
Advanced Model Checking
#342.202

http://fmv.jku.at/amc

SS 2016

Johannes Kepler University

Linz, Austria

Prof. Dr. Armin Biere
Institute for Formal Models and Verification

http://fmv.jku.at

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

http://fmv.jku.at/mc
http://fmv.jku.at

Motivation intro
Version 2016.1

2

more and more complex systems

Moore’s Law⇒ soon we will have 1030 transistors / processor

multi-million LOC / OS

⇒ exploding testing costs (in general not linear in system size)

increased dependability

everything important depends on computers:

stir by wire, banking, stock market, workflow, . . .

⇒ quality concerns

increased functionality

security, mobility, new business processes, . . .

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Test and Verification intro
Version 2016.1

3

Test

standard definition: dynamic execution / simulation of a system

integration in development process necessary

extreme position: testing should actually “drive” the development process

Verification

standard definition: static checking, symbolic execution

hardware design: verification is the process of testing

⇒ our view: Test = Verification

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Implications intro
Version 2016.1

4

not unusual to have more than 50% of resources allocated to testing

testing and verification are (becoming) the bottleneck of development

quality dilemma (drop quality for more features)

more efficient methods for test and verification needed
⇒ formal verification is the most promising approach

experts in new testing and verification methods are lacking

long term: more formal development process not just formal verification

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Formal Methods intro
Version 2016.1

5

formal = mathematical

mathematical models⇒ precise semantics

emphasizes static / symbolic reasoning about programs
(so standard definition of verification falls into this category)

rather narrow view in digital design: equivalence and model checking

not esoteric: compilation in a broad sense is a formal method
(high-level description is translated into low-level description)

our view: use tools for reasoning (i.e. programs are formal entities)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Formal Methods Classification intro
Version 2016.1

6

Synchronous

Theorem Proving

Model Checking

Z

SAT

Specification
Formal

SDL

Languages

Compiler

Formal
Synthesis

Equivalence
Checking

B−Method

ASM

Formal

Verification

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Formal Specification intro
Version 2016.1

7

abstracts from unnecessary implementation details

high-level mathematical model of the system

very useful for high-level design

catches ambiguous or inconsistent specifications

formal specification per se: no tools for refinement / checking

good example: ASM

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Formal Synthesis intro
Version 2016.1

8

Initial Formal Spec

2nd Refinement

3rd Refinement

1st Refinement

4th Refinement
(last formal step)

C Program

Compiler

Compiler

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Formal Synthesis intro
Version 2016.1

9

integrates verification in the development process

usually pure top-down design and incremental refinement steps

splits large verification tasks (divide et impera) . . .

. . . but forces dramatic change in development process

it works but is costly

each refinement step uses formal verification methods
⇒ more powerfull verification algorithms allow more automation

good example: B-Method

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Layered System Design intro
Version 2016.1

10

Requirements

High−Level Design

Low−Level Design

Implementation

HW SW

Architecture

RTL

Gate

Transitor

Synthesis Verification

1. no implementation without Synthesis
2. Verification is added value (Quality)
3. both processes are incremental
4. both processes can be formal

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Formal Verification intro
Version 2016.1

11

assumptions: specification and system are given

formal verification checks formally that system fulfills specification

least change in development process

full blown verification is really difficult: “post mortem verification”

simplifications: focus on simple partial specifications
(type safety, functional equivalence of two systems, . . .)

methods (implemented in tools):

simple algorithms for deducing properties directly

complex algorithms for hard or even undecidable problems

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Overview intro
Version 2016.1

12

boolean methods:

SAT, BDDs, ATPG, Combinational Equivalence Checking

finite state methods:

Bisimulation and Equivalence Checking of Automata, Model Checking

term based methods:

Term Rewriting, Resolution, Tableaux, Theorem Proving

Abstraction (e.g. SLAM uses BDDs, Model Checking, Theorem Proving)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Focus intro
Version 2016.1

13

how does it work?

(algorithms and data structures)

necessary background for use of formal verification

(and formal methods in general)

capacity and restrictions

first step to become an expert in a fast expanding area

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

SAT Example: Equivalence Checking if-then-else Chains sat
Version 2016.1

14

optimization of if-then-else chains

original C code optimized C code

if(!a && !b) h(); if(a) f();
else if(!a) g(); else if(b) g();
else f(); else h();

⇓ ⇑

if(!a) { if(a) f();
if(!b) h(); ⇒ else {
else g(); if(!b) h();
} else f(); else g(); }

How to check that these two versions are equivalent?

