing all clauses in which x occurs (after step 7.)
we need to show (f unsat $\Rightarrow g$ unsat), or equivalently (g sat $\Rightarrow f$ sat)
the latter can be proven as the completeness proof for the resolution rule (see next slide)

If we interpret \cup as disjunction and clauses as formulae, then

$$
\left(C_{1} \vee x\right) \wedge \ldots \wedge\left(C_{k} \vee x\right) \wedge\left(D_{1} \vee \neg x\right) \wedge \ldots \wedge\left(D_{l} \vee \neg x\right)
$$

is, via distributivity law, equivalent to

$$
(\underbrace{\left(C_{1} \wedge \ldots \wedge C_{k}\right)}_{C} \vee x) \wedge(\underbrace{\left(D_{1} \wedge \ldots \wedge D_{l}\right)}_{D} \vee \neg x)
$$

and the same proof applies as for the completeness of the resolution rule.

Note: just using the completeness of the resolution rule alone does not work, since those σ^{\prime} derived for multiple resolutions are formally allowed to assign different values for the resolution variable.

- if variables have many occurences, then many resolutions are necessary
- in the worst x and $\neg x$ occur in half of the clauses ...
- ... then the number of clauses increases quadratically
- clauses become longer and longer
- unfortunately in real world examples the CNF explodes
(we might latter see how BDDs can be used to overcome some of these problems)
- How to obtain the satisfying assignment efficiently (counter example)?
- resolution based version often called DP, second version DPLL (DP after [DavisPutnam60] and DPLL after [DavisLogemannLoveland62])
- it eliminates variables through case analysis: time vs space
- only unit resolution used (also called boolean constraint propagation)
- case analysis is on-the-fly:
cases are not elaborated in a predefined fixed order, but ...
... only remaining crucial cases have to be considered
- allows sophisticated optimizations
a unit clause is a clause with a single literal
in CNF a unit clause forces its literal to be assigned to 1
unit resolution is an application of resolution, where one clause is a unit clause
also called boolean constraint propagation

Unit-Resolution Rule

$$
C \cup\{\neg l\} \quad\{l\}
$$

$$
\{l, \neg l\} \cap C=0
$$

C
here we identify $\neg \neg v$ with v for all variables v.
check whether XNOR is weaker than AND, i.e. validity of:

$$
a \wedge b \rightarrow(a \leftrightarrow b)
$$

which is equivalent to unsatisfiability of the CNF (exercise)

$$
a \wedge b \wedge(a \vee b) \wedge(\neg a \vee \neg b)
$$

adding clause obtained from unit resolution on a results in

$$
a \wedge b \wedge(a \vee b) \wedge(\neg a \vee \neg b) \wedge(\neg b)
$$

removing clauses containing a or $\neg a$

$$
b \wedge(\neg b)
$$

unit resolution on b results in an empty clause and we conclude unsatisfiability.

- if unit resolution produces a unit, e.g. resolving $(a \vee \neg b)$ with b produces a, continue unit resolution with this new unit
- often this repeated application of unit resolution is also called unit resolution
- unit resolution + removal of subsumed clauses never increases size of CNF

$$
C \text { subsumes } D \quad: \Leftrightarrow \quad C \subseteq D
$$

a unit(-clause) l subsumes all clauses in which l occurs in the same phase

- boolean constraint propagation (BCP): given a unit l, remove all clauses in which l occurs in the same phase, and remove all literals $\neg l$ in clauses, where it occurs in the opposite phase (the latter is unit resolution)

1. apply repeated unit resolution and removal of all subsumed clauses (BCP)
2. if empty clause found then return unsatisfiable
3. find variables which only occur in one phase (only positive or negative)
4. remove all clauses in which these variables occur (pure literal rule)
5. if no clause left then return satisfiable
6. choose x as one of the remaining variables with occurrences in both phases
7. recursively call DPLL on current CNF with the unit clause $\{x\}$ added
8. recursively call DPLL on current CNF with the unit clause $\{\neg x\}$ added
9. if one of the recursive calls returns satisfiable return satisfiable
10. otherwise return unsatisfiable

$$
(\neg a \vee b) \wedge(a \vee \neg b) \wedge(\neg a \vee \neg b)
$$

Skip 1. - 6., and choose $x=a$. First recursive call:

$$
(\neg a \vee b) \wedge(a \vee \neg b) \wedge(\neg a \vee \neg b) \wedge a
$$

unit resolution on a and removal of subsumed clauses gives

$$
b \wedge(\neg b)
$$

BCP gives empty clause, return unsatisfiable. Second recursive call:

$$
(\neg a \vee b) \wedge(a \vee \neg b) \wedge(\neg a \vee \neg b) \wedge \neg a
$$

BCP gives $\neg b$, only positive recurrence of b left, return satisfiable (satisfying assignment $\{a \mapsto 0, b \mapsto 0\}$)

Theorem.

$$
f(x) \equiv x \wedge f(1) \vee \bar{x} \wedge f(0)
$$

Proof.

Let σ be an arbitrary assignment to variables in f including x
case $\sigma(x)=0$:

$$
\sigma(f(x))=\sigma(f(0))=\sigma(0 \wedge f(1) \vee 1 \wedge f(0))=\sigma(x \wedge f(1) \vee \bar{x} \wedge f(0))
$$

case $\sigma(x)=1$:

$$
\sigma(f(x))=\sigma(f(1))=\sigma(1 \wedge f(1) \vee 0 \wedge f(0))=\sigma(x \wedge f(1) \vee \bar{x} \wedge f(0))
$$

first observe: $x \wedge f(x)$ is satisfiable iff $x \wedge f(1)$ is satisfiable
similarly, $\bar{x} \wedge f(x)$ is satisfiable iff $\bar{x} \wedge f(0)$ is satisfiable
then use expansion theorem of Shannon:
$f(x)$ satisfiable iff $\bar{x} \wedge f(0)$ or $x \wedge f(1)$ satisfiable iff $\bar{x} \wedge f(x)$ or $x \wedge f(x)$ satisfiable
rest follows along the lines of the the correctness proof for resolution based DP

- each variable is marked as unassigned, false, or true ($\{X, 0,1\}$)
- no explicit resolution:
- when a literal is assigned visit all clauses where its negation occurs
- find those clauses which have all but one literal assigned to false
- assign remaining non false literal to true and continue
- decision:
- heuristically find a variable that is still unassigned
- heuristically determine phase for assignment of this variable
- decision level is the depth of recursive calls (= \#nested decisions)
- the trail is a stack to remember order in which variables are assigned
- for each decision level the old trail height is saved on the control stack
- undoing assignments in backtracking:
- get old trail height from control stack
- unassign all variables up to the old trail height

Decide

Assign

BCP

Decide

- static heuristics:
- one linear order determined before solver is started
- usually quite fast, since only calculated once
- can also use more expensive algorithms
- dynamic heuristics
- typically calculated from number of occurences of literals (in unsatisfied clauses)
- rather expensive, since it requires traversal of all clauses (or more expensive updates in BCP)
- recently, second order dynamic heuristics (VSIDS in Chaff \Rightarrow see learning)
- view CNF as a graph:
clauses as nodes, edges between clauses with same variable
- a cut is a set of variables that splits the graph in two parts
- recursively find short cuts that cut of parts of the graph
- static or dynamically order variables according to the cuts

Cut Width Algorithm

```
int
sat (CNF cnf)
{
    SetOfVariables cut = generate_good_cut (cnf);
    CNF assignment, left, right;
    left = cut_off_left_part (cut, cnf);
    right = cut_off_right_part (cut, cnf);
    forall_assignments (assignment, cut)
    {
        if (sat (apply (assignment, left)) && sat (apply (assignment, right)))
            return 1;
    }
    return 0;
}
```

- resembles cuts in circuits when CNF is generated with Tseitin transformation
- ideally cuts have constant or logarithmic size ...
- for instance in tree like circuits
- so the problem is reconvergence: the same signal / variable is used multiple times
- ... then satisfiability actually becomes polynomial (see exercise)

A clause is called positive if it contains a positive literal.

