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Motivation intro
Version 2016.1
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more and more complex systems

Moore’s Law⇒ soon we will have 1030 transistors / processor

multi-million LOC / OS

⇒ exploding testing costs (in general not linear in system size)

increased dependability

everything important depends on computers:

stir by wire, banking, stock market, workflow, . . .

⇒ quality concerns

increased functionality

security, mobility, new business processes, . . .
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Test and Verification intro
Version 2016.1

3

Test

standard definition: dynamic execution / simulation of a system

integration in development process necessary

extreme position: testing should actually “drive” the development process

Verification

standard definition: static checking, symbolic execution

hardware design: verification is the process of testing

⇒ our view: Test = Verification
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Implications intro
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not unusual to have more than 50% of resources allocated to testing

testing and verification are (becoming) the bottleneck of development

quality dilemma (drop quality for more features)

more efficient methods for test and verification needed
⇒ formal verification is the most promising approach

experts in new testing and verification methods are lacking

long term: more formal development process not just formal verification
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Formal Methods intro
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formal = mathematical

mathematical models⇒ precise semantics

emphasizes static / symbolic reasoning about programs
(so standard definition of verification falls into this category)

rather narrow view in digital design: equivalence and model checking

not esoteric: compilation in a broad sense is a formal method
(high-level description is translated into low-level description)

our view: use tools for reasoning (i.e. programs are formal entities)
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Formal Methods Classification intro
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Synchronous

Theorem Proving

Model Checking

Z

SAT

Specification
Formal

SDL

Languages

Compiler

Formal
Synthesis

Equivalence
Checking

B−Method

ASM

Formal

Verification
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Formal Specification intro
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abstracts from unnecessary implementation details

high-level mathematical model of the system

very useful for high-level design

catches ambiguous or inconsistent specifications

formal specification per se: no tools for refinement / checking

good example: ASM
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Formal Synthesis intro
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Initial Formal Spec

2nd Refinement

3rd Refinement

1st Refinement

4th Refinement
(last formal step)

C Program

Compiler

Compiler

Model Checking #342.202 SS 2016 Armin Biere JKU Linz



Formal Synthesis intro
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integrates verification in the development process

usually pure top-down design and incremental refinement steps

splits large verification tasks (divide et impera) . . .

. . . but forces dramatic change in development process

it works but is costly

each refinement step uses formal verification methods
⇒ more powerfull verification algorithms allow more automation

good example: B-Method
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Layered System Design intro
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Requirements

High−Level Design

Low−Level Design

Implementation

HW SW

Architecture

RTL

Gate

Transitor

Synthesis Verification

1. no implementation without Synthesis
2. Verification is added value (Quality)
3. both processes are incremental
4. both processes can be formal
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Formal Verification intro
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assumptions: specification and system are given

formal verification checks formally that system fulfills specification

least change in development process

full blown verification is really difficult: “post mortem verification”

simplifications: focus on simple partial specifications
(type safety, functional equivalence of two systems, . . .)

methods (implemented in tools):

simple algorithms for deducing properties directly

complex algorithms for hard or even undecidable problems
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Overview intro
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boolean methods:

SAT, BDDs, ATPG, Combinational Equivalence Checking

finite state methods:

Bisimulation and Equivalence Checking of Automata, Model Checking

term based methods:

Term Rewriting, Resolution, Tableaux, Theorem Proving

Abstraction (e.g. SLAM uses BDDs, Model Checking, Theorem Proving)
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Focus intro
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how does it work?

(algorithms and data structures)

necessary background for use of formal verification

(and formal methods in general)

capacity and restrictions

first step to become an expert in a fast expanding area
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SAT Example: Equivalence Checking if-then-else Chains sat
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optimization of if-then-else chains

original C code optimized C code

if(!a && !b) h(); if(a) f();
else if(!a) g(); else if(b) g();
else f(); else h();

⇓ ⇑

if(!a) { if(a) f();
if(!b) h(); ⇒ else {
else g(); if(!b) h();
} else f(); else g(); }

How to check that these two versions are equivalent?
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SAT Example cont. sat
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1. represent procedures as independent boolean variables

original := optimized :=

if ¬a∧¬b then h if a then f
else if ¬a then g else if b then g
else f else h

2. compile if-then-else chains into boolean formulae

compile(if x then y else z) ≡ (x∧ y) ∨ (¬x∧ z)

3. check equivalence of boolean formulae

compile(original) ⇔ compile(optimized)
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Compilation sat
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original ≡ if ¬a∧¬b then h else if ¬a then g else f

≡ (¬a∧¬b)∧h ∨ ¬(¬a∧¬b)∧ if ¬a then g else f

≡ (¬a∧¬b)∧h ∨ ¬(¬a∧¬b)∧ (¬a∧g ∨ a∧ f )

optimized ≡ if a then f else if b then g else h

≡ a∧ f ∨ ¬a∧ if b then g else h

≡ a∧ f ∨ ¬a∧ (b∧g ∨ ¬b∧h)

(¬a∧¬b)∧h ∨ ¬(¬a∧¬b)∧ (¬a∧g ∨ a∧ f ) ⇔ a∧ f ∨ ¬a∧ (b∧g ∨ ¬b∧h)
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How to Check (In)Equivalence? sat
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Reformulate it as a satisfiability (SAT) problem:

Is there an assignment to a,b, f ,g,h,
which results in different evaluations of original and optimized?

or equivalently:

Is the boolean formula compile(original) 6↔ compile(optimized) satisfiable?

such an assignment would provide an easy to understand counterexample

Note: by concentrating on counterexamples we moved from Co-NP to NP
(this is just a theoretical note and not really important for applications)
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SAT Example: Circuit Equivalence Checking sat
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c

a

b

c

a

b

b ∨ a∧ c (a∨b) ∧ (b∨ c)

equivalent?

b ∨ a∧ c ⇔ (a∨b) ∧ (b∨ c)
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SAT sat
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19

SAT (Satisfiability) the classical NP complete Problem:

Given a propositional formula f over n propositional variables V = {x,y, . . .}.

Is there an assignment σ : V →{0,1} with σ( f ) = 1 ?

SAT belongs to NP

There is a non-deterministic Touring-machine deciding SAT in polynomial time:

guess the assignment σ (linear in n), calculate σ( f ) (linear in | f |)

Note: on a real (deterministic) computer this would still require 2n time

SAT is complete for NP (see complexity / theory class)

Implications for us:
general SAT algorithms are probably exponential in time (unless NP = P)
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Conjunctive Normal Form sat
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Definition

a formula in Conjunctive Normal Form (CNF) is a conjunction of clauses

C1∧C2∧ . . .∧Cn

each clause C is a disjunction of literals

C = L1∨ . . .∨Lm

and each literal is either a plain variable x or a negated variable x.

Example (a∨b∨ c)∧ (a∨b)∧ (a∨ c)

Note 1: two notions for negation: in x and ¬ as in ¬x for denoting negation.

Note 2: the original SAT problem is actually formulated for CNF

Note 3: SAT solvers mostly also expect CNF as input
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Negation Normal Form sat
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Assumption: we only have conjunction, disjunction and negation as operators.

a formula is in Negation Normal Form (NNF),
if negations only occur in front of variables

⇒ all internal nodes in the formula tree are either ANDs or ORs

linear algorithms for generating NNF from an arbitrary formula

often NNF generations includes elimination of other non-monotonic operators:

NNF of f ↔ g is NNF of f ∧g ∨ f ∧g

in this case the result can be exponentially larger (see parity example later).
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NNF Algorithm sat
Version 2016.1

22

Formula

formula2nnf (Formula f, Boole sign)

{

  if (is_variable (f))

    return sign ? new_not_node (f) : f;

  if (op (f) == AND || op (f) == OR)

    {

      l = formula2nnf (left_child (f), sign);

      r = formula2nnf (right_child (f), sign);

      flipped_op = (op (f) == AND) ? OR : AND;

      return new_node (sign ? flipped_op : op (f), l, r);

    }

  else

    {

      assert (op (f) == NOT);

      return formula2nnf (child (f), !sign);

    }

}

Model Checking #342.202 SS 2016 Armin Biere JKU Linz



Simple Translation of Formula into CNF sat
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Formula

formula2cnf_aux (Formula f)

{

  if (is_cnf (f))

    return f;

  if (op (f) == AND)

    {

      l = formula2cnf_aux (left_child (f));

      r = formula2cnf_aux (right_child (f));

      return new_node (AND, l, r);

    }

  else

    {

      assert (op (f) == OR);

      l = formula2cnf_aux (left_child (f));

      r = formula2cnf_aux (right_child (f));

      return merge_cnf (l, r);

    }

}
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Merging two CNFs sat
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Formula

formula2cnf (Formula f)

{

  return formula2cnf_aux (formula2nnf (f, 0));

}

Formula

merge_cnf (Formula f, Formula g)

{

  res = new_constant_node (TRUE);

  for (c = first_clause (f); c; c = next_clause (f, c))

    for (d = first_clause (g); d; d = next_clause (g, d))

      res = new_node (AND, res, new_node (OR, c, d));

  return res;

}
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Why are Sharing / Circuits / DAGs important? sat
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DAG may be exponentially more succinct than expanded Tree

Examples: adder circuit, parity, mutual exclusion
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Parity Example sat
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Boole

parity (Boole a, Boole b, Boole c, Boole d, Boole e,

        Boole f, Boole g, Boole h, Boole i, Boole j)

{

  tmp0 = b ? !a : a;

  tmp1 = c ? !tmp0 : tmp0;

  tmp2 = d ? !tmp1 : tmp1;

  tmp3 = e ? !tmp2 : tmp2;

  tmp4 = f ? !tmp3 : tmp3;

  tmp5 = g ? !tmp4 : tmp4;

  tmp6 = h ? !tmp5 : tmp5;

  tmp7 = i ? !tmp6 : tmp6;

  return j ? !tmp7 : tmp7;

}

Eliminiate the tmp. . . variables through substitution.