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

SAT Example cont. sat
Version 2016.1

15

1. represent procedures as independent boolean variables

original := optimized :=

if ¬a∧¬b then h if a then f
else if ¬a then g else if b then g
else f else h

2. compile if-then-else chains into boolean formulae

compile(if x then y else z) ≡ (x∧ y) ∨ (¬x∧ z)

3. check equivalence of boolean formulae

compile(original) ⇔ compile(optimized)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Compilation sat
Version 2016.1

16

original ≡ if ¬a∧¬b then h else if ¬a then g else f

≡ (¬a∧¬b)∧h ∨ ¬(¬a∧¬b)∧ if ¬a then g else f

≡ (¬a∧¬b)∧h ∨ ¬(¬a∧¬b)∧ (¬a∧g ∨ a∧ f)

optimized ≡ if a then f else if b then g else h

≡ a∧ f ∨ ¬a∧ if b then g else h

≡ a∧ f ∨ ¬a∧ (b∧g ∨ ¬b∧h)

(¬a∧¬b)∧h ∨ ¬(¬a∧¬b)∧ (¬a∧g ∨ a∧ f) ⇔ a∧ f ∨ ¬a∧ (b∧g ∨ ¬b∧h)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

How to Check (In)Equivalence? sat
Version 2016.1

17

Reformulate it as a satisfiability (SAT) problem:

Is there an assignment to a,b, f ,g,h,
which results in different evaluations of original and optimized?

or equivalently:

Is the boolean formula compile(original) 6↔ compile(optimized) satisfiable?

such an assignment would provide an easy to understand counterexample

Note: by concentrating on counterexamples we moved from Co-NP to NP
(this is just a theoretical note and not really important for applications)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

SAT Example: Circuit Equivalence Checking sat
Version 2016.1

18

c

a

b

c

a

b

b ∨ a∧ c (a∨b) ∧ (b∨ c)

equivalent?

b ∨ a∧ c ⇔ (a∨b) ∧ (b∨ c)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

SAT sat
Version 2016.1

19

SAT (Satisfiability) the classical NP complete Problem:

Given a propositional formula f over n propositional variables V = {x,y, . . .}.

Is there an assignment σ : V →{0,1} with σ(f) = 1 ?

SAT belongs to NP

There is a non-deterministic Touring-machine deciding SAT in polynomial time:

guess the assignment σ (linear in n), calculate σ(f) (linear in | f |)

Note: on a real (deterministic) computer this would still require 2n time

SAT is complete for NP (see complexity / theory class)

Implications for us:
general SAT algorithms are probably exponential in time (unless NP = P)
Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Conjunctive Normal Form sat
Version 2016.1

20

Definition

a formula in Conjunctive Normal Form (CNF) is a conjunction of clauses

C1∧C2∧ . . .∧Cn

each clause C is a disjunction of literals

C = L1∨ . . .∨Lm

and each literal is either a plain variable x or a negated variable x.

Example (a∨b∨ c)∧ (a∨b)∧ (a∨ c)

Note 1: two notions for negation: in x and ¬ as in ¬x for denoting negation.

Note 2: the original SAT problem is actually formulated for CNF

Note 3: SAT solvers mostly also expect CNF as input
Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Negation Normal Form sat
Version 2016.1

21

Assumption: we only have conjunction, disjunction and negation as operators.

a formula is in Negation Normal Form (NNF),
if negations only occur in front of variables

⇒ all internal nodes in the formula tree are either ANDs or ORs

linear algorithms for generating NNF from an arbitrary formula

often NNF generations includes elimination of other non-monotonic operators:

NNF of f ↔ g is NNF of f ∧g ∨ f ∧g

in this case the result can be exponentially larger (see parity example later).