A clause is called negative if all its literals are negative.

A clause is a Horn clause if contains at most one positive literal.

CNF is in Horn Form iff all clauses are Horn clause (Prolog without negation)

Order assignments point-wise: $\quad \sigma \leq \sigma^{\prime} \quad$ iff $\quad \sigma(x) \leq \sigma^{\prime}(x)$ for all $x \in V$

Horn Form with only positive clauses has minimal satisfying assignment.

Minimal satisfying assignment is obtained by BCP (polynomial).

A Horn Form is satisfiable iff the minimal assignments of its positive part satisfies all its negative clauses as well.

- CNF in Horn Form: use above specialized fast algorithm
- non Horn: split on literals which occurs positive in non Horn clauses
- actually choose variable which occurs most often in such clauses
- this gradually transforms non Horn CNF into Horn Form
- main heuristic in SAT solver SATO
- Note: In general, BCP in DP prunes search space by avoiding assignments incompatible to minimal satisfying assingment for the Horn part of the CNF.

> non Horn part of CNF Horn part of CNF

- Dynamic Largest Individual Sum (DLIS)
- fastest dynamic first order heuristic (e.g. GRASP solver)
- choose literal (variable + phase) which occurs most often
- ignore satisfied clauses
- requires explicit traversal of CNF (or more expensive BCP)
- look-forward heuristics (e.g. SATZ or MARCH solver) failed literals, probing
- do trial assignments and BCP for all unassigned variables (both phases)
- if BCP leads to conflict, force toggled assignment of current trial decision
- skip trial assignments implied by previous trial assignments (removes a factor of $|V|$ from the runtime of one decision search)
- decision variable maximizes number of propagated assignments
- distribution of SAT solver run-time shows heavy tail behaviour
- for satisfiable instances the solver may get stuck in the unsatisfiable part
- even if the search space contains a large satisfiable part
- often it is a good strategy to abandon the current search and restart
- restart after the number of decisions reached a restart limit
- avoid to run into the same dead end
- by randomization (either on the decision variable or its phase)
- and/or just keep all the learned clauses
- for completeness dynamically increase restart limit

378 restarts in 104408 conflicts


```
int inner = 100, outer = 100;
int restarts = 0, conflicts = 0;
for (; ;)
    {
    ... // run SAT core loop for 'inner' conflicts
    restarts++;
    conflicts += inner;
    if (inner >= outer)
        {
            outer *= 1.1;
            inner = 100;
        }
    else
        inner *= 1.1;
    }
```

70 restarts in 104448 conflicts


```
unsigned
luby (unsigned i)
{
    unsigned k;
    for (k = 1; k < 32; k++)
        if (i == (1 << k) - 1)
            return 1 << (k - 1);
        for (k = 1; ; k++)
            if ((1 << (k - 1)) <= i && i < (1 << k) - 1)
            return luby (i - (1 << (k-1)) + 1);
}
limit = 512 * luby (++restarts);
... // run SAT core loop for 'limit' conflicts
```

[Knuth'12]

$$
\begin{aligned}
&\left(u_{1}, v_{1}\right):=(1,1) \\
&\left(u_{n+1}, v_{n+1}\right):=\left(u_{n} \&-u_{n}=v_{n} ?\left(u_{n}+1,1\right):\left(u_{n}, 2 v_{n}\right)\right) \\
&(1,1),(2,1),(2,2),(3,1),(4,1),(4,2),(4,4),(5,1), \ldots
\end{aligned}
$$

- phase assignment:
- assign decision variable to 0 or 1 ?
- the only thing that matters in satisfiable instances
- "phase saving" as in RSat:
- pick phase of last assignment (if not forced to, do not toggle assignment)
- initially use statically computed phase (typically LIS)
- rapid restarts: varying restart interval with bursts of restarts
- not ony theoretically avoids local minima
- works nicely together with phase saving

If y has never been used to derive a conflict, then skip \bar{y} case.

Immediately jump back to the \bar{x} case - assuming x was used.
$\left(\begin{array}{ll}-3 & 1\end{array}\right)$
(-32)
$(-1-2 \not 2)$
$(-1-2)$
(-12)
$(1-2)$
(12)

Split on -3 first (bad decision).

Split on -1 and get first conflict.
(-31)
(-32)
$(-x-2 \not 2)$
$(-X-2)$
$(X 12)$
$(1-2)$
(12)

Regularly backtrack and assign 1 to get second conflict.

Backtrack to root, assign 3 and derive same conflicts.
(-3 1)
(-32)
$(-1-2) 2\}$
$(-1-2)$
(-12)
$\left.\begin{array}{l}x-2) \\ (x 2)\end{array}\right)$

Assignment -3 does not contribute to conflict.

So just backjump to root before assigning 1.

- backjumping helps to recover from bad decisions
- bad decisions are those that do not contribute to conflicts
- without backjumping same conflicts are generated in second branch
- with backjumping the second branch of bad decisions is just skipped
- particularly useful for unsatisfiable instances
- in satisfiable instances good decisions will guide us to the solution
- with backjumping many bad decisions increase search space roughly quadratically instead of exponentially with the number of bad decisions
- the implication graph maps inputs to the result of resolutions
- backward from the empty clause all contributing clauses can be found
- the variables in the contributing clauses are contributing to the conflict
- important optimization, since we only use unit resolution
- generate graph only for resolutions that result in unit clauses
- the assignment of a variable is result of a decision or a unit resolution
- therefore the graph can be represented by saving the reasons for assignments with each assigned variable

(edges of directed hyper graphs may have multiple source and target nodes)

- graph becomes an ordinary (non hyper) directed graph
- simplifies implementation:
- store a pointer to the reason clause with each assigned variable
- decision variables just have a null pointer as reason
- decisions are the roots of the graph
- can we learn more from a conflict?
- backjumping does not fully avoid the occurrence of the same conflict
- the same (partial) assignments may generate the same conflict
- generate conflict clauses and add them to CNF
- the literals contributing to a conflict form a partial assignment
- this partial assignment is just a conjunction of literals
- its negation is a clause (implied by the original CNF)
- adding this clause avoids this partial assignment to happen again

[MarquesSilvaSakallah'96: GRASP]

- observation: current decision always contributes to conflict
- otherwise BCP would have generated conflict one decision level lower
- conflict clause has (exactly one) literal assigned on current decision level
- instead of backtracking
- generate and add conflict clause
- undo assignments as long conflict clause is empty or unit clause (in case conflict clause is the empty clause conclude unsatisfiability)
- resulting assignment from unit clause is called conflict driven assignment

```
-3}
3-1 0
3-2 0
-4 -1 0
-4 -2 0
-3 4 0
3-4 0
-3 5 6 0
3-5 0
3-6 0
4560
We use a version of the DIMACS format.
Variables are represented as positive integers.
Integers represent literals.
Subtraction means negation.
A clause is a zero terminated list of integers.
```