What is the size of the DAG vs the Tree representation?
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How to detect Sharing sat
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through caching of results in algorithms operating on formulas
(examples: substitution algorithm, generation of NNF for non-monotonic ops)

when modeling a system: variables are introduced for subformulae
(then these variables are used multiple times in the toplevel formula)

structural hashing: detects structural identical subformulae
(see Signed And Graphs later)

equivalence extraction: e.g. BDD sweeping, Stålmarcks Method
(we will look at both techniques in more detail later)
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Example of Tseitin Transformation: Circuit to CNF sat
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CNF

c

b

a

w

v

w

u
o

x

y

o ∧
(x ↔ a∧ c) ∧
(y ↔ b∨ x) ∧
(u ↔ a∨b) ∧
(v ↔ b∨ c) ∧
(w↔ u∧ v) ∧
(o ↔ y⊕w)

o∧ (x→ a)∧ (x→ c)∧ (x← a∧ c)∧ . . .

o∧ (x∨a)∧ (x∨ c)∧ (x∨a∨ c)∧ . . .
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Algorithmic Description of Tseitin Transformation sat
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1. for each non input circuit signal s generate a new variable xs

2. for each gate produce complete input / output constraints as clauses

3. collect all constraints in a big conjunction

the transformation is satisfiability equivalent :
the result is satisfiable iff the original formula is satisfiable

not equivalent in the classical sense to original formula: it has new variables

extract satisfying assignment for original formula, from one of the result
(just project satisfying assignment onto the original variables)
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Tseitin Transformation: Input / Output Constraints sat
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Negation: x↔ y ⇔ (x→ y)∧ (y→ x)
⇔ (x∨ y)∧ (y∨ x)

Disjunction: x↔ (y∨ z) ⇔ (y→ x)∧ (z→ x)∧ (x→ (y∨ z))
⇔ (y∨ x)∧ (z∨ x)∧ (x∨ y∨ z)

Conjunction: x↔ (y∧ z) ⇔ (x→ y)∧ (x→ z)∧ ((y∧ z)→ x)
⇔ (x∨ y)∧ (x∨ z)∧ ((y∧ z)∨ x)
⇔ (x∨ y)∧ (x∨ z)∧ (y∨ z∨ x)

Equivalence: x↔ (y↔ z) ⇔ (x→ (y↔ z))∧ ((y↔ z)→ x)
⇔ (x→ ((y→ z)∧ (z→ y))∧ ((y↔ z)→ x)
⇔ (x→ (y→ z))∧ (x→ (z→ y))∧ ((y↔ z)→ x)
⇔ (x∨ y∨ z)∧ (x∨ z∨ y)∧ ((y↔ z)→ x)
⇔ (x∨ y∨ z)∧ (x∨ z∨ y)∧ (((y∧ z)∨ (y∧ z))→ x)
⇔ (x∨ y∨ z)∧ (x∨ z∨ y)∧ ((y∧ z)→ x)∧ ((y∧ z)→ x)
⇔ (x∨ y∨ z)∧ (x∨ z∨ y)∧ (y∨ z∨ x)∧ (y∨ z∨ x)
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Optimizations for Tseitin Transformation sat
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goal is smaller CNF (less variables, less clauses)

extract multi argument operands (removes variables for intermediate nodes)

half of AND, OR node constraints can be removed for unnegated nodes

a node occurs negated if it has an ancestor which is a negation

half of the constraints determine parent assignment from child assignment

those are unnecessary if node is not used negated

[PlaistedGreenbaum’86] and then [ChambersManoliosVroon’09]

structural circuit optimizations like in the ABC tool from Berkeley

however might be simulated on CNF level [JärvisaloBiereHeule-TACAS’10]

compact technology mapping based encoding [EénMishchenkoSörensson’07]
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Intermediate Representations sat
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encoding directly into CNF is hard, so we use intermediate levels:

1. application level

2. bit-precise semantics world-level operations: bit-vector theory

3. bit-level representations such as AIGs or vectors of AIGs

4. CNF

encoding application level formulas into word-level: as generating machine code

word-level to bit-level: bit-blasting similar to hardware synthesis

encoding “logical” constraints is another story
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Bit-Blasting of 4-Bit Addition sat
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addition of 4-bit numbers x,y with result s also 4-bit: s = x+ y

[s3,s2,s1,s0]4 = [x3,x2,x1,x0]4+[y3,y2,y1,y0]4

[s3, · ]2 = FullAdder(x3,y3,c2)

[s2,c2]2 = FullAdder(x2,y2,c1)

[s1,c1]2 = FullAdder(x1,y1,c0)

[s0,c0]2 = FullAdder(x0,y0, false)

where

[ s , o ]2 = FullAdder(x,y, i) with

s = x xor y xor i

o = (x∧ y)∨ (x∧ i)∨ (y∧ i) = ((x+ y+ i)≥ 2)
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And-Inverter-Graphs (AIG) sat
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widely adopted bit-level intermediate representation

see for instance our AIGER format http://fmv.jku.at/aiger

used in Hardware Model Checking Competition (HWMCC)

also used in the structural track in SAT competitions

many companies use similar techniques

basic logical operators: conjunction and negation

DAGs: nodes are conjunctions, negation/sign as edge attribute
bit stuffing: signs are compactly stored as LSB in pointer

automatic sharing of isomorphic graphs, constant time (peep hole) simplifications

or even SAT sweeping, full reduction, etc . . . see ABC system from Berkeley
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XOR as AIG sat
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yx

negation/sign are edge attributes
not part of node

x xor y ≡ (x∧ y)∨ (x∧ y) ≡ (x∧ y)∧ (x∧ y)
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Bit-Stuffing Techniques for AIGs in C sat
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typedef struct AIG AIG;

struct AIG

{

  enum Tag tag;                 /* AND, VAR */

  void *data[2];

  int mark, level;              /* traversal */

  AIG *next;                    /* hash collision chain */

};

#define sign_aig(aig) (1 & (unsigned) aig)

#define not_aig(aig) ((AIG*)(1 ^ (unsigned) aig))

#define strip_aig(aig) ((AIG*)(~1 & (unsigned) aig))

#define false_aig ((AIG*) 0)

#define true_aig ((AIG*) 1)

assumption for correctness:
sizeof(unsigned) == sizeof(void*)
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Encoding Logical Constraints sat
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Tseitin’s construction suitable for most kinds of “model constraints”

assuming simple operational semantics: encode an interpreter

small domains: one-hot encoding large domains: binary encoding

harder to encode properties or additional constraints

temporal logic / fix-points

environment constraints

example for fix-points / recursive equations: x = (a∨ y), y = (b∨ x)

has unique least fix-point x = y = (a∨b)

and unique largest fix-point x = y = true but unfortunately

only largest fix-point can be (directly) encoded in SAT otherwise need ASP
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given a set of literals {l1, . . . ln}

constraint the number of literals assigned to true

|{l1, . . . , ln}| ≥ k or |{l1, . . . , ln}| ≤ k or |{l1, . . . , ln}|= k

multiple encodings of cardinality constraints

naı̈ve encoding exponential: at-most-two quadratic, at-most-three cubic, etc.

quadratic O(k ·n) encoding goes back to Shannon

linear O(n) parallel counter encoding [Sinz’05]

for an O(n · logn) encoding see Prestwich’s chapter in our Handbook of SAT

generalization Pseudo-Boolean constraints (PB), e.g. 2 ·a+b+ c+d +2 · e ≥ 3
actually used to handle MaxSAT in SAT4J for configuration in Eclipse
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2≤ |{l1, . . . , l9}| ≤ 3
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“then” edge downward, “else” edge to the right
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dates back to the 50ies:

original version is resolution based (successful only in preprocessors)

improved DPLL: case analysis (try x = 0,1 in turn and recurse)

evolved to CDCL (conflict driven clause learning): state-of-the-art

recent (≤ 20 years) optimizations:

backjumping, learning, UIPs, dynamic splitting heuristics, fast data structures
we will have a look at each of them

elimination procedure of original DP is similar to

Gaussian elimination on linear real equalities

Fourier-Motzikin on linear real inequalities

Buchberger’s algorithm on polynomial equations
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basis for first (less successful) resolution based DP

can be extended to first order logic

helps to explain learning

Resolution Rule

C∪{v} D∪{¬v}
{v,¬v}∩C = {v,¬v}∩D = /0

C∪D

Read: resolving the clause C∪{v} with the clause D∪{¬v}, both above the line, on the
variable v, results in the clause D∪C below the line.
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Usage of such rules: if you can derive what is above the line (premise) then you are allowed
to deduce what is below the line (conclusion).

Theorem. (premise satisfiable⇒ conclusion satisfiable)

σ(C∪{v}) = σ(D∪{¬v}) = 1 ⇒ σ(C∪D) = 1

Proof.

let c ∈C, d ∈ D with (σ(c) = 1 or σ(v) = 1) and (σ(d) = 1 or σ(¬v) = 1)

if σ(c) = 1 or σ(d) = 1 conclusion follows immediately

otherwise σ(v) = σ(¬v) = 1 ⇒ contradiction q.e.d.
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Theorem. (conclusion satisfiable⇒ premise satisfiable)

σ(C∪D) = 1 ⇒ ∃σ′ with σ′(C∪{v}) = σ′(D∪{¬v}) = 1

Proof.

with out loss of generality pick c ∈C with σ(c) = 1

define σ′(x) =

{
0 if x = v

σ(x) else

since v and ¬v do not occur in C, we still have σ′(C) = 1 and thus σ′(C∪{v}) = 1

by definition σ′(¬v) = 1 and thus σ′(D∪{¬v}) = 1 q.e.d.

Example consider incorrect resolution
{v}∪{v} {¬v}

v
violating side condition
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consider the following resolution
a∨b ¬b∨ c

a∨ c

in logical notation, not set notation for a change

let σ(x) =

 1 if x = a
1 if x = b
0 if x = c

be a model of resolvent (a∨ c) thus σ(a∨ c) = 1

note that σ(¬b∨ c) = 0 and thus σ is not a model of 2nd antecedent (2nd premisse)

however σ satisfies remaining literal a of 1st antecedent in resolvent

thus simply flip value of pivot b (satisfy its occurrence in 2nd antecedent)

we get σ′(x) =


1 if x = a
0 if x = b
0 if x = c

satisfying both antecedents σ′(a∨b) = σ′(¬b∨ c) = 1.
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Idea: use resolution to existentially quantify out variables

1. if empty clause found then terminate with result unsatisfiable

2. find variables which only occur in one phase (only positive or negative)

3. remove all clauses in which these variables occur

4. if no clause left then terminate with result satisfiable

5. choose x as one of the remaining variables with occurrences in both phases

6. add results of all possible resolutions on this variable

7. remove all trivial clauses and all clauses in which x occurs

8. continue with 1.
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check whether XOR is weaker than OR, i.e. validity of:

a∨b → (a⊕b)

which is equivalent to unsatisfiability of the negation:

(a∨b) ∧ ¬(a⊕b)

since negation of XOR is XNOR (equivalence):

(a∨b) ∧ (a↔ b)

we end up checking the following CNF for satisfiability:

(a∨b) ∧ (¬a∨b)∧ (a∨¬b)
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(a∨b) ∧ (¬a∨b)∧ (a∨¬b)

initially we can skip 1. - 4. of the algorithm and choose x = b in 5.