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

NNF Algorithm sat
Version 2016.1

22

Formula

formula2nnf (Formula f, Boole sign)

{

 if (is_variable (f))

 return sign ? new_not_node (f) : f;

 if (op (f) == AND || op (f) == OR)

 {

 l = formula2nnf (left_child (f), sign);

 r = formula2nnf (right_child (f), sign);

 flipped_op = (op (f) == AND) ? OR : AND;

 return new_node (sign ? flipped_op : op (f), l, r);

 }

 else

 {

 assert (op (f) == NOT);

 return formula2nnf (child (f), !sign);

 }

}

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Simple Translation of Formula into CNF sat
Version 2016.1

23

Formula

formula2cnf_aux (Formula f)

{

 if (is_cnf (f))

 return f;

 if (op (f) == AND)

 {

 l = formula2cnf_aux (left_child (f));

 r = formula2cnf_aux (right_child (f));

 return new_node (AND, l, r);

 }

 else

 {

 assert (op (f) == OR);

 l = formula2cnf_aux (left_child (f));

 r = formula2cnf_aux (right_child (f));

 return merge_cnf (l, r);

 }

}

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Merging two CNFs sat
Version 2016.1

24

Formula

formula2cnf (Formula f)

{

 return formula2cnf_aux (formula2nnf (f, 0));

}

Formula

merge_cnf (Formula f, Formula g)

{

 res = new_constant_node (TRUE);

 for (c = first_clause (f); c; c = next_clause (f, c))

 for (d = first_clause (g); d; d = next_clause (g, d))

 res = new_node (AND, res, new_node (OR, c, d));

 return res;

}

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Why are Sharing / Circuits / DAGs important? sat
Version 2016.1

25

DAG may be exponentially more succinct than expanded Tree

Examples: adder circuit, parity, mutual exclusion

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Parity Example sat
Version 2016.1

26

Boole

parity (Boole a, Boole b, Boole c, Boole d, Boole e,

 Boole f, Boole g, Boole h, Boole i, Boole j)

{

 tmp0 = b ? !a : a;

 tmp1 = c ? !tmp0 : tmp0;

 tmp2 = d ? !tmp1 : tmp1;

 tmp3 = e ? !tmp2 : tmp2;

 tmp4 = f ? !tmp3 : tmp3;

 tmp5 = g ? !tmp4 : tmp4;

 tmp6 = h ? !tmp5 : tmp5;

 tmp7 = i ? !tmp6 : tmp6;

 return j ? !tmp7 : tmp7;

}

Eliminiate the tmp. . . variables through substitution.

What is the size of the DAG vs the Tree representation?

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

How to detect Sharing sat
Version 2016.1

27

through caching of results in algorithms operating on formulas
(examples: substitution algorithm, generation of NNF for non-monotonic ops)

when modeling a system: variables are introduced for subformulae
(then these variables are used multiple times in the toplevel formula)

structural hashing: detects structural identical subformulae
(see Signed And Graphs later)

equivalence extraction: e.g. BDD sweeping, Stålmarcks Method
(we will look at both techniques in more detail later)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Example of Tseitin Transformation: Circuit to CNF sat
Version 2016.1

28

CNF

c

b

a

w

v

w

u
o

x

y

o ∧
(x ↔ a∧ c) ∧
(y ↔ b∨ x) ∧
(u ↔ a∨b) ∧
(v ↔ b∨ c) ∧
(w↔ u∧ v) ∧
(o ↔ y⊕w)

o∧ (x→ a)∧ (x→ c)∧ (x← a∧ c)∧ . . .

o∧ (x∨a)∧ (x∨ c)∧ (x∨a∨ c)∧ . . .

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Algorithmic Description of Tseitin Transformation sat
Version 2016.1

29

1. for each non input circuit signal s generate a new variable xs

2. for each gate produce complete input / output constraints as clauses

3. collect all constraints in a big conjunction

the transformation is satisfiability equivalent :
the result is satisfiable iff the original formula is satisfiable

not equivalent in the classical sense to original formula: it has new variables

extract satisfying assignment for original formula, from one of the result
(just project satisfying assignment onto the original variables)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Tseitin Transformation: Input / Output Constraints sat
Version 2016.1

30

Negation: x↔ y ⇔ (x→ y)∧ (y→ x)
⇔ (x∨ y)∧ (y∨ x)

Disjunction: x↔ (y∨ z) ⇔ (y→ x)∧ (z→ x)∧ (x→ (y∨ z))
⇔ (y∨ x)∧ (z∨ x)∧ (x∨ y∨ z)

Conjunction: x↔ (y∧ z) ⇔ (x→ y)∧ (x→ z)∧ ((y∧ z)→ x)
⇔ (x∨ y)∧ (x∨ z)∧ ((y∧ z)∨ x)
⇔ (x∨ y)∧ (x∨ z)∧ (y∨ z∨ x)