CNF has a good cut made of variables 3 and 4 (cf Exercise $4+5$). (but we are going to apply DP with learning to it)

unit clause -3 is generated as learned clause and we backtrackt to $l=0$

since -3 has a real unit clause as reason, an empty conflict clause is learned
$l=0 \quad$ (no unit clause originally, so no implications)

decision

since FIRST clause was used to derive 2 , conflict clause is $(1-3)$
backtrack to $l=1$ (smallest level for which conflict clause is a unit clause)

$$
l=0 \quad \text { (no unit clause originally, so no implications) }
$$

learned conflict clause is the unit clause 1
backtrack to decision level $l=0$

$$
l=0
$$

unit
since the learned clause is the empty clause, conclude unsatisfiability
$l=0 \quad$ (no unit clause originally, so no implications)

decision
$l=1 \quad-6 \quad$ (no implications on this decision level either)

$$
l=2
$$

learn the unit clause -3 and BACKJUMP to decision level $l=0$

finally the empty clause is derived which proves unsatisfiability

```
int
sat (Solver solver)
{
    Clause conflict;
    for (;;)
        {
            if (bop_queue_is_empty (solver) && !decide (solver))
                return SATISFIABLE;
            conflict = deduce (solver);
            if (conflict && !backtrack (solver, conflict))
                return UNSATISFIABLE;
    }
}
```

```
int
backtrack (Solver solver, Clause conflict)
{
    Clause learned_clause; Assignment assignment; int new_level;
    if (decision_level(solver) == 0)
        return 0;
    analyze (solver, conflict);
    learned_clause = add (solver);
    assignment = drive (solver, learned_clause);
    enqueue_bcp_queue (solver, assignment);
    new_level = jump (solver, learned_clause);
    undo (solver, new_level);
    return 1;
}
```

- conflict clause: obtained by backward resolving empty clause with reasons
- start at clause which has all its literals assigned to false
- resolve one of the false literals with its reason
- invariant: result still has all its literals assigned to false
- continue until user defined size is reached
- gives a nice correspondence between resolution and learning in DP
- allows to generate a resolution proof from a DP run
- implemented in RELSAT solver [BayardoSchrag'97]

a simple cut always exists: set of roots (decisions) contributing to the conflict

UIP = articulation point in graph decomposition into biconnected components (simply a node which, if removed, would disconnect two parts of the graph)

- can be found by graph traversal in the order of made assignments
- trail respects this order
- traverse reasons of variables on trail starting with conflict
- count "open paths" (initially size of clause with only false literals)
- if all paths converged at one node, then UIP is found
- decision of current decision level is a UIP and thus a sentinel
- assume a non decision UIP is found
- this UIP is part of a potential cut
- graph traversal may stop (everything behind the UIP is ignored)
- negation of the UIP literal constitutes the conflict driven assignment
- may start new clause generation (UIP replaces conflict)
- each conflict may generate multiple learned clauses
- however, using only the first UIP encountered seems to work best

1st UIP learned clause increases chance of backjumping ("pulls in" as few decision levels as possible)

- intuitively it is important to localize the search (cf cutwidth heuristics)
- cuts for learned clauses may only include UIPs of current decision level
- on lower decision levels an arbitrary cut can be chosen
- multiple alternatives
- include all the roots contributing to the conflict
- find minimal cut (heuristically)
- cut off at first literal of lower decision level (works best)

Two step algorithm:

1. mark all variables in 1st UIP clause
2. remove literals with all antecedent literals also marked

Correctness:

- removal of literals in step 2 are self subsuming resolution steps.
- implication graph is acyclic.

Confluence: produces a unique result.

[MiniSAT 1.13]

Four step algorithm:

1. mark all variables in 1st UIP clause
2. for each candidate literal: search implication graph
3. start at antecedents of candidate literals
4. if search always terminates at marked literals remove candidate

Correctness and Confluence as in local version!!!

Optimization: terminate early with failure if new decision level is "pulled in"

		solved instances		time in hours		space in GB		out of memory		deleted literals
$\begin{gathered} \text { MiniSAt } \\ \text { with } \\ \text { preprocessing } \\ \hline \end{gathered}$	recur	788	9\%	170	11\%	198	49\%	11	89\%	33\%
	local	774	7\%	177	8\%	298	24\%	72	30\%	16\%
	none	726		192		392		103		
MiniSATwithoutpreprocessing	recur	705	13\%	222	8\%	232	59\%	11	94\%	37\%
	local	642	3\%	237	2\%	429	24\%	145	26\%	15\%
	none	623		242		565		196		
$\begin{aligned} & \text { PICOSAT } \\ & \text { with } \\ & \text { preprocessing } \end{aligned}$	recur	767	10\%	182	13\%	144	45\%	10	60\%	31\%
	local	745	6\%	190	9\%	188	29\%	10	60\%	15\%
	none	700		209		263		25		
$\begin{gathered} \text { PICOSAT } \\ \text { without } \\ \text { preprocessing } \end{gathered}$	recur	690	6\%	221	8\%	105	63\%	10	68\%	33\%
	local	679	5\%	230	5\%	194	31\%	10	68\%	14\%
	none	649		241		281		31		
altogether	recur	2950	9\%	795	10\%	679	55\%	42	88\%	34\%
	local	2840	5\%	834	6\%	1109	26\%	237	33\%	15\%
	none	2698		884		1501		355		

10 runs for each configuration with 10 seeds for random number generator

	MiniSAt with preprocessing					
	seed	solved	time	space	mo	del
1. recur	8	82	16	19	1	33\%
2. recur	6	81	17	20	1	33\%
3. local	0	81	16	29	7	16\%
4. local	7	80	17	29	8	15\%
5. recur	4	80	17	20	1	33\%
6. recur	1	79	17	20	1	33\%
7. recur	9	79	17	20	1	34\%
8. local	5	78	18	29	7	16\%
9. local	1	78	17	29	6	16\%
10. recur	0	78	17	20	1	34\%
11. recur	5	78	17	19	1	33\%
12. local	3	77	18	31	7	16\%
13. local	8	77	18	30	8	16\%
14. recur	7	77	17	20	1	34\%
15. recur	3	77	17	20	1	34\%
16. recur	2	77	17	20	2	33\%
17. none	7	76	19	39	9	0\%
: :	:	:	:	:	:	:

[MoskewiczMadiganZhaoZhangMalik-DAC'01: CHAFF]

- "second order" because it involves statistics about the search
- Variable State Independent Decaying Sum (VSIDS) decision heuristic (implemented in Chaff, Limmat, MiniSAT, PicoSAT, and many more)
- VSIDS just counts the occurrences of literals in conflict clauses
- literal/variable with maximal count (score) is chosen (from a priority queue ordered by score)
- score is multiple by a factor $f<1$ after a certain number of conflicts occurred (this is the "decaying" part and also called rescoring)
- emphasizes (negation of) literals contributing recently to conflicts (localization)

[Biere-SAT’08]

- VSIDS score can be normalized to the interval $[0,1]$ as follows:
- pick a decay factor f per conflict: typically $f=0.95$
- each variable is punished by this decay factor at every conflict
- if a variable is involved in conflict, add $1-f$ to score

$$
s, f \leq 1, \quad \text { then } \quad s^{\prime} \leq \underbrace{\text { decay in any case }}_{\text {increment if involved }} \overbrace{f}^{+1-f} \leq f+1-f=1
$$

with s old score before conflict, s^{\prime} new score after conflict

- recomputing score of all variables at each conflict is costly
- linear in the number of variables, e.g. millions
- particularly, because number of involved variabels \ll number of variables
- Chaff: precision of score traded for faster decay
- increment score of involved variables by 1
- decay score of all variables every 256 conflicts by halfing the score
- sort priority queue after decay and not at every conflict
- MiniSAT uses Exponential VSIDS
- also just update score of involved variables
- dynamically adjust increment: $\quad \delta^{\prime}=\delta \cdot \frac{1}{f} \quad$ (typically increment δ by 5%)
- use floating point representation of score
- "rescore" to avoid overflow in regular intervals
- EVSIDS linearly related to NVSIDS
consider again only one variable with score sequence s_{n} resp. S_{n}

$$
\delta_{k}= \begin{cases}1 & \text { if involved in } k \text {-th conflict } \\ 0 & \text { otherwise }\end{cases}
$$

$$
i_{k}=(1-f) \cdot \delta_{k}
$$

$$
\begin{aligned}
& s_{n}=\boxed{\left.\left(\ldots\left(i_{1} \cdot f+i_{2}\right) \cdot f+i_{3}\right) \cdot f \cdots\right) \cdot f+i_{n}}=\sum_{k=1}^{n} i_{k} \cdot f^{n-k}=(1-f) \cdot \sum_{k=1}^{n} \delta_{k} \cdot f^{n-k} \\
& S_{n}=\frac{f^{-n}}{(1-f)} \cdot s_{n}=\frac{f^{-n}}{(1-f)} \cdot(1-f) \cdot \sum_{k=1}^{n} \delta_{k} \cdot f^{n-k}=\sum_{k=1}^{n} \delta_{k} \cdot f^{-k}
\end{aligned}
$$