in 6. we resolve (¬a∨b) with (a∨¬b) and (a∨b) with (a∨¬b) both on b

and add the results (a∨¬a) and (a∨a) :

(a∨b) ∧ (¬a∨b)∧ (a∨¬b)∧ (a∨¬a)∧ (a∨a)

the trivial clause (a∨¬a) and clauses with ocurrences of b are removed:

(a∨a)

in 2. we find a to occur only positive and in 3. the remaining clause is removed

the test in 4. succeeds and the CNF turns out to be satisfiable

(thus the original formula is invalid – not a tautology)
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Proof. in three steps:

(A) show that termination criteria are correct

(B) each transformation preserves satisfiability

(C) each transformation preserves unsatisfiability

Ad (A):

an empty clause is an empty disjunction, which is unsatisfiable

if literals occur only in one phase assign those to 1⇒ all clauses satisfied
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CNF transformations preserve satisfiability:

removing a clause does not change satisfiability

thus only adding clauses could potentially not preserve satisfiability

the only clauses added are the results of resolution

correctness of resolution rule shows:

if the original CNF is satisfiable, then the added clause are satisfiable

(even with the same satisfying assignment)
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CNF transformations preserve unsatisfiability:

adding a clause does not change unsatisfiability

thus only removing clauses could potentially not preserve unsatisfiability

trivial clauses (v∨¬v∨ . . .) are always valid and can be removed

let f be the CNF after removing all trivial clauses (in step 7.)

let g be the CNF after removing all clauses in which x occurs (after step 7.)

we need to show ( f unsat⇒ g unsat), or equivalently (g sat⇒ f sat)

the latter can be proven as the completeness proof for the resolution rule

(see next slide)
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If we interpret ∪ as disjunction and clauses as formulae, then

(C1∨ x)∧ . . .∧ (Ck∨ x) ∧ (D1∨¬x)∧ . . .∧ (Dl ∨¬x)

is, via distributivity law, equivalent to

((C1∧ . . .∧Ck)︸ ︷︷ ︸
C

∨x) ∧ ((D1∧ . . .∧Dl)︸ ︷︷ ︸
D

∨¬x)

and the same proof applies as for the completeness of the resolution rule.

Note: just using the completeness of the resolution rule alone does not work, since those
σ′ derived for multiple resolutions are formally allowed to assign different values for the
resolution variable.
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if variables have many occurences, then many resolutions are necessary

in the worst x and ¬x occur in half of the clauses . . .

. . . then the number of clauses increases quadratically

clauses become longer and longer

unfortunately in real world examples the CNF explodes

(we might latter see how BDDs can be used to overcome some of these problems)

How to obtain the satisfying assignment efficiently (counter example)?
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resolution based version often called DP, second version DPLL
(DP after [DavisPutnam60] and DPLL after [DavisLogemannLoveland62])

it eliminates variables through case analysis: time vs space

only unit resolution used (also called boolean constraint propagation)

case analysis is on-the-fly:

cases are not elaborated in a predefined fixed order, but . . .

. . . only remaining crucial cases have to be considered

allows sophisticated optimizations

Model Checking #342.202 SS 2016 Armin Biere JKU Linz



Unit-Resolution dp
Version 2016.1

57

a unit clause is a clause with a single literal

in CNF a unit clause forces its literal to be assigned to 1

unit resolution is an application of resolution, where one clause is a unit clause

also called boolean constraint propagation

Unit-Resolution Rule

C∪{¬l} {l}
{l,¬l}∩C = /0

C

here we identify ¬¬v with v for all variables v.
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check whether XNOR is weaker than AND, i.e. validity of:

a∧b → (a↔ b)

which is equivalent to unsatisfiability of the CNF (exercise)

a∧b ∧ (a∨b)∧ (¬a∨¬b)

adding clause obtained from unit resolution on a results in

a∧b ∧ (a∨b)∧ (¬a∨¬b)∧ (¬b)

removing clauses containing a or ¬a

b ∧ (¬b)

unit resolution on b results in an empty clause and we conclude unsatisfiability.
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if unit resolution produces a unit, e.g. resolving (a∨¬b) with b produces a, continue
unit resolution with this new unit

often this repeated application of unit resolution is also called unit resolution

unit resolution + removal of subsumed clauses never increases size of CNF

C subsumes D :⇔ C ⊆ D

a unit(-clause) l subsumes all clauses in which l occurs in the same phase

boolean constraint propagation (BCP): given a unit l, remove all clauses in which l
occurs in the same phase, and remove all literals ¬l in clauses, where it occurs in the
opposite phase (the latter is unit resolution)
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1. apply repeated unit resolution and removal of all subsumed clauses (BCP)

2. if empty clause found then return unsatisfiable

3. find variables which only occur in one phase (only positive or negative)

4. remove all clauses in which these variables occur (pure literal rule)

5. if no clause left then return satisfiable

6. choose x as one of the remaining variables with occurrences in both phases

7. recursively call DPLL on current CNF with the unit clause {x} added

8. recursively call DPLL on current CNF with the unit clause {¬x} added

9. if one of the recursive calls returns satisfiable return satisfiable

10. otherwise return unsatisfiable
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(¬a∨b)∧ (a∨¬b)∧ (¬a∨¬b)

Skip 1. - 6., and choose x = a. First recursive call:

(¬a∨b)∧ (a∨¬b)∧ (¬a∨¬b)∧a

unit resolution on a and removal of subsumed clauses gives

b∧ (¬b)

BCP gives empty clause, return unsatisfiable. Second recursive call:

(¬a∨b)∧ (a∨¬b)∧ (¬a∨¬b)∧¬a

BCP gives ¬b, only positive recurrence of b left, return satisfiable

(satisfying assignment {a 7→ 0,b 7→ 0})
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Theorem.

f (x) ≡ x∧ f (1)∨ x∧ f (0)

Proof.

Let σ be an arbitrary assignment to variables in f including x

case σ(x) = 0:

σ( f (x)) = σ( f (0)) = σ(0∧ f (1)∨1∧ f (0)) = σ(x∧ f (1)∨ x∧ f (0))

case σ(x) = 1:

σ( f (x)) = σ( f (1)) = σ(1∧ f (1)∨0∧ f (0)) = σ(x∧ f (1)∨ x∧ f (0))
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first observe: x∧ f (x) is satisfiable iff x∧ f (1) is satisfiable

similarly, x∧ f (x) is satisfiable iff x∧ f (0) is satisfiable

then use expansion theorem of Shannon:

f (x) satisfiable iff x∧ f (0) or x∧ f (1) satisfiable iff x∧ f (x) or x∧ f (x) satisfiable

rest follows along the lines of the the correctness proof for resolution based DP
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each variable is marked as unassigned, false, or true ({X ,0,1})

no explicit resolution:

when a literal is assigned visit all clauses where its negation occurs

find those clauses which have all but one literal assigned to false

assign remaining non false literal to true and continue

decision:

heuristically find a variable that is still unassigned

heuristically determine phase for assignment of this variable
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decision level is the depth of recursive calls (= #nested decisions)

the trail is a stack to remember order in which variables are assigned

for each decision level the old trail height is saved on the control stack

undoing assignments in backtracking:

get old trail height from control stack

unassign all variables up to the old trail height
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static heuristics:

one linear order determined before solver is started

usually quite fast, since only calculated once

can also use more expensive algorithms

dynamic heuristics

typically calculated from number of occurences of literals
(in unsatisfied clauses)

rather expensive, since it requires traversal of all clauses
(or more expensive updates in BCP)

recently, second order dynamic heuristics (VSIDS in Chaff⇒ see learning)
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view CNF as a graph:

clauses as nodes, edges between clauses with same variable

a cut is a set of variables that splits the graph in two parts

recursively find short cuts that cut of parts of the graph

static or dynamically order variables according to the cuts

−2 1 −3 1−1 2 3 −43 1, 2, −1, −2

assume
no occurences of

on the right side

short cut
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int

sat (CNF cnf)

{

  SetOfVariables cut = generate_good_cut (cnf);

  CNF assignment, left, right;

  left = cut_off_left_part (cut, cnf);

  right = cut_off_right_part (cut, cnf);

  forall_assignments (assignment, cut)

  {

    if (sat (apply (assignment, left)) && sat (apply (assignment, right)))

      return 1;

  }

  return 0;

}
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resembles cuts in circuits when CNF is generated with Tseitin transformation

ideally cuts have constant or logarithmic size . . .

for instance in tree like circuits

so the problem is reconvergence:
the same signal / variable is used multiple times

. . . then satisfiability actually becomes polynomial (see exercise)
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A clause is called positive if it contains a positive literal.

A clause is called negative if all its literals are negative.

A clause is a Horn clause if contains at most one positive literal.

CNF is in Horn Form iff all clauses are Horn clause (Prolog without negation)

Order assignments point-wise: σ≤ σ′ iff σ(x)≤ σ′(x) for all x ∈V

Horn Form with only positive clauses has minimal satisfying assignment.

Minimal satisfying assignment is obtained by BCP (polynomial).

A Horn Form is satisfiable iff the minimal assignments of its positive part satisfies all its
negative clauses as well.
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CNF in Horn Form: use above specialized fast algorithm

non Horn: split on literals which occurs positive in non Horn clauses

actually choose variable which occurs most often in such clauses

this gradually transforms non Horn CNF into Horn Form

main heuristic in SAT solver SATO

Note: In general, BCP in DP prunes search space by avoiding assignments incom-
patible to minimal satisfying assingment for the Horn part of the CNF.

non Horn part of CNF Horn part of CNF
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Dynamic Largest Individual Sum (DLIS)

fastest dynamic first order heuristic (e.g. GRASP solver)

choose literal (variable + phase) which occurs most often

ignore satisfied clauses

requires explicit traversal of CNF (or more expensive BCP)

look-forward heuristics (e.g. SATZ or MARCH solver) failed literals, probing

do trial assignments and BCP for all unassigned variables (both phases)

if BCP leads to conflict, force toggled assignment of current trial decision

skip trial assignments implied by previous trial assignments
(removes a factor of |V | from the runtime of one decision search)

decision variable maximizes number of propagated assignments
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distribution of SAT solver run-time shows heavy tail behaviour

for satisfiable instances the solver may get stuck in the unsatisfiable part

even if the search space contains a large satisfiable part

often it is a good strategy to abandon the current search and restart

restart after the number of decisions reached a restart limit

avoid to run into the same dead end

by randomization (either on the decision variable or its phase)

and/or just keep all the learned clauses

for completeness dynamically increase restart limit
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378 restarts in 104408 conflicts
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int inner = 100, outer = 100;

int restarts = 0, conflicts = 0;

for (;;)

{

... // run SAT core loop for ’inner’ conflicts

restarts++;

conflicts += inner;

if (inner >= outer)

{

outer *= 1.1;

inner = 100;

}

else

inner *= 1.1;

}
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70 restarts in 104448 conflicts
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unsigned

luby (unsigned i)

{

unsigned k;

for (k = 1; k < 32; k++)

if (i == (1 << k) - 1)

return 1 << (k - 1);

for (k = 1;; k++)

if ((1 << (k - 1)) <= i && i < (1 << k) - 1)

return luby (i - (1 << (k-1)) + 1);

}

limit = 512 * luby (++restarts);

... // run SAT core loop for ’limit’ conflicts
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[Knuth’12]

(u1,v1) := (1,1)

(un+1,vn+1) := (un &−un = vn ? (un+1,1) : (un,2vn))

(1,1), (2,1), (2,2), (3,1), (4,1), (4,2), (4,4), (5,1), . . .
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phase assignment:

assign decision variable to 0 or 1?

the only thing that matters in satisfiable instances

“phase saving” as in RSat:

pick phase of last assignment (if not forced to, do not toggle assignment)

initially use statically computed phase (typically LIS)

rapid restarts: varying restart interval with bursts of restarts

not ony theoretically avoids local minima

works nicely together with phase saving
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x

y

xx

y

If y has never been used to derive a conflict, then skip y case.