Equivalence: x↔ (y↔ z) ⇔ (x→ (y↔ z))∧ ((y↔ z)→ x)
⇔ (x→ ((y→ z)∧ (z→ y))∧ ((y↔ z)→ x)
⇔ (x→ (y→ z))∧ (x→ (z→ y))∧ ((y↔ z)→ x)
⇔ (x∨ y∨ z)∧ (x∨ z∨ y)∧ ((y↔ z)→ x)
⇔ (x∨ y∨ z)∧ (x∨ z∨ y)∧ (((y∧ z)∨ (y∧ z))→ x)
⇔ (x∨ y∨ z)∧ (x∨ z∨ y)∧ ((y∧ z)→ x)∧ ((y∧ z)→ x)
⇔ (x∨ y∨ z)∧ (x∨ z∨ y)∧ (y∨ z∨ x)∧ (y∨ z∨ x)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Optimizations for Tseitin Transformation sat
Version 2016.1

31

goal is smaller CNF (less variables, less clauses)

extract multi argument operands (removes variables for intermediate nodes)

half of AND, OR node constraints can be removed for unnegated nodes

a node occurs negated if it has an ancestor which is a negation

half of the constraints determine parent assignment from child assignment

those are unnecessary if node is not used negated

[PlaistedGreenbaum’86] and then [ChambersManoliosVroon’09]

structural circuit optimizations like in the ABC tool from Berkeley

however might be simulated on CNF level [JärvisaloBiereHeule-TACAS’10]

compact technology mapping based encoding [EénMishchenkoSörensson’07]

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Intermediate Representations sat
Version 2016.1

32

encoding directly into CNF is hard, so we use intermediate levels:

1. application level

2. bit-precise semantics world-level operations: bit-vector theory

3. bit-level representations such as AIGs or vectors of AIGs

4. CNF

encoding application level formulas into word-level: as generating machine code

word-level to bit-level: bit-blasting similar to hardware synthesis

encoding “logical” constraints is another story

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Bit-Blasting of 4-Bit Addition sat
Version 2016.1

33

addition of 4-bit numbers x,y with result s also 4-bit: s = x+ y

[s3,s2,s1,s0]4 = [x3,x2,x1,x0]4+[y3,y2,y1,y0]4

[s3, ·]2 = FullAdder(x3,y3,c2)

[s2,c2]2 = FullAdder(x2,y2,c1)

[s1,c1]2 = FullAdder(x1,y1,c0)

[s0,c0]2 = FullAdder(x0,y0, false)

where

[s , o]2 = FullAdder(x,y, i) with

s = x xor y xor i

o = (x∧ y)∨ (x∧ i)∨ (y∧ i) = ((x+ y+ i)≥ 2)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

And-Inverter-Graphs (AIG) sat
Version 2016.1

34

widely adopted bit-level intermediate representation

see for instance our AIGER format http://fmv.jku.at/aiger

used in Hardware Model Checking Competition (HWMCC)

also used in the structural track in SAT competitions

many companies use similar techniques

basic logical operators: conjunction and negation

DAGs: nodes are conjunctions, negation/sign as edge attribute
bit stuffing: signs are compactly stored as LSB in pointer

automatic sharing of isomorphic graphs, constant time (peep hole) simplifications

or even SAT sweeping, full reduction, etc . . . see ABC system from Berkeley

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

http://fmv.jku.at/aiger

XOR as AIG sat
Version 2016.1

35

yx

negation/sign are edge attributes
not part of node

x xor y ≡ (x∧ y)∨ (x∧ y) ≡ (x∧ y)∧ (x∧ y)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Bit-Stuffing Techniques for AIGs in C sat
Version 2016.1

36

typedef struct AIG AIG;

struct AIG

{

 enum Tag tag; /* AND, VAR */

 void *data[2];

 int mark, level; /* traversal */

 AIG *next; /* hash collision chain */

};

#define sign_aig(aig) (1 & (unsigned) aig)

#define not_aig(aig) ((AIG*)(1 ^ (unsigned) aig))

#define strip_aig(aig) ((AIG*)(~1 & (unsigned) aig))

#define false_aig ((AIG*) 0)

#define true_aig ((AIG*) 1)

assumption for correctness:
sizeof(unsigned) == sizeof(void*)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

2

1[1]

4

2[1]

6

1[2]

8

2[2]

1 0

1[3]

1 2

2[3]

1 4

1[0]

1 6

2[0]1 8

20

22

24

26

28

30

32

34

36

38

4042

44

46 48

50

52

54

56

58

60

62

O0

O1

O2

O3

��FMX�EHHIV

2

1[1]