[GoldbergNovikov-DATE’02]

- observation:
- recently added conflict clauses contain all the good variables of VSIDS
- the order of those clauses is not used in VSIDS
- basic idea:
- simply try to satisfy recently learned clauses first
- use VSIDS to chose the decision variable for one clause
- if all learned clauses are satisfied use other heuristics
- intuitively obtains another order of localization (no proofs yet)
- results are mixed (by some authors considered to be more robust than just VSIDS)
- variable move to front strategy (VMTF)
- Siege SAT Solver [Ryan'04]
- easy and cheap to implement with doubly linked list
- need pointer to last picked variable in queue
- reset during back-tracking
- rather aggressive
- clause move to front strategy (CMTF)
- HaifaSAT [GershanStrichman'08] variant keeps clauses in a queue
- queue can also be used to find less important clauses to throw away
- refined version in PrecoSAT [Biere'09]
- SAT solver picks unassigned variable with largest score as next decision
- consider only change of the score s_{i} of one variable v during i-th conflict
- let $\beta_{i}=1$ if v is bumped in the i-th conflict otherwise 0
- some possible variable score update functions:
- static $\quad s_{i+1}=s_{i} \quad$ initialize score statically and do not change it
- inc $s_{i+1}=s_{i}+\beta_{i} \quad$ this is in essence DLIS from Grasp
- vmtf $\quad s_{i+1}=i$
- sum $\quad s_{i+1}=s_{i}+i \cdot \beta_{i}$
- vsids $\quad s_{i+1}=d \cdot s_{i}+\beta_{i}$
emphasis on recent conflicts
unpublished
- evsids $\quad s_{i+1}=s_{i}+g_{i} \cdot \beta_{i}, \quad g_{i+1}=e \cdot g_{i} \quad$ factor $e \in[1,2)$
e.g. $e=1.05$
- avg $s_{i+1}=s_{i}+\beta_{i} \cdot\left(i-s_{i}\right) / 2$ another filter function
- last four share the idea of "low-pass filtering" of the involvement of variables
- for this interpretation see our SAT'08 paper and the video
- important practical issue: number of bumped variables is usually small

- should not keep all learned clauses forever
- some of them become useless
- for instance subsumed or satisfied under learned units
- were but are not anymore relevant to current search focus
- memory consumption / BCP speed
- throw unimportant learned clauses away (reduce)
- in regular intervals (controlled by geometric, Luby, arithmetic scheme)
- size heuristics: discard long clauses
- least recently used (LRU): as in HW cache (see also CMTF)
- clause scores with bumping scheme as for VSDIS (BerkMin)
- glucose level: number decision levels in learned clause called also LBD in original paper [AudemardLaurentSimon'09]
- similar to look-ahead heuristics: polynomially bounded search
- may be recursively applied (however, is often too expensive)
- Stålmarck's Method
- works on triplets (intermediate form of the Tseitin transformation):

$$
x=(a \wedge b), y=(c \vee d), z=(e \oplus f) \text { etc. }
$$

- generalization of BCP to (in)equalities between variables
- test rule splits on the two values of a variable
- Recursive Learning (Kunz \& Pradhan)
- (originally) works on circuit structure (derives implications)
- splits on different ways to justify a certain variable value

1. BCP over (in)equalities: $\quad \frac{x=y \quad z=(x \oplus y)}{z=0} \quad \frac{x=0 \quad z=(x \vee y)}{z=y} \quad$ etc.
2. structural rules: $\quad \frac{x=(a \vee b) \quad y=(a \vee b)}{x=y} \quad$ etc.

\[

\]

3. test rule:

Assume $x=0$, BCP and derive (in)equalities E_{0}, then assume $x=1$, BCP and derive (in)equalities E_{1}. The intersection of E_{0} and E_{1} contains the (in)equalities valid in any case.

$x=0$		$x=1$	
$y=0$	$y=1$	$y=0$	$y=1$
\Downarrow	\Downarrow	\Downarrow	\Downarrow
E_{00}	E_{01}	E_{10}	E_{11}
E_{0}		E_{1}	

(we do not show the (in)equalities that do not change)

- recursive application
- depth of recursion bounded by number of variables
- complete procedures (determines satisfiability or unsatisfiability)
- for a fixed (constant) recursion depth k polynomial!
- k-saturation:
- apply split rule on recursively up to depth k on all variables
- 0-saturation: apply all rules except test rule (just BCP: linear)
- 1-saturation: apply test rule (not recursively) for all variables (until no new (in)equalities can be derived)
- circuits

output 0 implies middle input 0 indirectly
- CNF
- for each clause c in the CNF
- for each literal l in the clause c
- assume l and propagate
- collect set of all implied literals (direct/indirect "implications" of l)
- intersect these sets of implied literals over all l in c
- literals in the intersection are implied without any assumption
[DavisPutnam60][Biere SAT'04] [SubbarayanPradhan SAT'04] [EénBiere SAT'05]
- use DP to existentially quantify out variables as in [DavisPutnam60]
- only remove a variable if this does not add (too many) clauses
- do not count tautological resolvents
- detect units on-the-fly
- schedule removal attempts with a priority queue
[Biere SAT'04] [EénBiere SAT'05]
- variables ordered by the number of occurrences
- strenthen and remove subsumed clauses (on-the-fly) (SATeLite [EénBiere SAT'05] and Quantor [Biere SAT'04])
- for each (new or strengthened) clause
- traverse list of clauses of the least occuring literal in the clause
- check whether traversed clauses are subsumed or
- strengthen traversed clauses by self-subsumption [EénBiere SAT'05]
- use Bloom Filters (as in "bit-state hashing"), aka signatures
- checking new clauses against existing clauses: backward (self) subsumption
- new clause (self) subsumes existing clause
- new clause smaller or equal in size
- check clause being subsumed by existing clauses
- can be made more efficient by one-watcher scheme [Zhang-SAT'05]
- for all iterals l
- for all clauses c in which l occurs (with this particular phase)
- assume the negation of all the other literals in c, assume l
- if BCP does not lead to a conflict continue with next literal in outer loop
- if all clauses produced a conflict permanently assign $\neg l$

Correctness: Let $c=l \vee d$, assume $\neg d \wedge l$.

If this leads to a conflict $d \vee \neg l$ could be learned (but is not added to the CNF).

Self subsuming resolution with c results in d and c is removed.

If all such cases lead to a conflict, $\neg l$ becomes a pure literal.

Generalization of pure literals.

Given a partial assignment σ.

A clause of a CNF is "touched" by σ if it contains a literal assigned by σ.

A clause of a CNF is "satisfied" by σ if it contains a literal assigned to true by σ.

If all touched clauses are satisfied then σ is an "autarky".

All clauses touched by an autarky can be removed.

Example: $\quad(-12)(-13)(1-2-3)(25) \cdots \quad$ (more clauses without 1 and 3$)$.