Immediately jump back to the x case – assuming x was used.
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−3

(1 2)

(1 −2)

(−1 2)

(−1 −2)

(−3 1)

(−3 2)

(−1 −2 3)

Split on −3 first (bad decision).
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−3

−1

(1 2)

(1 −2)

(−1 2)

(−1 −2)

(−3 1)

(−3 2)

(−1 −2 3)

Split on −1 and get first conflict.
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Backjumping Example learn
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−3

1−1

(1 2)

(1 −2)

(−1 2)

(−1 −2)

(−3 1)

(−3 2)

(−1 −2 3)

Regularly backtrack and assign 1 to get second conflict.
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Backjumping Example learn
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1−1

−3

1−1

(1 2)

(1 −2)

(−1 2)

(−1 −2)

(−3 1)

(−3 2)

(−1 −2 3)3

Backtrack to root, assign 3 and derive same conflicts.
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Backjumping Example learn
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−3

−1

(1 2)

(1 −2)

(−1 2)

(−1 −2)

(−3 1)

(−3 2)

(−1 −2 3)

Assignment −3 does not contribute to conflict.
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Backjumping Example learn
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(1 2)

(1 −2)

(−1 2)

(−1 −2)

(−3 1)

(−3 2)

(−1 −2 3)−3

−1

1

So just backjump to root before assigning 1.
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Backjumping learn
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backjumping helps to recover from bad decisions

bad decisions are those that do not contribute to conflicts

without backjumping same conflicts are generated in second branch

with backjumping the second branch of bad decisions is just skipped

particularly useful for unsatisfiable instances

in satisfiable instances good decisions will guide us to the solution

with backjumping many bad decisions increase search space roughly quadratically
instead of exponentially with the number of bad decisions
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Implication Graph learn
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the implication graph maps inputs to the result of resolutions

backward from the empty clause all contributing clauses can be found

the variables in the contributing clauses are contributing to the conflict

important optimization, since we only use unit resolution

generate graph only for resolutions that result in unit clauses

the assignment of a variable is result of a decision or a unit resolution

therefore the graph can be represented by saving the reasons for assignments with
each assigned variable
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General Implication Graph as Hyper-Graph learn
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a

a cb

b

c∨∨

reason implied
assignment

original
assignments

(edges of directed hyper graphs may have multiple source and target nodes)
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Optimized Implication Graph for Unit Resolution in DP learn
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a

b

a cb ∨∨

c

c

implied
assignment

assignments
original

reason associated to

graph becomes an ordinary (non hyper) directed graph

simplifies implementation:

store a pointer to the reason clause with each assigned variable

decision variables just have a null pointer as reason

decisions are the roots of the graph
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can we learn more from a conflict?

backjumping does not fully avoid the occurrence of the same conflict

the same (partial) assignments may generate the same conflict

generate conflict clauses and add them to CNF

the literals contributing to a conflict form a partial assignment

this partial assignment is just a conjunction of literals

its negation is a clause (implied by the original CNF)

adding this clause avoids this partial assignment to happen again
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Conflict Driven Backtracking/Backjumping learn
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[MarquesSilvaSakallah’96: GRASP]

observation: current decision always contributes to conflict

otherwise BCP would have generated conflict one decision level lower

conflict clause has (exactly one) literal assigned on current decision level

instead of backtracking

generate and add conflict clause

undo assignments as long conflict clause is empty or unit clause
(in case conflict clause is the empty clause conclude unsatisfiability)

resulting assignment from unit clause is called conflict driven assignment
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CNF for following Examples learn
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-3 1 2 0

3 -1 0

3 -2 0

-4 -1 0

-4 -2 0

-3 4 0

3 -4 0

-3 5 6 0

3 -5 0

3 -6 0

4 5 6 0

We use a version of the DIMACS format.

Variables are represented as positive integers.

Integers represent literals.

Subtraction means negation.

A clause is a zero terminated list of integers.

CNF has a good cut made of variables 3 and 4 (cf Exercise 4 + 5).
(but we are going to apply DP with learning to it)
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DP with Learning Run 1 (3 as 1st decision) learn
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= 0l

= 0l

= 1l

= 0l

3

(conflict)

empty clause

(conflict)

empty clause

unit clause −3 is generated as learned clause and we backtrackt to 

3

−1

−2

3 4
−3 1 2

(no unit clause originally, so no implications)

since −3 has a real unit clause as reason, an empty conflict clause is learned

−3

−6

−5

−4

4 5 6

decision

unit

1st conflict clause
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DP with Learning Run 2 Fig. 1 (-1, 3 as decision order) learn
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= 0l

= 1l

= 2l

3

−1

(conflict)

empty clause

= 1l

decision

−1

(no unit clause originally, so no implications)

(no implications on this decision level either)

decision

(using the FIRST clause)

23

4

−4 −2

since FIRST clause was used to derive 2, conflict clause is (1 −3)

backtrack to (smallest level for which conflict clause is a unit clause)
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DP with Learning Run 2 Fig. 2 (-1, 3 as decision order) learn
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= 0l

= 1l

(conflict)

empty clause

= 0l

decision

−1

(no unit clause originally, so no implications)

1st conflict clause

3

−1

−3

−4

−5

−6

4 5 6

backtrack to decision level 

learned conflict clause is the unit clause 1
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DP with Learning Run 2 Fig. 3 (-1, 3 as decision order) learn
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= 0l

(conflict)

empty clause

3

−1

since the learned clause is the empty clause, conclude unsatisfiability

1

unit

2nd conflict clause

−4

−3

−5

−6

4 5 6
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DP with Learning Run 3 Fig. 1 (-6, 3 as decision order) learn
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= 0l

= 1l

= 2l

(conflict)

empty clause

= 0l

decision

(no unit clause originally, so no implications)

(no implications on this decision level either)

decision

3

3

−6

−6

4

−1

−2
−3 1 2

learn the unit clause −3 and BACKJUMP to decision level
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DP with Learning Run 3 Fig. 1 (-6, 3 as decision order) learn
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= 0l

(conflict)

empty clause

3

−6

−3

−4

−6

−5 4 5 6

finally the empty clause is derived which proves unsatisfiability

unit

1st conflict clause
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int

sat (Solver solver)

{

  Clause conflict;

  for (;;)

    {

      if (bcp_queue_is_empty (solver) && !decide (solver))

        return SATISFIABLE;

      conflict = deduce (solver);

      if (conflict && !backtrack (solver, conflict))

        return UNSATISFIABLE;

    }

}
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int

backtrack (Solver solver, Clause conflict)

{

  Clause learned_clause; Assignment assignment; int new_level;

  if (decision_level(solver) == 0)

    return 0;

  analyze (solver, conflict);

  learned_clause = add (solver);

  assignment = drive (solver, learned_clause);

  enqueue_bcp_queue (solver, assignment);

  new_level = jump (solver, learned_clause);

  undo (solver, new_level);

  return 1;

}
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Learning as Resolution learn
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conflict clause: obtained by backward resolving empty clause with reasons

start at clause which has all its literals assigned to false

resolve one of the false literals with its reason

invariant: result still has all its literals assigned to false

continue until user defined size is reached

gives a nice correspondence between resolution and learning in DP

allows to generate a resolution proof from a DP run

implemented in RELSAT solver [BayardoSchrag’97]
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decision conflict

−2nlevel

level

level

n

n

−1

a simple cut always exists: set of roots (decisions) contributing to the conflict
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Unique Implication Points (UIP) learn
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d = 1 @ 1 e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f g = 1 @ 2 i = 1 @ 2

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4 s = 1 @ 4

= 1 @ 4x

top−level

decision

decision

decision

unit unit

= 1 @ 4

= 1 @ 4y

z conflictκ

h = 1 @ 2

t = 1 @ 4decision

UIP = articulation point in graph decomposition into biconnected components
(simply a node which, if removed, would disconnect two parts of the graph)
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can be found by graph traversal in the order of made assignments

trail respects this order

traverse reasons of variables on trail starting with conflict

count “open paths”
(initially size of clause with only false literals)

if all paths converged at one node, then UIP is found

decision of current decision level is a UIP and thus a sentinel
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assume a non decision UIP is found

this UIP is part of a potential cut

graph traversal may stop (everything behind the UIP is ignored)

negation of the UIP literal constitutes the conflict driven assignment

may start new clause generation (UIP replaces conflict)

each conflict may generate multiple learned clauses

however, using only the first UIP encountered seems to work best
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decision conflict

−2

UIP

nlevel

level

level

n

n

−1

1st UIP learned clause increases chance of backjumping
(“pulls in” as few decision levels as possible)
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intuitively it is important to localize the search (cf cutwidth heuristics)

cuts for learned clauses may only include UIPs of current decision level

on lower decision levels an arbitrary cut can be chosen

multiple alternatives

include all the roots contributing to the conflict

find minimal cut (heuristically)

cut off at first literal of lower decision level (works best)
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d = 1 @ 1 e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f g = 1 @ 2 h = 1 @ 2 i = 1 @ 2

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4 s = 1 @ 4 t = 1 @ 4 y = 1 @ 4

= 1 @ 4x z = 1 @ 4 κ

top−level

decision

decision

decision

unit unit

conflict

decision

Model Checking #342.202 SS 2016 Armin Biere JKU Linz



Antecedents / Reasons learn
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e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f h = 1 @ 2 i = 1 @ 2