4

2[1]

6

1[2]

8

2[2]

1 0

1[3]

1 2

2[3]

1 4

1[4]

1 6

2[4]

1 8

1[5]

2 0

2[5]

2 2

1[6]

2 4

2[6]

2 6

1[7]

2 8

2[7]

3 0

1[0]

3 2

2[0]3 4

36

38

40

42

44

46

48

50

52

54

56

58

60

62

64

66

68

70

72

74

76

78

80

82

84

86

88

90

92

94

9698

100

102 104

106

108

110

112

114

116

118

120

122

124

126

128

130

132

134

O0

O1

O2

O3

O4

O5

O6

O7

��FMX�EHHIV

2

2[0]

4

2[1]

6

2[2]

8

1[0]

1 0

2[3]

1 2

1[1]

1 4

1[2]

1 6

1[3]

1 8

1[4]

2 0

1[5]

2 2

1[6]

2 4

1[7]

2 6

1[8]

2 8

1[9]

3 0

1[10]

32

1[11]

34

1[12]

36

1[13]

38

1[14]

40

1[15]

42 44

46

48

50 52

54

56

58

60

62 64

66

68

7072

74

76

78

80

82

84

86 88

90

92

94 96

98

100

102

104

106 108

110

112

114 116

118

120

122

124

126

128

130

132 134

136

138

140 142

144

146

148

150

152 154

156

158

160 162

164

166

168

170

172

174

176 178

180

182

184 186

188

190

192

194

196 198

200

202

204

206

208

210

212

214

216

218 220

222

224

226 228

230

232

234

236

238 240

242

244

246

248

250

252

254

256 258

260

262

264 266

268

270

272

274

276 278

280

282

284

286

288

290

292

294 296

298

300

302

304

306

308 310

312

314

316

318

320

322 324

326

328

330

332

334

336 338

340

342

344

346

348

350 352 354 356358 360362 364

O0 O1 O2 O3O4 O5O6 O7

O8 O9 O10 O11O12 O13O14 O15

bit-vector of length 16 shifted by bit-vector of length 4

2

1[6]

4

2[7]

6

1[7]8

2[6]

1 0

1[5]

1 2

2[5]

1 4

1[4]

1 6

2[4]

1 8

1[3]

2 0

2[3]

2 2

1[2]

2 4

2[2]

2 6

1[1]

2 8

2[1]

3 0

1[0]

3 2

2[0]

3 4

36

38

40 42

44 46

48

50 52

54

56

58

60

62

64

66 68

70

72 74

76 78

80 82

84

86 88

90

92

94

96

98

100

102

104 106

108

110 112

114 116

118 120

122

124 126

128 130

132 134

136

138 140

142

144

146

148

150

152

154

156

158 160

162

164 166

168 170

172 174

176

178 180

182 184

186 188

190

192 194

196 198

200 202

204

206 208

210

212

214

216

218

220

222

224

226

228 230

232

234 236

238 240

242 244

246

248 250

252 254

256 258

260

262 264

266 268

270 272

274

276 278

280 282

284 286

288

290 292

294 296

298

300

302

304

306

308

310 312

314 316

318

320322

324 326

328 330

332

334 336

338340

342344

346

348350

352 354

356 358

360

362 364

366 368

370 372

374

376378

380 382

384386

388

390392

394 396

398400

402

404

406

408

410

412

414

416

418

420

422

424

426

428

O0

O1

O2

O3

O4

O5

O6

O7

Encoding Logical Constraints sat
Version 2016.1

40

Tseitin’s construction suitable for most kinds of “model constraints”

assuming simple operational semantics: encode an interpreter

small domains: one-hot encoding large domains: binary encoding

harder to encode properties or additional constraints

temporal logic / fix-points

environment constraints

example for fix-points / recursive equations: x = (a∨ y), y = (b∨ x)

has unique least fix-point x = y = (a∨b)

and unique largest fix-point x = y = true but unfortunately

only largest fix-point can be (directly) encoded in SAT otherwise need ASP

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Example of Logical Constraints: Cardinality Constraints sat
Version 2016.1

41

given a set of literals {l1, . . . ln}

constraint the number of literals assigned to true

|{l1, . . . , ln}| ≥ k or |{l1, . . . , ln}| ≤ k or |{l1, . . . , ln}|= k

multiple encodings of cardinality constraints

naı̈ve encoding exponential: at-most-two quadratic, at-most-three cubic, etc.