Then $\sigma=\{-1,-3\}$ is an autarky.
[Kullman'99]
blocked clause $C \in F \quad$ all clauses in F with \bar{l}
fix a CNF F

$$
(\bar{l} \vee \bar{a} \vee c)
$$

$$
(a \vee b \vee l)
$$

$$
(\bar{l} \vee \bar{b} \vee d)
$$

since all resolvents of C on l are tautological C can be removed

Proof

assignment σ satisfying $F \backslash C$ but not C
can be extended to a satisfying assignment of F by flipping value of l

```
[JärvisaloBiereHeule-TACAS'10]
```

COI Cone-of-Influence reduction
MIR Monontone-Input-Reduction
NSI Non-Shared Inputs reduction
PG Plaisted-Greenbaum polarity based encoding
TST standard Tseitin encoding
VE Variable-Elimination as in DP / Quantor / SATeLite
BCE Blocked-Clause-Elimination

PrecoSAT [Biere'09], Lingeling [Biere'10], also in CryptoMiniSAT (Mate Soos)

- preprocessing can be extremely beneficial
- most SAT competition solvers use variable elimination (VE) [EénBiere SAT'05]
- equivalence / XOR reasoning
- probing / failed literal preprocessing / hyper binary resolution
- however, even though polynomial, can not be run until completion
- simple idea to benefit from full preprocessing without penalty
- "preempt" preprocessors after some time
- resume preprocessing between restarts
- limit preprocessing time in relation to search time
- special case incremental preprocessing:
- preprocessing during incremental SAT solving
- allows to use costly preprocessors
- without increasing run-time "much" in the worst-case
- still useful for benchmarks where these costly techniques help
- good examples: probing and distillation
even VE can be costly
- additional benefit:
- makes units / equivalences learned in search available to preprocessing
- particularly interesting if preprocessing simulates encoding optimizations
- danger of hiding "bad" implementation though ...
- ... and hard(er) to debug and get right
[JävisaloHeuleBiere'12]

Literals

invariant: first two literals are watched

invariant: first two literals are watched

Additional Binary Clause Watcher Stack

observation: often the other watched literal satisfies the clause
so cache this literals in watch list to avoid pointer dereference
for binary clause no need to store clause at all
can easily be adjusted for ternary clauses (with full occurrence lists)

LINGELING uses more compact pointer-less variant
[ClarkeEmerson'82] [QuielleSifakis'82] Turing Award 2007

- check algorithmically temporal / sequential properties
- systems are originally finite state
- simple model: finite state automaton
- comparison of automata can be seen as model checking
- check that the output streams of two finite state systems "match"
- process algebra: simulation and bisimulation checking
- temporal logics as specification mechanism
- safety, liveness and more general temporal operators, fairness
- fixpoint algorithms with symbolic representations:
- timed automata (clocks)
- hybrid automata (differential equations)
- termination guaranteed if finite quotient structure exists
- simply run model checker for some time, e.g. Java Pathfinder
- run time verification

1. example: add checker synthesized from temporal spec
2. example: run all schedules for one test case

- check programs (incl. loops and recursion) over finite domains, e.g. SLAM

the two traffic lights should never show a green light at the same time
- state space is the set of assignments to variables of the system
- state space is finite if the range of variables is finite
- this notion works for inifinite state spaces as well
- TLC example:
- single assignment $\sigma:\{$ southnorth, eastwest $\} \rightarrow\{$ green, yellow, red $\}$
- set of assignments is isomorphic to $\{\text { green, yellow, red }\}^{2}$
- eg state space is isomorphic to the crossproduct of variable ranges
- not all states are reachable: (green, green)
- safety properties specify invariants of the system
- simple generic algorithm for checking safety properties:

1. iteratively generate all reachable states
2. check for violation of invariant for newly reached states
3. terminate if all newly reached states can be found

- compare with assertions
- used in run time checking: assert in C and VHDL
- contract checking: require, ensure, etc. in Eiffel

```
MODULE trafficlight (enable)
VAR
    light : { green, yellow, red };
    back : boolean;
ASSIGN
    init (light) := red;
    next (light) :=
        case
            light = red & !enable : red;
            light = red & enable : yellow;
            light = yellow & back : red;
            light = yellow & !back : green;
            TRUE : yellow;
        esac;
    next (back) :=
        case
            light = red & enable : FALSE;
            light = green : TRUE;
            TRUE : back;
        esac;
MODULE main
VAR
    southnorth : trafficlight (TRUE);
    eastwest : trafficlight (TRUE);
SPEC
    AG !(southnorth.light = green & eastwest.light = green)
```

- symbolic model checker implemented by Ken McMillan at CMU (early 90'ies)
- input language: finite models + temporal specification
- hierarchical description, similar to hardward description language (HDL)
- integer and enumeration types, arithmetic operations
- heavily relies on the data structure Binary Decision Diagrams (BDDs)


```
MODULE main
VAR
    turn : { ew, sn };
    southnorth : trafficlight (enablesouthnorth);
    eastwest : trafficlight (enableeastwest);
DEFINE
    enableeastwest := southnorth.light = red & turn = ew;
    enablesouthnorth := eastwest.light = red & turn = sn;
SPEC
    AG !(southnorth.light = green & eastwest.light = green)
```

idea: disable traffic light as long the other is not red and its not the others turn

traffic lights showing red should eventually show green

traffic lights showing red should eventually show green

traffic lights showing red should eventually show green

- compilation of finite model into pure propositional domain
- first step is to flatten the hierarchy
- recursive instantiation of all submodules
- name and parameter substitution
- may increase program size exponentially
- second step is to encode variables with boolean variables

light		light@1	light@0
green	\mapsto	0	0
yellow	\mapsto	0	1
red	\mapsto	1	0

- initial state predicate I represented as boolean formula

```
!eastwest.light@0 & eastwest.light@1
(equivalent to init(eastwest.light) := red)
```

- transition relation T represented as boolean formula
- encoding of atomic predicates p as boolean formulae
!eastwest.light@1 \& !eastwest.light@0
(equivalent to eastwest.light ! = green)

[BiereCimattiClarkeZhu-TACAS'99]

- uses SAT for model checking
- historically not the first symbolic model checking approach
- scales better than original BDD based techniques
- mostly incomplete in practice
- validity of a formula can often not be proven
- focus on counter example generation
- only counter example up to certain length (the bound k) are searched
checking safety property $\mathbf{G} p$ for a bound k as SAT problem:

check occurrence of $\neg p$ in the first k states
generic counter example trace of length k for liveness $\mathbf{F} p$

$$
I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge \cdots \wedge T\left(s_{k}, s_{k+1}\right) \wedge \bigvee_{l=0}^{k} s_{l}=s_{k+1} \wedge \bigwedge_{i=0}^{k} \neg p\left(s_{i}\right)
$$

(however we recently showed that liveness can always
be reformulated as safety [BiereArthoSchuppan02])

sequential circuit

break sequential loop

added 1st copy

find inputs for which failed becomes true

- find bounds on the maximal length of counter examples
- also called completeness threshold
- exact bounds are hard to find \Rightarrow approximations
- induction
- use inductive invariants as we have seen before
- generalization of inductive invariants: pseudo induction
- use SAT for quantifier elimination as with BDDs
- then model checking becomes fixpoint calculation

Distance: length of shortest path between two states

$$
\delta(s, t) \equiv \min \left\{n \mid \exists s_{0}, \ldots, s_{n}\left[s=s_{0}, t=s_{n} \text { and } T\left(s_{i}, s_{i+1}\right) \text { for } 0 \leq i<n\right]\right\}
$$

(distance can be infinite if s and t are not connected)

Diameter: maximal distance between two connected states

$$
d(T) \equiv \max \left\{\delta(s, t) \mid T^{*}(s, t)\right\}
$$

with T^{*} defined as the transitive reflexive hull of T.