= 1 @ 1c

r = 1 @ 4 y = 1 @ 4

= 1 @ 4x z = 1 @ 4 κ

top−level

decision

decision

decision

unit unit

conflict

decision

d

g

s t

= 1 @ 2

= 1 @ 1

= 1 @ 4= 1 @ 4

k = 1 @ 3 = 1 @ 3l

d∧g∧ s → t ≡ (d∨g∨ s∨ t)
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Conflicting Clauses learn
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d = 1 @ 1 e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f g = 1 @ 2 i = 1 @ 2

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4 s = 1 @ 4

= 1 @ 4x

top−level

decision

decision

decision

unit unit

= 1 @ 4

= 1 @ 4y

z conflictκ

h = 1 @ 2

t = 1 @ 4decision

¬(y∧ z) ≡ (y∨ z)
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d = 1 @ 1 e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f g = 1 @ 2

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4 s = 1 @ 4

= 1 @ 4x

top−level

decision

decision

decision

unit unit

= 1 @ 4

= 1 @ 4y

z conflictκ

decision

h i

t

= 1 @ 2 = 1 @ 2

= 1 @ 4

(h∨ i∨ t ∨ y) (y∨ z)
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Resolving Antecedents 1st Time learn
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d = 1 @ 1 e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f g = 1 @ 2

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4 s = 1 @ 4

= 1 @ 4x

top−level

decision

decision

decision

unit unit

= 1 @ 4

= 1 @ 4y

z conflictκ

decision

h i

t

= 1 @ 2 = 1 @ 2

= 1 @ 4

(h∨ i∨ t ∨ y) (y∨ z)

(h∨ i∨ t ∨ z)
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d = 1 @ 1 e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f g = 1 @ 2

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4 s = 1 @ 4

= 1 @ 4x

d = 1 @ 1 e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f g = 1 @ 2

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4 s = 1 @ 4

= 1 @ 4x

top−level

decision

decision

decision

unit unit

= 1 @ 4

= 1 @ 4y

z conflictκ

decision

h i

t

= 1 @ 2 = 1 @ 2

= 1 @ 4

top−level

decision

decision

decision

unit unit

= 1 @ 4

= 1 @ 4y

z conflictκ

decision

h i

t

= 1 @ 2 = 1 @ 2

= 1 @ 4

(h∨ i∨ t ∨ y) (y∨ z)

(h∨ i∨ t ∨ z)
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d = 1 @ 1 e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f g = 1 @ 2

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

= 1 @ 4x

top−level

decision

decision

decision

unit unit

z

decision

h i

t

= 1 @ 2 = 1 @ 2

= 1 @ 4s = 1 @ 4 = 1 @ 4

= 1 @ 4 κ conflict

y

(h∨ i∨ t ∨ z)
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Resolving Antecedents 2nd Time learn
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e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

= 1 @ 4x

top−level

decision

decision

decision

unit unit

z

decision

h i

t

= 1 @ 2 = 1 @ 2

= 1 @ 4 = 1 @ 4

= 1 @ 4 κ conflict

ys

g

d = 1 @ 1

= 1 @ 2

= 1 @ 4

(d∨g∨ s∨ t) (h∨ i∨ t ∨ z)

(d∨g∨ s∨h∨ i∨ z)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz



Resolving Antecedents 3rd Time learn
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e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit unit

z

decision

h i= 1 @ 2 = 1 @ 2

= 1 @ 4

= 1 @ 4 κ conflict

y= 1 @ 4t= 1 @ 4

= 1 @ 2

= 1 @ 1d

g

s

= 1 @ 4x

(x∨ z) (d∨g∨ s∨h∨ i∨ z)

(x∨d∨g∨ s∨h∨ i)
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e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit unit

decision

h i= 1 @ 2 = 1 @ 2

= 1 @ 4

κ conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

x = 1 @ 4

= 1 @ 4

= 1 @ 4

t

z

(s∨ x) (x∨d∨g∨ s∨h∨ i)

(d∨g∨ s∨h∨ i)
self subsuming resolution

Model Checking #342.202 SS 2016 Armin Biere JKU Linz



1st UIP Clause after 4 Resolutions learn
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e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit unit

decision

h i= 1 @ 2 = 1 @ 2

= 1 @ 4

κ conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

1st UIP

backjump level

(d∨g∨ s∨h∨ i)
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Resolving Antecedents 5th Time learn
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e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

= 1 @ 1c

k = 1 @ 3

top−level

decision

decision

decision

unit unit

decision

h i= 1 @ 2 = 1 @ 2

= 1 @ 4

κ conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

l = 1 @ 3

= 1 @ 4r

(l∨ r∨ s) (d∨g∨ s∨h∨ i)

(l∨ r∨d∨g∨h∨ i)
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e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

= 1 @ 1c

top−level

decision

decision

decision

unit unit

decision

h i= 1 @ 2 = 1 @ 2

= 1 @ 4

κ conflict

y

g

d

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

r = 1 @ 4 = 1 @ 4s

l = 1 @ 3= 1 @ 3k
backtrack

level

last UIP

(d∨g∨ l∨ r∨h∨ i)
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1st UIP Clause after 4 Resolutions learn
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e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit unit

decision

h i= 1 @ 2 = 1 @ 2

= 1 @ 4

κ conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

(d∨g∨ s∨h∨ i)
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e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit unit

decision

i = 1 @ 2

= 1 @ 4

κ conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

h = 1 @ 2

(h∨ i) (d∨g∨ s∨h∨ i)

(d∨g∨ s∨h)
self subsuming resolution
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Locally Minimized Learned Clause learn
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e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit unit

decision = 1 @ 4

κ conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

= 1 @ 2i= 1 @ 2h

(d∨g∨ s∨h)
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Local Minimization Algorithm learn
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Two step algorithm:

1. mark all variables in 1st UIP clause

2. remove literals with all antecedent literals also marked

Correctness:

removal of literals in step 2 are self subsuming resolution steps.

implication graph is acyclic.

Confluence: produces a unique result.
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Minimizing Locally Minimized Learned Clause Further? learn
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e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit unit

decision = 1 @ 4

κ conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

= 1 @ 2i

Remove ?

h = 1 @ 2

(d∨g∨ s∨6 h)
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a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit

decision = 1 @ 4

κ conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

= 1 @ 2i= 1 @ 2h

unit b

e

= 1 @ 0

= 1 @ 1

(b)
(d∨b∨ e)

(e∨g∨h) (d∨g∨ s∨h)
(e∨d∨g∨ s)

(b∨d∨g∨ s)

(d∨g∨ s)
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Recursively Minimized Learned Clause learn
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a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit

decision = 1 @ 4

κ conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

= 1 @ 2i

unit

= 1 @ 2

= 1 @ 1

= 1 @ 0

h

e

b

(d∨g∨ s)
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Recursive Minimization Algorithm learn
Version 2016.1

137

[MiniSAT 1.13]

Four step algorithm:

1. mark all variables in 1st UIP clause

2. for each candidate literal: search implication graph

3. start at antecedents of candidate literals

4. if search always terminates at marked literals remove candidate

Correctness and Confluence as in local version!!!

Optimization: terminate early with failure if new decision level is “pulled in”
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solved time space out of deleted
instances in hours in GB memory literals

MINISAT recur 788 9% 170 11% 198 49% 11 89% 33%
with local 774 7% 177 8% 298 24% 72 30% 16%

preprocessing none 726 192 392 103
MINISAT recur 705 13% 222 8% 232 59% 11 94% 37%
without local 642 3% 237 2% 429 24% 145 26% 15%

preprocessing none 623 242 565 196
PICOSAT recur 767 10% 182 13% 144 45% 10 60% 31%

with local 745 6% 190 9% 188 29% 10 60% 15%
preprocessing none 700 209 263 25

PICOSAT recur 690 6% 221 8% 105 63% 10 68% 33%
without local 679 5% 230 5% 194 31% 10 68% 14%

preprocessing none 649 241 281 31
recur 2950 9% 795 10% 679 55% 42 88% 34%

altogether local 2840 5% 834 6% 1109 26% 237 33% 15%
none 2698 884 1501 355

10 runs for each configuration with 10 seeds for random number generator
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MINISAT
with preprocessing

seed solved time space mo del

1. recur 8 82 16 19 1 33%
2. recur 6 81 17 20 1 33%
3. local 0 81 16 29 7 16%
4. local 7 80 17 29 8 15%
5. recur 4 80 17 20 1 33%
6. recur 1 79 17 20 1 33%
7. recur 9 79 17 20 1 34%
8. local 5 78 18 29 7 16%
9. local 1 78 17 29 6 16%

10. recur 0 78 17 20 1 34%
11. recur 5 78 17 19 1 33%
12. local 3 77 18 31 7 16%
13. local 8 77 18 30 8 16%
14. recur 7 77 17 20 1 34%
15. recur 3 77 17 20 1 34%
16. recur 2 77 17 20 2 33%
17. none 7 76 19 39 9 0%

... ... ... ... ... ... ... ...
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[MoskewiczMadiganZhaoZhangMalik-DAC’01: CHAFF]

“second order” because it involves statistics about the search

Variable State Independent Decaying Sum (VSIDS) decision heuristic
(implemented in Chaff, Limmat, MiniSAT, PicoSAT, and many more)

VSIDS just counts the occurrences of literals in conflict clauses

literal/variable with maximal count (score) is chosen
(from a priority queue ordered by score)

score is multiple by a factor f < 1 after a certain number of conflicts occurred
(this is the “decaying” part and also called rescoring)

emphasizes (negation of) literals contributing recently to conflicts (localization)
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[Biere-SAT’08]

VSIDS score can be normalized to the interval [0,1] as follows:

pick a decay factor f per conflict: typically f = 0.95

each variable is punished by this decay factor at every conflict

if a variable is involved in conflict, add 1− f to score

s, f ≤ 1, then s′ ≤ s
decay in any case︷︸︸︷

· f +1− f︸ ︷︷ ︸
increment if involved

≤ f +1− f = 1

with s old score before conflict, s′ new score after conflict

recomputing score of all variables at each conflict is costly

linear in the number of variables, e.g. millions

particularly, because number of involved variabels << number of variables
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Chaff: precision of score traded for faster decay

increment score of involved variables by 1

decay score of all variables every 256 conflicts by halfing the score

sort priority queue after decay and not at every conflict

MiniSAT uses Exponential VSIDS

also just update score of involved variables

dynamically adjust increment: δ′ = δ · 1f (typically increment δ by 5%)

use floating point representation of score

“rescore” to avoid overflow in regular intervals

EVSIDS linearly related to NVSIDS
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consider again only one variable with score sequence sn resp. Sn