quadratic O(k ·n) encoding goes back to Shannon

linear O(n) parallel counter encoding [Sinz’05]

for an O(n · logn) encoding see Prestwich’s chapter in our Handbook of SAT

generalization Pseudo-Boolean constraints (PB), e.g. 2 ·a+b+ c+d +2 · e ≥ 3
actually used to handle MaxSAT in SAT4J for configuration in Eclipse

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

BDD based Encoding of Cardinality Constraints sat
Version 2016.1

42

2≤ |{l1, . . . , l9}| ≤ 3

l
1

l
2

l
2

l
3

l
3

l
4

l
4

l
5

l
6

l
6

l
5

l
7

l
7

l
8

l
8

l
9

l
9

l
3

l
4

l
5

l
6

l
7

l
8

l
9

l
4

l
5

l
6

l
7

l
8

l
9

1

0

0

0 00 0 0 0

1

“then” edge downward, “else” edge to the right

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Davis & Putnam Procedure (DP) dp
Version 2016.1

43

dates back to the 50ies:

original version is resolution based (successful only in preprocessors)

improved DPLL: case analysis (try x = 0,1 in turn and recurse)

evolved to CDCL (conflict driven clause learning): state-of-the-art

recent (≤ 20 years) optimizations:

backjumping, learning, UIPs, dynamic splitting heuristics, fast data structures
we will have a look at each of them

elimination procedure of original DP is similar to

Gaussian elimination on linear real equalities

Fourier-Motzikin on linear real inequalities

Buchberger’s algorithm on polynomial equations

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Resolution dp
Version 2016.1

44

basis for first (less successful) resolution based DP

can be extended to first order logic

helps to explain learning

Resolution Rule

C∪{v} D∪{¬v}
{v,¬v}∩C = {v,¬v}∩D = /0

C∪D

Read: resolving the clause C∪{v} with the clause D∪{¬v}, both above the line, on the
variable v, results in the clause D∪C below the line.

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Correctness of Resolution Rule dp
Version 2016.1

45

Usage of such rules: if you can derive what is above the line (premise) then you are allowed
to deduce what is below the line (conclusion).

Theorem. (premise satisfiable⇒ conclusion satisfiable)

σ(C∪{v}) = σ(D∪{¬v}) = 1 ⇒ σ(C∪D) = 1

Proof.

let c ∈C, d ∈ D with (σ(c) = 1 or σ(v) = 1) and (σ(d) = 1 or σ(¬v) = 1)

if σ(c) = 1 or σ(d) = 1 conclusion follows immediately

otherwise σ(v) = σ(¬v) = 1 ⇒ contradiction q.e.d.

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Completeness of Resolution Rule dp
Version 2016.1

46

Theorem. (conclusion satisfiable⇒ premise satisfiable)

σ(C∪D) = 1 ⇒ ∃σ′ with σ′(C∪{v}) = σ′(D∪{¬v}) = 1

Proof.

with out loss of generality pick c ∈C with σ(c) = 1

define σ′(x) =

{
0 if x = v

σ(x) else

since v and ¬v do not occur in C, we still have σ′(C) = 1 and thus σ′(C∪{v}) = 1

by definition σ′(¬v) = 1 and thus σ′(D∪{¬v}) = 1 q.e.d.

Example consider incorrect resolution
{v}∪{v} {¬v}

v
violating side condition

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Example for Completeness of Resolution Rule dp
Version 2016.1

47

consider the following resolution
a∨b ¬b∨ c

a∨ c

in logical notation, not set notation for a change

let σ(x) =

 1 if x = a
1 if x = b
0 if x = c

be a model of resolvent (a∨ c) thus σ(a∨ c) = 1

note that σ(¬b∨ c) = 0 and thus σ is not a model of 2nd antecedent (2nd premisse)

however σ satisfies remaining literal a of 1st antecedent in resolvent

thus simply flip value of pivot b (satisfy its occurrence in 2nd antecedent)

we get σ′(x) =

1 if x = a
0 if x = b
0 if x = c

satisfying both antecedents σ′(a∨b) = σ′(¬b∨ c) = 1.

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Resolution Based DP dp
Version 2016.1

48

Idea: use resolution to existentially quantify out variables

1. if empty clause found then terminate with result unsatisfiable

2. find variables which only occur in one phase (only positive or negative)

3. remove all clauses in which these variables occur

4. if no clause left then terminate with result satisfiable

5. choose x as one of the remaining variables with occurrences in both phases

6. add results of all possible resolutions on this variable

7. remove all trivial clauses and all clauses in which x occurs

8. continue with 1.