Radius: maximal distance of a reachable state from the initial states

$$
r(T, I) \equiv \max \left\{\delta(s, t) \mid T^{*}(s, t) \text { and } I(s) \text { and } \delta(s, t) \leq \delta\left(s^{\prime}, t\right) \text { for all } s^{\prime} \text { with } I\left(s^{\prime}\right)\right\}
$$

(minimal number of steps to reach an arbitrary state in BFS)

single state with distance 2 from initial states
diameter 4, radius 2
(reachable diameter 3, distance from 0 to 4 or max. distance between 2,3,4)

- a bad state is reached in at most $r(T, I)$ steps from the initial states
- a bad state is a state violating the invariant to be proven
- thus, the radius is a completeness threshold for safety properties
- for safety properties the max. k for doing bounded model checking is $r(T, I)$
- if no counter example of this length can be found the safety property holds

reformulation:

the radius is the max. length r of a path leading from an initial state to a state t, such there is no other path from an initial state to t with length less than r.

Thus radius r is the minimal number which makes the following formula valid:

$$
\begin{aligned}
& \forall s_{0}, \ldots, s_{r+1}\left[\left(I\left(s_{0}\right)\right.\right. \wedge \\
&\left.\bigwedge_{i=0}^{r} T\left(s_{i}, s_{i+1}\right)\right) \rightarrow \\
& \exists n \leq r\left[\exists t_{0}, \ldots, t_{n}\left[I\left(t_{0}\right)\right.\right.\left.\left.\left.\wedge \bigwedge_{i=0}^{n-1} T\left(t_{i}, t_{i+1}\right) \wedge t_{n}=s_{r+1}\right]\right]\right]
\end{aligned}
$$

after replacing $\exists n \leq r \cdots$ by $\bigvee_{n=0}^{r} \cdots$ we get a Quantified Boolean Formula (QBF), which is much harder to prove un/satisfiable (PSPACE complete).
initial states

(we allow t_{i+1} to be identical to t_{i} in the lower path)

- we can not find the real radius / diameter with SAT efficiently
- over approximation idea:
- drop requirement that there is no shorter path
- enforce different (no reoccurring) states on single path instead
reoccurrence diameter:
length of the longest path without reoccurring states
reoccurrence radius:
length of the longest initialized path without reoccurring states

reformulation:

the reoccurrence radius is the length of the longest path from initial states without reoccurring states (one may further assume that only the first state is an initial state)

The reoccurring radius is the minimal r which makes the following formula valid:

$$
\forall s_{0}, \ldots, s_{r+1}\left[\left(I\left(s_{0}\right) \wedge \bigwedge_{i=0}^{r} T\left(s_{i}, s_{i+1}\right)\right) \rightarrow \bigvee_{0 \leq i<j \leq r+1} s_{i}=s_{j}\right]
$$

this is a propositional formula and can be checked by SAT
(exercise: reoccurrence radius/diameter is an upper bound on real radius/diameter)

radius 1 , reoccurrence radius n
for $k=0 \ldots \infty \quad$ check

1. k-induction base case:

$$
I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge \ldots \wedge T\left(s_{k-1}, s_{k}\right) \wedge B\left(s_{k}\right) \wedge \bigwedge_{0 \leq i<k} \neg B\left(s_{i}\right) \quad \text { satisfiable? }
$$

2. k-induction induction step:

$$
T\left(s_{0}, s_{1}\right) \wedge \ldots \wedge T\left(s_{k-1}, s_{k}\right) \wedge B\left(s_{k}\right) \wedge \bigwedge_{0 \leq i<k} \neg B\left(s_{i}\right) \quad \text { unsatisfiable? }
$$

if base case satisfiable (= BMC), then bad state reachable
if inductive step unsatisfiable, then bad state unreachable
incomplete without simple path constraints

Incremental SAT Solving for BMC and k-Induction
[EénSörensson’03]

$$
k=0 \quad \text { base case }
$$

[EénSörensson’03]

$$
k=0 \quad \text { inductive step }
$$

$$
k=1 \quad \text { base case }
$$

$$
k=1 \quad \text { inductive step }
$$

$$
k=2 \quad \text { base case }
$$

$$
k=2 \quad \text { inductive step }
$$

Incremental SAT Solving for BMC and k-Induction
[EénSörensson’03]

$$
k=3 \quad \text { base case }
$$

$$
k=3 \text { inductive step }
$$

Incremental SAT Solving for BMC and k-Induction
[EénSörensson’03]

$k=4 \quad$ base case

Incremental SAT Solving for BMC and k-Induction
[EénSörensson'03]

$$
k=4 \quad \text { inductive step }
$$

Incremental SAT Solving for BMC and k-Induction
[EénSörensson'03]

$k=5$ base case

$$
k=5 \text { inductive step }
$$

Incremental SAT Solving for BMC and k-Induction
[EénSörensson’03]

$k=6$ base case

$$
k=6 \quad \text { inductive step }
$$

- bounded model checking: [BiereCimattiClarkeZhu'99]

$$
I\left(s_{1}\right) \wedge T\left(s_{1}, s_{2}\right) \wedge \ldots \wedge T\left(s_{k-1}, s_{k}\right) \wedge \bigvee_{0 \leq i \leq k} B\left(s_{i}\right) \quad \text { satisfiable? }
$$

- reoccurrence diameter checking: [BiereCimattiClarkeZhu'99]

$$
T\left(s_{1}, s_{2}\right) \wedge \ldots \wedge T\left(s_{k-1}, s_{k}\right) \wedge \bigwedge_{1 \leq i<j \leq k} s_{i} \neq s_{j} \quad \text { unsatisfiable? }
$$

- k-induction base case: [SheeranSinghStålmarck'00]

$$
I\left(s_{1}\right) \wedge T\left(s_{1}, s_{2}\right) \wedge \ldots \wedge T\left(s_{k-1}, s_{k}\right) \wedge B\left(s_{k}\right) \wedge \bigwedge_{0 \leq i<k} \neg B\left(s_{i}\right) \quad \text { satisfiable? }
$$

- k-induction induction step: [SheeranSinghStålmarck'00]

$$
T\left(s_{1}, s_{2}\right) \wedge \ldots \wedge T\left(s_{k-1}, s_{k}\right) \wedge B\left(s_{k}\right) \wedge \bigwedge_{0 \leq i<k} \neg B\left(s_{i}\right) \wedge \bigwedge_{1 \leq i<j \leq k} s_{i} \neq s_{j} \quad \text { unsatisfiable? }
$$

- automatic abstraction refinement = lemmas on demand of simple path constraints [EénSörensson’03]
let $\quad G=\neg B$ denote the "good states":
- 0-induction base case: $I\left(s_{0}\right) \wedge B\left(s_{0}\right)$ satisfiable iff initial bad state exists
- 0-induction inductive step: $B\left(s_{0}\right)$ unsatisfiable iff $\quad \neg B$ propositional tautology
- 1-induction base: $I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge B\left(s_{1}\right)$ satisfiable iff bad state reachable in one step
- 1-induction inductive step: $\quad \neg B\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge B\left(s_{1}\right)$ unsatisfiable iff G inductive assuming 0-induction base case was unsatisfiable and thus $I \models G$
where $\quad G=\neg B \quad$ is called inductive iff \quad 1. $\quad I \models G \quad$ and \quad 2. $\quad G \wedge T \models G^{\prime}$

[BiereCimattiClarkeFujitaZhu’00]

task is to prove that p is an invariant
G p holds on the model

- guess a formula G stronger than $p: \quad G \models p$
- show G inductive: $\quad I \models G, \quad G \wedge T \models G^{\prime}$
- all three checks can be formulated as UNSAT checks
- if one check fails refine G based on satisfying assignment
manual process and thus complete on finite state systems
there are also automatic abstraction/refinement versions of this approach CEGAR [ClarkeGrumbergJhaLuVeith'00]

Definition $\quad I$ interpolant of A and $B \quad$ iff $\quad A \Rightarrow I, \quad V(I) \subseteq V(A) \cap V(B) \quad$ and $\quad I \wedge B$ unsat.