δk =

{
1 if involved in k-th conflict

0 otherwise

ik = (1− f ) ·δk

sn = (. . .(i1 · f + i2) · f + i3) · f · · ·) · f + in =
n

∑
k=1

ik · f n−k = (1− f ) ·
n

∑
k=1

δk · f n−k (NVSIDS)

Sn =
f−n

(1− f )
· sn =

f−n

(1− f )
· (1− f ) ·

n

∑
k=1

δk · f n−k =
n

∑
k=1

δk · f−k (EVSIDS)
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[GoldbergNovikov-DATE’02]

observation:

recently added conflict clauses contain all the good variables of VSIDS

the order of those clauses is not used in VSIDS

basic idea:

simply try to satisfy recently learned clauses first

use VSIDS to chose the decision variable for one clause

if all learned clauses are satisfied use other heuristics

intuitively obtains another order of localization (no proofs yet)

results are mixed (by some authors considered to be more robust than just VSIDS)
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variable move to front strategy (VMTF)

Siege SAT Solver [Ryan’04]

easy and cheap to implement with doubly linked list

need pointer to last picked variable in queue

reset during back-tracking

rather aggressive

clause move to front strategy (CMTF)

HaifaSAT [GershanStrichman’08] variant keeps clauses in a queue

queue can also be used to find less important clauses to throw away

refined version in PrecoSAT [Biere’09] (multiple queues per glucose level)
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SAT solver picks unassigned variable with largest score as next decision

consider only change of the score si of one variable v during i-th conflict

let βi = 1 if v is bumped in the i-th conflict otherwise 0

some possible variable score update functions:

static si+1 = si initialize score statically and do not change it

inc si+1 = si+βi this is in essence DLIS from Grasp

vmtf si+1 = i

sum si+1 = si+ i ·βi emphasis on recent conflicts unpublished

vsids si+1 = d · si+βi decay d ∈ [0,1) e.g. d = 0.95

evsids si+1 = si+gi ·βi, gi+1 = e ·gi factor e ∈ [1,2) e.g. e = 1.05

avg si+1 = si+βi · (i− si)/2 another filter function unpublished

last four share the idea of “low-pass filtering” of the involvement of variables

for this interpretation see our SAT’08 paper and the video

important practical issue: number of bumped variables is usually small
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Reduction Strategies learn
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should not keep all learned clauses forever

some of them become useless

for instance subsumed or satisfied under learned units

were but are not anymore relevant to current search focus

memory consumption / BCP speed

throw unimportant learned clauses away (reduce)

in regular intervals (controlled by geometric, Luby, arithmetic scheme)

size heuristics: discard long clauses

least recently used (LRU): as in HW cache (see also CMTF)

clause scores with bumping scheme as for VSDIS (BerkMin)

glucose level: number decision levels in learned clause
called also LBD in original paper [AudemardLaurentSimon’09]
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similar to look-ahead heuristics: polynomially bounded search

may be recursively applied (however, is often too expensive)

Stålmarck’s Method

works on triplets (intermediate form of the Tseitin transformation):

x = (a∧b), y = (c∨d), z = (e⊕ f ) etc.

generalization of BCP to (in)equalities between variables

test rule splits on the two values of a variable

Recursive Learning (Kunz & Pradhan)

(originally) works on circuit structure (derives implications)

splits on different ways to justify a certain variable value
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Stålmarck’s Method learn
Version 2016.1

150

1. BCP over (in)equalities: x = y z = (x⊕ y)
z = 0

x = 0 z = (x∨ y)
z = y

etc.

2. structural rules: x = (a∨b) y = (a∨b)
x = y

etc.

3. test rule:

{x = 0}∪E
⇓

E0∪E

{x = 1}∪E
⇓

E1∪E
(E0∩E1)∪E

Assume x = 0, BCP and derive (in)equalities E0, then assume x = 1, BCP and derive
(in)equalities E1. The intersection of E0 and E1 contains the (in)equalities valid in any
case.
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x = 0

⇓

x = 1

⇓

y = 0 y = 1 y = 0 y = 1

E00 E01 E10 E11

E0 E1

⇓⇓⇓⇓

E

(we do not show the (in)equalities that do not change)
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Stålmarck’s Method Summary learn
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recursive application

depth of recursion bounded by number of variables

complete procedures (determines satisfiability or unsatisfiability)

for a fixed (constant) recursion depth k polynomial!

k-saturation:

apply split rule on recursively up to depth k on all variables

0-saturation: apply all rules except test rule (just BCP: linear)

1-saturation: apply test rule (not recursively) for all variables
(until no new (in)equalities can be derived)
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Recursive Learning learn
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circuits
0

0
output 0 implies middle input 0 indirectly

CNF

for each clause c in the CNF

for each literal l in the clause c

· assume l and propagate

· collect set of all implied literals (direct/indirect “implications” of l)

intersect these sets of implied literals over all l in c

literals in the intersection are implied without any assumption
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[DavisPutnam60][Biere SAT’04] [SubbarayanPradhan SAT’04] [EénBiere SAT’05]

use DP to existentially quantify out variables as in [DavisPutnam60]

only remove a variable if this does not add (too many) clauses

do not count tautological resolvents

detect units on-the-fly

schedule removal attempts with a priority queue [Biere SAT’04] [EénBiere SAT’05]

variables ordered by the number of occurrences

strenthen and remove subsumed clauses (on-the-fly)
(SATeLite [EénBiere SAT’05] and Quantor [Biere SAT’04])
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for each (new or strengthened) clause

traverse list of clauses of the least occuring literal in the clause

check whether traversed clauses are subsumed or

strengthen traversed clauses by self-subsumption [EénBiere SAT’05]

use Bloom Filters (as in “bit-state hashing”), aka signatures

checking new clauses against existing clauses: backward (self) subsumption

new clause (self) subsumes existing clause

new clause smaller or equal in size

check clause being subsumed by existing clauses forward (self) subsumption

can be made more efficient by one-watcher scheme [Zhang-SAT’05]
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[AnderssonBjesseCookHanna DAC’02] also in Oepir SAT solver, this is our reformulation

for all iterals l

for all clauses c in which l occurs (with this particular phase)

assume the negation of all the other literals in c, assume l

if BCP does not lead to a conflict continue with next literal in outer loop

if all clauses produced a conflict permanently assign ¬l

Correctness: Let c = l∨d, assume ¬d∧ l.

If this leads to a conflict d∨¬l could be learned (but is not added to the CNF).

Self subsuming resolution with c results in d and c is removed.

If all such cases lead to a conflict, ¬l becomes a pure literal.
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Generalization of pure literals.

Given a partial assignment σ.

A clause of a CNF is “touched” by σ if it contains a literal assigned by σ.

A clause of a CNF is “satisfied” by σ if it contains a literal assigned to true by σ.

If all touched clauses are satisfied then σ is an “autarky”.

All clauses touched by an autarky can be removed.

Example: (−1 2)(−1 3)(1 −2 −3)(2 5) · · · (more clauses without 1 and 3).

Then σ = {−1,−3} is an autarky.
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[Kullman’99]

fix a CNF F

blocked clause C ∈ F all clauses in F with l̄

(l̄∨ ā∨ c)

(a∨b∨ l)

(l̄∨ b̄∨d)

since all resolvents of C on l are tautological C can be removed

Proof

assignment σ satisfying F\C but not C

can be extended to a satisfying assignment of F by flipping value of l
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[JärvisaloBiereHeule-TACAS’10]

COI Cone-of-Influence reduction

MIR Monontone-Input-Reduction

NSI Non-Shared Inputs reduction

PG Plaisted-Greenbaum polarity based encoding

TST standard Tseitin encoding

VE Variable-Elimination as in DP / Quantor / SATeLite

BCE Blocked-Clause-Elimination
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PrecoSAT [Biere’09], Lingeling [Biere’10], also in CryptoMiniSAT (Mate Soos)

preprocessing can be extremely beneficial

most SAT competition solvers use variable elimination (VE)
[EénBiere SAT’05]

equivalence / XOR reasoning

probing / failed literal preprocessing / hyper binary resolution

however, even though polynomial, can not be run until completion

simple idea to benefit from full preprocessing without penalty

“preempt” preprocessors after some time

resume preprocessing between restarts

limit preprocessing time in relation to search time
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special case incremental preprocessing:

preprocessing during incremental SAT solving

allows to use costly preprocessors

without increasing run-time “much” in the worst-case

still useful for benchmarks where these costly techniques help

good examples: probing and distillation even VE can be costly

additional benefit:

makes units / equivalences learned in search available to preprocessing

particularly interesting if preprocessing simulates encoding optimizations

danger of hiding “bad” implementation though . . .

. . . and hard(er) to debug and get right [JävisaloHeuleBiere’12]
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start

top

end
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invariant: first two literals are watched
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invariant: first two literals are watched
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start

top

end

1

−7 2 −7 −1−3

2 3−5

3

watch 2

watch −7

observation: often the other watched literal satisfies the clause

so cache this literals in watch list to avoid pointer dereference

for binary clause no need to store clause at all

can easily be adjusted for ternary clauses (with full occurrence lists)

LINGELING uses more compact pointer-less variant
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[ClarkeEmerson’82] [QuielleSifakis’82] Turing Award 2007

check algorithmically temporal / sequential properties

systems are originally finite state

simple model: finite state automaton

comparison of automata can be seen as model checking

check that the output streams of two finite state systems “match”

process algebra: simulation and bisimulation checking

temporal logics as specification mechanism

safety, liveness and more general temporal operators, fairness
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Model Checking for Infinite Systems mc
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fixpoint algorithms with symbolic representations:

timed automata (clocks)

hybrid automata (differential equations)

termination guaranteed if finite quotient structure exists

simply run model checker for some time, e.g. Java Pathfinder

run time verification

1. example: add checker synthesized from temporal spec

2. example: run all schedules for one test case

check programs (incl. loops and recursion) over finite domains, e.g. SLAM
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the two traffic lights should never show a green light at the same time
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state space is the set of assignments to variables of the system

state space is finite if the range of variables is finite

this notion works for inifinite state spaces as well

TLC example:

single assignment σ:{southnorth,eastwest}→ {green,yellow,red}

set of assignments is isomorphic to {green,yellow,red}2

eg state space is isomorphic to the crossproduct of variable ranges

not all states are reachable: (green,green)
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Safety mc
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safety properties specify invariants of the system

simple generic algorithm for checking safety properties:

1. iteratively generate all reachable states

2. check for violation of invariant for newly reached states

3. terminate if all newly reached states can be found

compare with assertions

used in run time checking: assert in C and VHDL

contract checking: require, ensure, etc. in Eiffel
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MODULE trafficlight (enable)

VAR

  light : { green, yellow, red };

  back : boolean;

ASSIGN

  init (light) := red;

  next (light) :=

    case

      light = red & !enable : red;

      light = red & enable : yellow;

      light = yellow & back : red;

      light = yellow & !back : green;

      TRUE : yellow;

    esac;

  next (back) :=

    case

      light = red & enable : FALSE;

      light = green : TRUE;

      TRUE : back;

    esac;

MODULE main

VAR

  southnorth : trafficlight (TRUE);

  eastwest : trafficlight (TRUE);

SPEC

  AG !(southnorth.light = green & eastwest.light = green)
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SMV mc
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symbolic model checker implemented by Ken McMillan at CMU (early 90’ies)

input language: finite models + temporal specification

hierarchical description, similar to hardward description language (HDL)

integer and enumeration types, arithmetic operations

heavily relies on the data structure Binary Decision Diagrams (BDDs)
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MODULE main

VAR

  turn : { ew, sn };

  southnorth : trafficlight (enablesouthnorth);

  eastwest : trafficlight (enableeastwest);

DEFINE

  enableeastwest := southnorth.light = red & turn = ew;

  enablesouthnorth := eastwest.light = red & turn = sn;

SPEC

  AG !(southnorth.light = green & eastwest.light = green)

idea: disable traffic light as long the other is not red and its not the others turn
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traffic lights showing red should eventually show green
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traffic lights showing red should eventually show green
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traffic lights showing red should eventually show green
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compilation of finite model into pure propositional domain

first step is to flatten the hierarchy

recursive instantiation of all submodules

name and parameter substitution

may increase program size exponentially

second step is to encode variables with boolean variables

light light@1 light@0

green 7→ 0 0
yellow 7→ 0 1
red 7→ 1 0
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initial state predicate I represented as boolean formula

!eastwest.light@0 & eastwest.light@1

(equivalent to init(eastwest.light) := red)

transition relation T represented as boolean formula

encoding of atomic predicates p as boolean formulae

!eastwest.light@1 & !eastwest.light@0

(equivalent to eastwest.light != green)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz



Bounded Model Checking bmc
Version 2016.1

197

[BiereCimattiClarkeZhu-TACAS’99]

uses SAT for model checking

historically not the first symbolic model checking approach

scales better than original BDD based techniques

mostly incomplete in practice

validity of a formula can often not be proven

focus on counter example generation

only counter example up to certain length (the bound k) are searched
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checking safety property Gp for a bound k as SAT problem:

∨ ∨ ∨ ∨p¬ p¬ p¬ p¬p¬

0s s1 l+1s sksl

I(s0) ∧ T (s0,s1) ∧·· ·∧ T (sk−1,sk) ∧
k∨

i=0
¬p(si)

check occurrence of ¬p in the first k states
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generic counter example trace of length k for liveness Fp

p¬ p¬ p¬ p¬p¬

0s sls1 l+1s sk

I(s0) ∧ T (s0,s1) ∧·· ·∧ T (sk,sk+1) ∧
k∨

l=0
sl = sk+1 ∧

k∧
i=0
¬p(si)

(however we recently showed that liveness can always
be reformulated as safety [BiereArthoSchuppan02])
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inputs
sequential
feedback
loop

states
outputs

sequential circuit

combinational
logic
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inputs

outputs
statesstates

break sequential loop
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inputs

outputs
states

inputs

outputs
statesstates

added 1st copy
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inputs

outputs
states

inputs

outputs
states

inputs

outputs
statesstates

added 2nd copy
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inputs

outputs
states

inputs

outputs
states

inputs

outputs
states

inputs

outputs
statesstates

added 3rd copy
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inputs

outputs
states

inputs

outputs
states

inputs

outputs
states

inputs

outputs
states

inputs

outputs
statesstates

added 4th copy
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inputs

observed signals
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inputs

!prop0 !prop1 !prop2 !prop3 !prop4

failed

find inputs for which failed becomes true
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inputs

!prop0 !prop1 !prop2 !prop3 !prop4

failed

sel

CMP

find inputs for which failed becomes true
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find bounds on the maximal length of counter examples

also called completeness threshold

exact bounds are hard to find⇒ approximations

induction

use inductive invariants as we have seen before

generalization of inductive invariants: pseudo induction

use SAT for quantifier elimination as with BDDs

then model checking becomes fixpoint calculation
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Distance: length of shortest path between two states

δ(s, t)≡min{n | ∃s0, . . . ,sn[s = s0, t = sn and T (si,si+1) for 0≤ i < n]}

(distance can be infinite if s and t are not connected)

Diameter: maximal distance between two connected states

d(T )≡max{δ(s, t) | T ∗(s, t)}

with T ∗ defined as the transitive reflexive hull of T .

Radius: maximal distance of a reachable state from the initial states

r(T, I)≡max{δ(s, t) | T ∗(s, t) and I(s) and δ(s, t)≤ δ(s′, t) for all s′ with I(s′)}

(minimal number of steps to reach an arbitrary state in BFS)
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initial states
unreachable states

states with distance 1 from initial states

single state with distance 2 from initial states

0 1

2 3

4

5 6 7 8

9

diameter 4, radius 2

(reachable diameter 3, distance from 0 to 4 or max. distance between 2,3,4)
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a bad state is reached in at most r(T, I) steps from the initial states

a bad state is a state violating the invariant to be proven

thus, the radius is a completeness threshold for safety properties

for safety properties the max. k for doing bounded model checking is r(T, I)

if no counter example of this length can be found the safety property holds
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reformulation:

the radius is the max. length r of a path leading from an initial state to a state t, such there
is no other path from an initial state to t with length less than r.

Thus radius r is the minimal number which makes the following formula valid:

∀s0, . . . ,sr+1[ (I(s0)∧
r∧

i=0
T (si,si+1))→

∃ n≤ r [ ∃t0, . . . , tn[ I(t0)∧
n−1∧
i=0

T (ti, ti+1)∧ tn = sr+1 ] ] ]

after replacing ∃ n≤ r · · · by
∨r

n=0 · · · we get a Quantified Boolean Formula (QBF), which
is much harder to prove un/satisfiable (PSPACE complete).
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0t

s1

t1

s
r

s +1r
s −1r

t −1r

t
r

s +1r

s0

initial states

( = )

∀

∃

(we allow ti+1 to be identical to ti in the lower path)
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we can not find the real radius / diameter with SAT efficiently

over approximation idea:

drop requirement that there is no shorter path

enforce different (no reoccurring) states on single path instead

reoccurrence diameter:

length of the longest path without reoccurring states

reoccurrence radius:

length of the longest initialized path without reoccurring states
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reformulation:

the reoccurrence radius is the length of the longest path from initial states without reoccur-
ring states (one may further assume that only the first state is an initial state)

The reoccurring radius is the minimal r which makes the following formula valid:

∀s0, . . . ,sr+1[ (I(s0)∧
r∧

i=0
T (si,si+1)) →

∨
0≤i< j≤r+1

si = s j]

this is a propositional formula and can be checked by SAT

(exercise: reoccurrence radius/diameter is an upper bound on real radius/diameter)
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1

0

2 n

radius 1, reoccurrence radius n
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for k = 0 . . .∞ check

1. k-induction base case:

I(s0)∧T (s0,s1)∧ . . .∧T (sk−1,sk) ∧ B(sk)∧
∧

0≤i<k
¬B(si) satisfiable?

2. k-induction induction step:

T (s0,s1)∧ . . .∧T (sk−1,sk) ∧ B(sk)∧
∧

0≤i<k
¬B(si) unsatisfiable?

if base case satisfiable (= BMC), then bad state reachable

if inductive step unsatisfiable, then bad state unreachable

incomplete without simple path constraints
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[EénSörensson’03]

I

B

k = 0 base case
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[EénSörensson’03]

B

k = 0 inductive step
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[EénSörensson’03]

I

T

B

k = 1 base case
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[EénSörensson’03]

T

B

k = 1 inductive step
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[EénSörensson’03]

I T

T B

k = 2 base case
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[EénSörensson’03]

T

T B

k = 2 inductive step
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[EénSörensson’03]

I T

T T

B

k = 3 base case
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[EénSörensson’03]

T

T T

B

k = 3 inductive step
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[EénSörensson’03]

I TT

T T B

k = 4 base case
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[EénSörensson’03]

TT

T T B

k = 4 inductive step
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[EénSörensson’03]

I TT

T T T

B

k = 5 base case
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[EénSörensson’03]

TT

T T T

B

k = 5 inductive step
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[EénSörensson’03]

I

B

TT

T T T

T

k = 6 base case
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[EénSörensson’03]

B

TT

T T T

T

k = 6 inductive step
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bounded model checking: [BiereCimattiClarkeZhu’99]

I(s1)∧T (s1,s2)∧ . . .∧T (sk−1,sk)∧
∨

0≤i≤k
B(si) satisfiable?

reoccurrence diameter checking: [BiereCimattiClarkeZhu’99]

T (s1,s2)∧ . . .∧T (sk−1,sk) ∧
∧

1≤i< j≤k
si 6= s j unsatisfiable?

k-induction base case: [SheeranSinghStålmarck’00]

I(s1)∧T (s1,s2)∧ . . .∧T (sk−1,sk) ∧ B(sk)∧
∧

0≤i<k
¬B(si) satisfiable?

k-induction induction step: [SheeranSinghStålmarck’00]

T (s1,s2)∧ . . .∧T (sk−1,sk) ∧ B(sk)∧
∧

0≤i<k
¬B(si) ∧

∧
1≤i< j≤k

si 6= s j unsatisfiable?

automatic abstraction refinement = lemmas on demand of simple path constraints
[EénSörensson’03]
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let G = ¬B denote the “good states”:

0-induction base case: I(s0)∧B(s0) satisfiable iff initial bad state exists

0-induction inductive step: B(s0) unsatisfiable iff ¬B propositional tautology

1-induction base: I(s0)∧T (s0,s1)∧B(s1) satisfiable iff bad state reachable in one step

1-induction inductive step: ¬B(s0)∧T (s0,s1)∧B(s1) unsatisfiable iff G inductive

assuming 0-induction base case was unsatisfiable and thus I |= G

where G = ¬B is called inductive iff 1. I |= G and 2. G∧T |= G′
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[BiereCimattiClarkeFujitaZhu’00]

task is to prove that p is an invariant Gp holds on the model

guess a formula G stronger than p: G |= p 1st check

show G inductive: I |= G, G∧T |= G′ 2nd, 3rd check

all three checks can be formulated as UNSAT checks

if one check fails refine G based on satisfying assignment

manual process and thus complete on finite state systems

there are also automatic abstraction/refinement versions of this approach
CEGAR [ClarkeGrumbergJhaLuVeith’00]
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Definition I interpolant of A and B iff A⇒ I, V (I)⊆V (A)∩V (B) and I∧B unsat.