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Example for Resolution DP dp
Version 2016.1

49

check whether XOR is weaker than OR, i.e. validity of:

a∨b → (a⊕b)

which is equivalent to unsatisfiability of the negation:

(a∨b) ∧ ¬(a⊕b)

since negation of XOR is XNOR (equivalence):

(a∨b) ∧ (a↔ b)

we end up checking the following CNF for satisfiability:

(a∨b) ∧ (¬a∨b)∧ (a∨¬b)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Example for Resolution DP cont. dp
Version 2016.1

50

(a∨b) ∧ (¬a∨b)∧ (a∨¬b)

initially we can skip 1. - 4. of the algorithm and choose x = b in 5.

in 6. we resolve (¬a∨b) with (a∨¬b) and (a∨b) with (a∨¬b) both on b

and add the results (a∨¬a) and (a∨a) :

(a∨b) ∧ (¬a∨b)∧ (a∨¬b)∧ (a∨¬a)∧ (a∨a)

the trivial clause (a∨¬a) and clauses with ocurrences of b are removed:

(a∨a)

in 2. we find a to occur only positive and in 3. the remaining clause is removed

the test in 4. succeeds and the CNF turns out to be satisfiable

(thus the original formula is invalid – not a tautology)
Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Correctness of Resolution Based DP dp
Version 2016.1

51

Proof. in three steps:

(A) show that termination criteria are correct

(B) each transformation preserves satisfiability

(C) each transformation preserves unsatisfiability

Ad (A):

an empty clause is an empty disjunction, which is unsatisfiable

if literals occur only in one phase assign those to 1⇒ all clauses satisfied

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Correctness of Resolution Based DP Part (B) dp
Version 2016.1

52

CNF transformations preserve satisfiability:

removing a clause does not change satisfiability

thus only adding clauses could potentially not preserve satisfiability

the only clauses added are the results of resolution

correctness of resolution rule shows:

if the original CNF is satisfiable, then the added clause are satisfiable

(even with the same satisfying assignment)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Correctness of Resolution Based DP Part (C) dp
Version 2016.1

53

CNF transformations preserve unsatisfiability:

adding a clause does not change unsatisfiability

thus only removing clauses could potentially not preserve unsatisfiability

trivial clauses (v∨¬v∨ . . .) are always valid and can be removed

let f be the CNF after removing all trivial clauses (in step 7.)

let g be the CNF after removing all clauses in which x occurs (after step 7.)

we need to show (f unsat⇒ g unsat), or equivalently (g sat⇒ f sat)

the latter can be proven as the completeness proof for the resolution rule

(see next slide)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Correctness of Resolution Based DP Part (C) cont. dp
Version 2016.1

54

If we interpret ∪ as disjunction and clauses as formulae, then

(C1∨ x)∧ . . .∧ (Ck∨ x) ∧ (D1∨¬x)∧ . . .∧ (Dl ∨¬x)

is, via distributivity law, equivalent to

((C1∧ . . .∧Ck)︸ ︷︷ ︸
C

∨x) ∧ ((D1∧ . . .∧Dl)︸ ︷︷ ︸
D

∨¬x)

and the same proof applies as for the completeness of the resolution rule.

Note: just using the completeness of the resolution rule alone does not work, since those
σ′ derived for multiple resolutions are formally allowed to assign different values for the
resolution variable.

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Problems with Resolution Based DP dp
Version 2016.1

55

if variables have many occurences, then many resolutions are necessary

in the worst x and ¬x occur in half of the clauses . . .

. . . then the number of clauses increases quadratically

clauses become longer and longer

unfortunately in real world examples the CNF explodes

(we might latter see how BDDs can be used to overcome some of these problems)

How to obtain the satisfying assignment efficiently (counter example)?

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Second version of DP dp
Version 2016.1

56

resolution based version often called DP, second version DPLL
(DP after [DavisPutnam60] and DPLL after [DavisLogemannLoveland62])

it eliminates variables through case analysis: time vs space

only unit resolution used (also called boolean constraint propagation)

case analysis is on-the-fly:

cases are not elaborated in a predefined fixed order, but . . .