Note: $\quad A \wedge B$ unsatisfiable as a consequence.

Intuition: $\quad I$ is an abstraction of A over the common (interface) variables of A and B which still is inconsistent with B.

Let A and B formulas in CNF.

From a resolution proof in a refutation of $A \wedge B$ generate interpolant I
(next slide)

This is used in many applications, generalizations exists, also gives one of the fastet model checking algorithms.

[McMillan'03, McMillan'05] + [Biere'09] (BMC chapter in Handbook)

Definition interpolating quadruple $(A, B) c[f]$ is well-formed iff

$$
\text { (W1) } \quad V(c) \subseteq V(A) \cup V(B) \quad \text { (W2) } \quad V(f) \subseteq G \cup(V(c) \cap V(A)) \subseteq V(A)
$$

Definition well-formed interpolating quadruple $(A, B) c[f]$ is valid iff

$$
\text { (V1) } A \Rightarrow f \quad \text { (V2) } \quad B \wedge f \Rightarrow c
$$

Definitition proof rules for interpolating quadrupels

$$
\begin{array}{ll}
\text { (R1) } \overline{(A, B) c[c]} c \in A & \frac{(A, B) c \dot{\vee} l[f] \quad(A, B) d \dot{\vee} \bar{l}[g]}{(A, B) c \vee d[f \wedge g]}|l| \in V(B) \\
\text { (R2) } \frac{(A, B) c \dot{\vee} l[f] \quad(A, B) d \dot{\vee} \bar{l}[g]}{(A, B) c[\top]} c \in B & \left.\frac{(A, B) c \vee d\left[\left.\left.f\right|_{\bar{l}} \vee g\right|_{l}\right]}{} \right\rvert\, \nmid \notin V(B)
\end{array}
$$

Theorem proof rules produce well-formed and valid interpolating quadruples

interpolant $\quad P_{1}\left(s_{0}\right) \quad$ let $\quad R_{1} \equiv I \vee P_{1}$

$$
\begin{aligned}
& \qquad R_{1}\left(s_{-1}\right) \wedge T\left(s_{-1}, s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge T\left(s_{1}, s_{2}\right) \wedge T\left(s_{2}, s_{3}\right) \wedge \bigvee_{i=0}^{3} \neg G\left(s_{i}\right) \\
& \text { interpolant } \quad P_{2}\left(s_{0}\right) \Leftarrow R_{1}\left(s_{-1}\right) \wedge T\left(s_{-1}, s_{0}\right) \quad \text { let } \quad R_{2} \equiv R_{1} \vee P_{2} \\
& R_{2}\left(s_{-1}\right) \wedge T\left(s_{-1}, s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge T\left(s_{1}, s_{2}\right) \wedge T\left(s_{2}, s_{3}\right) \wedge \bigvee_{i=0}^{3} \neg G\left(s_{i}\right) \\
& \\
& R_{n-1}\left(s_{-1}\right) \wedge T\left(s_{-1}, s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge T\left(s_{1}, s_{2}\right) \wedge T\left(s_{2}, s_{3}\right) \wedge \bigvee_{i=0}^{3} \neg G\left(s_{i}\right) \\
& \text { interpolant } \quad P_{n}\left(s_{0}\right)
\end{aligned}
$$

until $\quad R_{n} \equiv R_{n-1} \quad$ fix-point guaranteed for $k=$ backward radius of $\neg G$
(E)LTL formula in NNF
let the path π be a (k, l) lasso

$$
\left.\left.\begin{array}{ll}
\pi \models_{k}^{i} p & \text { iff } \quad p \in L(\pi(i)) \\
\pi \models_{k}^{i} \neg p \quad \text { iff } \quad p \notin L(\pi(i)) \\
\pi \models_{k}^{i} f \wedge g \quad \text { iff } \quad \pi \models_{k}^{i} f \text { and } \pi \models_{k}^{i} g
\end{array}\right] \begin{array}{lll}
\pi \models_{k}^{l} f & \text { if } i=k \\
\pi \models_{k}^{i+1} f & \text { else }
\end{array}\right\}
$$

ELTL formula in NNF
there is no l for which path π is a (k, l) lasso

$$
\begin{array}{ll}
\pi \models_{k}^{i} p & \text { iff } \quad p \in L(\pi(i)) \\
\pi \models_{k}^{i} \neg p \quad \text { iff } \quad p \notin L(\pi(i)) \\
\pi \models_{k}^{i} f \wedge g & \text { iff } \quad \pi \models_{k}^{i} f \text { and } \pi \models_{k}^{i} g \\
\pi \models_{k}^{i} \mathbf{X} f \quad \text { iff } \quad \begin{cases}\text { false } & \text { if } i=k \\
\pi \models_{k}^{i+1} f & \text { else }\end{cases} \\
\pi \models_{k}^{i} \mathbf{G} f \quad \text { iff } \quad \text { false } \\
\pi \models_{k}^{i} \mathbf{F} f \quad \text { iff } \quad \bigvee_{j=i}^{k} \pi \models_{k}^{j} f
\end{array}
$$

- definition:

$$
\pi \models_{k} f \quad: \Leftrightarrow \quad \pi \models_{k}^{0} f
$$

- bounded semantics aproximates real semantics:

$$
\pi \models_{k} f \quad \Rightarrow \quad \pi \models f \quad \text { for all } k
$$

- (theoretical) completeness:

$$
\text { if } \quad \pi \models f \quad \text { then there exists } k \text { with } \quad \pi_{k} \models f
$$

- note: negate original property first (e.g. AGp $\mapsto \mathbf{E F} \neg p$)
- ALTL \rightarrow ELTL
- counter example \rightarrow witness
- bounded witness is also a non-bounded witness
- two recursive translations from (E)LTL in NNF for fixed k :
- ${ }_{l}[\cdot]_{k}^{i}$ assumes (k, l)-loop
- $[\cdot]_{k}^{i}$ assumes that no (k, l)-loop exists for all l
- add time frame expansion of transition relation:

$$
I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge \cdots \wedge T\left(s_{k-1}, s_{k}\right)
$$

- add $\operatorname{loop}_{k}(l)$ constraint for looping translation: $\quad \operatorname{loop}_{k}(l):=T\left(s_{k}, s_{l}\right)$
- add noloop $_{k}$ constraint for non-looping translation:

$$
\text { noloop }_{k}:=\neg \bigvee_{l=0}^{k} \operatorname{loop}_{k}(l)
$$

$$
\begin{aligned}
& l[p]_{k}^{i}:=p\left(s_{i}\right) \\
& l_{l}[\neg p]_{k}^{i}:={\neg p\left(s_{i}\right)}^{l[f \wedge g]_{k}^{i}}: \\
&:={ }_{l}[f]_{k}^{i} \wedge{ }_{l}[g]_{k}^{i} \\
& l_{l}[\mathbf{X} f]_{k}^{i}:={ }_{l}[f]_{k}^{n \operatorname{ext}(i)}
\end{aligned}
$$

$$
{ }_{l}[\mathbf{G} f]_{k}^{i}:=\bigwedge_{j=\min (l, i)}^{k} l[f]_{k}^{j}
$$

$$
l[\mathbf{F} f]_{k}^{i}:=\bigvee_{j=\min (l, i)}^{k} l[f]_{k}^{j}
$$

with

$$
n \operatorname{ext}(i) \quad:= \begin{cases}i+1 & \text { if } i<k \\ l & \text { else }\end{cases}
$$

$$
\begin{aligned}
{[p]_{k}^{i} } & :=p\left(s_{i}\right) \\
{[\neg p]_{k}^{i} } & :=\neg p\left(s_{i}\right) \\
{[f \wedge g]_{k}^{i} } & :=[f]_{k}^{i} \wedge[g]_{k}^{i} \\
{[\mathbf{X} f]_{k}^{i} } & := \begin{cases}{[f]_{k}^{i+1}} & \text { if } i<k \\
\text { false } & \text { else }\end{cases} \\
{[\mathbf{G} f]_{k}^{i} } & :=\text { false } \\
{[\mathbf{F} f]_{k}^{i} } & :=\bigvee_{j=i}^{k}[f]_{k}^{j}
\end{aligned}
$$

$$
[K, f]_{k}:=\text { noloop }_{k} \wedge[f]_{k}^{0} \vee \bigvee_{l=0}^{k} \operatorname{loop}_{k}(l) \wedge{ }_{l}[f]_{k}^{0}
$$