Note: A∧B unsatisfiable as a consequence.

Intuition: I is an abstraction of A over the common (interface) variables of A and B
which still is inconsistent with B.

Let A and B formulas in CNF.

From a resolution proof in a refutation of A∧B generate interpolant I (next slide)

This is used in many applications,
generalizations exists,
also gives one of the fastet model checking algorithms.
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[McMillan’03, McMillan’05] + [Biere’09] (BMC chapter in Handbook)

Definition interpolating quadruple (A,B) c [ f ] is well-formed iff

(W1) V (c)⊆V (A)∪V (B) (W2) V ( f )⊆ G∪ (V (c)∩V (A))⊆V (A)

Definition well-formed interpolating quadruple (A,B) c [ f ] is valid iff

(V1) A⇒ f (V2) B∧ f ⇒ c

Definitition proof rules for interpolating quadrupels

(R1) c ∈ A
(A,B) c [c ]

(A,B) c
.
∨ l [ f ] (A,B) d

.
∨ l [g ] |l| ∈V (B)

(A,B) c∨d [ f ∧g ]
(R3)

(R2) c ∈ B
(A,B) c [> ]

(A,B) c
.
∨ l [ f ] (A,B) d

.
∨ l [g ] |l| 6∈V (B)

(A,B) c∨d [ f | l∨g| l ]
(R4)

Theorem proof rules produce well-formed and valid interpolating quadruples
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A︷ ︸︸ ︷
I(s−1)∧T (s−1,s0) ∧

B︷ ︸︸ ︷
T (s0,s1)∧T (s1,s2)∧T (s2,s3)∧

3∨
i=0
¬G(si)

interpolant P1(s0) let R1 ≡ I∨P1

R1(s−1)∧T (s−1,s0) ∧ T (s0,s1)∧T (s1,s2)∧T (s2,s3)∧
∨3

i=0¬G(si)

interpolant P2(s0)⇐ R1(s−1)∧T (s−1,s0) let R2 ≡ R1∨P2

R2(s−1)∧T (s−1,s0) ∧ T (s0,s1)∧T (s1,s2)∧T (s2,s3)∧
∨3

i=0¬G(si)

...

Rn−1(s−1)∧T (s−1,s0) ∧ T (s0,s1)∧T (s1,s2)∧T (s2,s3)∧
∨3

i=0¬G(si)

interpolant Pn(s0)

until Rn ≡ Rn−1 fix-point guaranteed for k = backward radius of ¬G
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(E)LTL formula in NNF

let the path π be a (k, l) lasso

π |=i
k p iff p ∈ L(π(i))

π |=i
k ¬p iff p 6∈ L(π(i))

π |=i
k f ∧g iff π |=i

k f and π |=i
k g

π |=i
k X f iff

{
π |=l

k f if i = k

π |=i+1
k f else

π |=i
k G f iff

∧k
j=min(i,l)π |= j

k f

π |=i
k F f iff

∨k
j=min(i,l)π |= j

k f
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ELTL formula in NNF

there is no l for which path π is a (k, l) lasso

π |=i
k p iff p ∈ L(π(i))

π |=i
k ¬p iff p 6∈ L(π(i))

π |=i
k f ∧g iff π |=i

k f and π |=i
k g

π |=i
k X f iff

{
false if i = k

π |=i+1
k f else

π |=i
k G f iff false

π |=i
k F f iff

∨k
j= i

π |= j
k f
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definition:

π |=k f :⇔ π |=0
k f

bounded semantics aproximates real semantics:

π |=k f ⇒ π |= f for all k

(theoretical) completeness:

if π |= f then there exists k with πk |= f

note: negate original property first (e.g. AGp 7→ EF¬p)

ALTL→ ELTL

counter example→ witness

bounded witness is also a non-bounded witness
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two recursive translations from (E)LTL in NNF for fixed k:

l[·]ik assumes (k, l)-loop

[·]ik assumes that no (k, l)-loop exists for all l

add time frame expansion of transition relation:

I(s0) ∧ T (s0,s1) ∧·· ·∧ T (sk−1,sk)

add loopk(l) constraint for looping translation: loopk(l) := T (sk,sl)

add noloopk constraint for non-looping translation:

noloopk := ¬
k∨

l=0
loopk(l)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz



Looping Translation bmc
Version 2016.1

243

l[p]ik := p(si)

l[¬p]ik := ¬p(si)

l[ f ∧g]ik := l[ f ]ik∧ l[g]ik

l[X f ]ik := l[ f ]
next(i)
k

l[G f ]ik :=
k∧

j=min(l,i)
l[ f ]

j
k

l[F f ]ik :=
k∨

j=min(l,i)
l[ f ]

j
k

with

next(i) :=
{

i+1 if i < k
l else
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[p]ik := p(si)

[¬p]ik := ¬p(si)

[ f ∧g]ik := [ f ]ik∧ [g]
i
k

[X f ]ik :=

{
[ f ]i+1

k if i < k

false else

[G f ]ik := false

[F f ]ik :=
k∨

j=i
[ f ] j

k
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[K, f ]k := noloopk∧ [ f ]0k ∨
k∨

l=0
loopk(l)∧ l[ f ]

0
k

Theorem: K |= E f ⇔ ∃k [K, f ]k satisfiable

l[·]ik and [·]ik are linear in k if subformulae are shared

unique table for automatic sharing syntactically equivalent formulae

implemented as hash table (keys are pairs of formulae ids)

more complex and quadratic translations for R and U
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original translation of FGp after applying associativity and sharing

p s
3
)(

p s
2
)(

p s
1
)(

p s
0
)(

L
3

L
2

L
1

L
0

with Li = loopk(i) and k = 3

(could be simplified further)
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[LatvalaBiereHeljankoJunttila FMCAD’04]

evaluate semantics on loop in two iterations

〈 〉= 1st iteration [ ] = 2nd iteration

:= i < k i = k

[p]i p(si) p(sk)

[¬p]i ¬p(si) ¬p(sk)

[X f ]i [ f ]i+1
∨k

l=0 (T (sk,sl)∧ [ f ]l)

[G f ]i [ f ]i∧ [G f ]i+1
∨k

l=0 (T (sk,sl)∧〈G f 〉l)

[F f ]i [ f ]i∨ [F f ]i+1
∨k

l=0 (T (sk,sl)∧〈F f 〉l)

〈G f 〉i [ f ]i∧〈G f 〉i+1 [ f ]k
〈F f 〉i [ f ]i∨〈F f 〉i+1 [ f ]k
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semantic of LTL on single path is the same as CTL semantic

symbolically implement fixpoint calculation for (A)CTL

fixpoint computation terminates after 2 iterations (not k)

boolean fixpoint equations ⇒ boolean graphs

easy to implement and optimize, fast

generalized to past time [LatvalaBiereHeljankoJunttila VMCAI’05]

minimal counter examples for past time [SchuppanBiere TACAS’05]

incremental (and complete) [LatvalaHeljankoJunttila CAV’05]
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recursive expansion Fp ≡ p∨XFp

p

checking Gp implemented as search for witness for Fp

Kripke structure: single state with self loop in which p does not hold

incorrect translation of Fp:

model constraints︷ ︸︸ ︷
I(s0)∧T (s0,s0) ∧ ([Fp]↔ p(s0)∨ [Fp])︸ ︷︷ ︸

translation

∧
assumption︷︸︸︷

[Fp]︸︷︷︸
x

since it is satisfiable by setting x = 1 though p(s0) = 0

(x fresh boolean variable introduced for [Fp])
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key concept in IC3 [Bradley’11]:

clause c relative inductive w.r.t. F iff c∧F ∧T ⇒ c′ iff c∧F ∧T ∧ c̄′ unsatisfiable

I initial states

G good states

B bad states

F
0

F
1

F
2

GI  G B

s

(1)

(2)

F0 ⊇ F1 ⊇ F2

sets of rel. ind. clauses

(1) s is reachable from F0 then bad is reachable transitively

(2) otherwise exists c⊆ s̄ rel. ind. w.r.t. F0 and can be added to F1 and maybe to F2

Model Checking #342.202 SS 2016 Armin Biere JKU Linz



Extending Sequence of Sets of Relative Inductive Clauses
Version 2016.1

251

as soon the last set is good, i.e. Fk⇒ G increase k

s

GI  G BG

F
3

F
1

F
2

F
0

propagate all relative inductive clauses of last set to new set

if all can been propagated Fk is an inductive invariant stronger than G
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Let F0, . . . ,Fk be a sequence of sets of clauses.

monotonic iff Fi ⊇ Fi+1 for i = 0 . . .k−1

(relative) inductive iff Fi T ⇒ F ′i+1 for i = 0 . . .k−1

initialized iff I ≡ F0

good iff Fi⇒ G for i = 0 . . .k−1 last set might be bad if Fk∧B satisfiable

F is k-adequat iff all states s satisfying F are at least k steps away from B
[McMillan’03]

sequence monotonic and inductive ⇒ Fk− j j-adequat
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CHECK (s, i) { actually should be DFS prioritized on i

while s̄∧Fi−1∧T ∧ s′ satisfiable {
if i = 1 throw SATISFIABLE
choose cube t with t |= s̄∧Fi−1∧T ∧ s′

CHECK (t, i−1) optionally check t at i as well
}
choose clause c ⊆ s̄ with c∧Fi−1∧T ∧ c̄′ unsatisfiable
Fj := Fj ∪ {c} for all j = 1 . . . i and if possible for higher j

}

MAIN () {
F0 = I, F1 =>, k = 1 do not forget to check base cases first
forever {

CHECK (B,k)

k := k+1, Fi := all rel. ind. clauses of Fi−1 w.r.t. Fi−1 for i = 1 . . .k

if Fk ⊆ Fk−1 throw UNSATISFIABLE
}

}
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implemented in IC3 by Aaron Bradley

as single engine model checker extremely successful in HWMCC’10
Hardware Model Checking Competition 2010

based on rather out-dated SAT solver (ZChaff from 2004)

independent implementations such as [EénMishchenkoBrayton IWLS’11]

seem to be faster than BDDs, k-induction, interpolation

might be much easier to lift to SMT-based model checking than interpolation

opportunities for improvement: structural SAT/SMT solving
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