- Theorem: $\quad K \models \mathbf{E} f \quad \Leftrightarrow \quad \exists k[K, f]_{k}$ satisfiable
- ${ }_{l}[\cdot]_{k}^{i}$ and $[\cdot]_{k}^{i}$ are linear in k if subformulae are shared
- unique table for automatic sharing syntactically equivalent formulae
- implemented as hash table (keys are pairs of formulae ids)
- more complex and quadratic translations for \mathbf{R} and \mathbf{U}
original translation of $\mathbf{F G} p$ after applying associativity and sharing

with $L_{i}=\operatorname{loop}_{k}(i)$ and $k=3$
(could be simplified further)
[LatvalaBiereHeljankoJunttila FMCAD'04]
evaluate semantics on loop in two iterations
$\rangle=1$ st iteration $\quad[]=$ 2nd iteration

$:=$	$i<k$	$i=k$
$[p]_{i}$	$p\left(s_{i}\right)$	$p\left(s_{k}\right)$
$[\neg p]_{i}$	$\neg p\left(s_{i}\right)$	$\neg p\left(s_{k}\right)$
$[\mathbf{X} f]_{i}$	$[f]_{i+1}$	$\bigvee_{l=0}^{k}\left(T\left(s_{k}, s_{l}\right) \wedge[f]_{l}\right)$
$[\mathbf{G} f]_{i}$	$[f]_{i} \wedge[\mathbf{G} f]_{i+1}$	$\bigvee_{l=0}^{k}\left(T\left(s_{k}, s_{l}\right) \wedge\langle\mathbf{G} f\rangle_{l}\right)$
$[\mathbf{F} f]_{i}$	$[f]_{i} \vee[\mathbf{F} f]_{i+1}$	$\bigvee_{l=0}^{k}\left(T\left(s_{k}, s_{l}\right) \wedge\langle\mathbf{F} f\rangle_{l}\right)$
$\langle\mathbf{G} f\rangle_{i}$	$[f]_{i} \wedge\langle\mathbf{G} f\rangle_{i+1}$	$[f]_{k}$
$\langle\mathbf{F} f\rangle_{i}$	$[f]_{i} \vee\langle\mathbf{F} f\rangle_{i+1}$	$[f]_{k}$

- semantic of LTL on single path is the same as CTL semantic
- symbolically implement fixpoint calculation for (A)CTL
- fixpoint computation terminates after 2 iterations (not k)
- boolean fixpoint equations \Rightarrow boolean graphs
- easy to implement and optimize, fast
- generalized to past time [LatvalaBiereHeljankoJunttila VMCAl'05]
- minimal counter examples for past time [SchuppanBiere TACAS'05]
- incremental (and complete) [LatvalaHeljankoJunttila CAV'05]

```
recursive expansion }\quad\mathbf{F}p\equivp\vee\mathbf{XF}
```


checking $\quad \mathbf{G} \bar{p} \quad$ implemented as search for witness for $\quad \mathbf{F} p$

Kripke structure: single state with self loop in which p does not hold
incorrect translation of $\mathbf{F} p$:

$$
\overbrace{I\left(s_{0}\right) \wedge T\left(s_{0}, s_{0}\right)}^{\text {model constraints }} \wedge \underbrace{\left([\mathbf{F} p] \leftrightarrow p\left(s_{0}\right) \vee[\mathbf{F} p]\right)}_{\text {translation }} \wedge \underbrace{\overbrace{\mathbf{F} p]}^{\text {assumption }}}_{x}
$$

since it is satisfiable by setting $\quad x=1 \quad$ though $p\left(s_{0}\right)=0$
(x fresh boolean variable introduced for $[\mathbf{F} p]$)
key concept in IC3 [Bradley'11]:
clause c relative inductive w.r.t. F
iff $\quad c \wedge F \wedge T \Rightarrow c^{\prime} \quad$ iff $\quad c \wedge F \wedge T \wedge \bar{c}^{\prime}$ unsatisfiable
I initial states
G good states
B bad states

$$
F_{0} \quad F_{1} \quad F_{2}
$$

$$
F_{0} \supseteq F_{1} \supseteq F_{2}
$$

sets of rel. ind. clauses
(1) s is reachable from F_{0} then bad is reachable transitively
(2) otherwise exists $c \subseteq \bar{s}$ rel. ind. w.r.t. F_{0} and can be added to F_{1} and maybe to F_{2}
as soon the last set is good, i.e. $F_{k} \Rightarrow G$ increase k

F_{0}	F_{1}	F_{2}	F_{3}
$I G$	G	G	B
			O

propagate all relative inductive clauses of last set to new set
if all can been propagated F_{k} is an inductive invariant stronger than G

Let F_{0}, \ldots, F_{k} be a sequence of sets of clauses.
monotonic iff $F_{i} \supseteq F_{i+1}$ for $i=0 \ldots k-1$
(relative) inductive iff $\quad F_{i} T \Rightarrow F_{i+1}^{\prime} \quad$ for $\quad i=0 \ldots k-1$
initialized iff $\quad I \equiv F_{0}$
good iff $\quad F_{i} \Rightarrow G$ for $i=0 \ldots k-1 \quad$ last set might be bad if $F_{k} \wedge B$ satisfiable
F is k-adequat \quad iff \quad all states s satisfying F are at least k steps away from B [McMillan'03]
sequence monotonic and inductive $\Rightarrow F_{k-j} \quad j$-adequat

```
CHECK (s,i) {
actually should be DFS prioritized on }
    while }\overline{s}\wedge\mp@subsup{F}{i-1}{}\wedgeT\wedge\mp@subsup{s}{}{\prime}\quad\mathrm{ satisfiable {
        if i=1 throw SATISFIABLE
        choose cube t with t}\models\overline{s}\wedge\mp@subsup{F}{i-1}{}\wedgeT\wedge\mp@subsup{s}{}{\prime
        CHECK (t,i-1) optionally check t at i as well
    }
    choose clause c\subseteq\overline{s}\mathrm{ with c}c\wedge\mp@subsup{F}{i-1}{}\wedgeT\wedge\mp@subsup{\overline{c}}{}{\prime}\mathrm{ unsatisfiable}
    F
}
MAIN () {
    F0}=I,\quad\mp@subsup{F}{1}{}=\textrm{T},\quadk=1\quad\mathrm{ do not forget to check base cases first
    forever {
        CHECK (B,k)
        k:=k+1,\quadFi := all rel. ind. clauses of F}\mp@subsup{F}{i-1}{}\mathrm{ w.r.t. F}\mp@subsup{F}{i-1}{}\mathrm{ for }i=1\ldots
        if }\mp@subsup{F}{k}{}\subseteq\mp@subsup{F}{k-1}{}\mathrm{ throw UNSATISFIABLE
    }
}
```

- implemented in IC3 by Aaron Bradley
- as single engine model checker extremely successful in HWMCC'10 Hardware Model Checking Competition 2010
- based on rather out-dated SAT solver (ZChaff from 2004)
- independent implementations
such as [EénMishchenkoBrayton IWLS'11]
- seem to be faster than BDDs, k-induction, interpolation
- might be much easier to lift to SMT-based model checking than interpolation
- opportunities for improvement: structural SAT/SMT solving