. . . only remaining crucial cases have to be considered

allows sophisticated optimizations

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Unit-Resolution dp
Version 2016.1

57

a unit clause is a clause with a single literal

in CNF a unit clause forces its literal to be assigned to 1

unit resolution is an application of resolution, where one clause is a unit clause

also called boolean constraint propagation

Unit-Resolution Rule

C∪{¬l} {l}
{l,¬l}∩C = /0

C

here we identify ¬¬v with v for all variables v.

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Unit-Resolution Example dp
Version 2016.1

58

check whether XNOR is weaker than AND, i.e. validity of:

a∧b → (a↔ b)

which is equivalent to unsatisfiability of the CNF (exercise)

a∧b ∧ (a∨b)∧ (¬a∨¬b)

adding clause obtained from unit resolution on a results in

a∧b ∧ (a∨b)∧ (¬a∨¬b)∧ (¬b)

removing clauses containing a or ¬a

b ∧ (¬b)

unit resolution on b results in an empty clause and we conclude unsatisfiability.

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Ad: Unit Resolution dp
Version 2016.1

59

if unit resolution produces a unit, e.g. resolving (a∨¬b) with b produces a, continue
unit resolution with this new unit

often this repeated application of unit resolution is also called unit resolution

unit resolution + removal of subsumed clauses never increases size of CNF

C subsumes D :⇔ C ⊆ D

a unit(-clause) l subsumes all clauses in which l occurs in the same phase

boolean constraint propagation (BCP): given a unit l, remove all clauses in which l
occurs in the same phase, and remove all literals ¬l in clauses, where it occurs in the
opposite phase (the latter is unit resolution)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Basic DPLL Algorithm dp
Version 2016.1

60

1. apply repeated unit resolution and removal of all subsumed clauses (BCP)

2. if empty clause found then return unsatisfiable

3. find variables which only occur in one phase (only positive or negative)

4. remove all clauses in which these variables occur (pure literal rule)

5. if no clause left then return satisfiable

6. choose x as one of the remaining variables with occurrences in both phases

7. recursively call DPLL on current CNF with the unit clause {x} added

8. recursively call DPLL on current CNF with the unit clause {¬x} added

9. if one of the recursive calls returns satisfiable return satisfiable

10. otherwise return unsatisfiable

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

DPLL Example dp
Version 2016.1

61

(¬a∨b)∧ (a∨¬b)∧ (¬a∨¬b)

Skip 1. - 6., and choose x = a. First recursive call:

(¬a∨b)∧ (a∨¬b)∧ (¬a∨¬b)∧a

unit resolution on a and removal of subsumed clauses gives

b∧ (¬b)

BCP gives empty clause, return unsatisfiable. Second recursive call:

(¬a∨b)∧ (a∨¬b)∧ (¬a∨¬b)∧¬a

BCP gives ¬b, only positive recurrence of b left, return satisfiable

(satisfying assignment {a 7→ 0,b 7→ 0})

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Expansion Theorem of Shannon dp
Version 2016.1

62

Theorem.

f (x) ≡ x∧ f (1)∨ x∧ f (0)

Proof.

Let σ be an arbitrary assignment to variables in f including x

case σ(x) = 0:

σ(f (x)) = σ(f (0)) = σ(0∧ f (1)∨1∧ f (0)) = σ(x∧ f (1)∨ x∧ f (0))

case σ(x) = 1:

σ(f (x)) = σ(f (1)) = σ(1∧ f (1)∨0∧ f (0)) = σ(x∧ f (1)∨ x∧ f (0))

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Correctness of Basic DPLL Algorithm dp
Version 2016.1

63

first observe: x∧ f (x) is satisfiable iff x∧ f (1) is satisfiable

similarly, x∧ f (x) is satisfiable iff x∧ f (0) is satisfiable

then use expansion theorem of Shannon:

f (x) satisfiable iff x∧ f (0) or x∧ f (1) satisfiable iff x∧ f (x) or x∧ f (x) satisfiable

rest follows along the lines of the the correctness proof for resolution based DP

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Simple Data Structures in DP Implementation advdp
Version 2016.1

64

1 2

−21

−1 2

−2−1

−1 −23

1

2

3

−3 2

1−3

Variables Clauses

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

BCP Implementation Details advdp
Version 2016.1

65

each variable is marked as unassigned, false, or true ({X ,0,1})

no explicit resolution:

when a literal is assigned visit all clauses where its negation occurs

find those clauses which have all but one literal assigned to false

assign remaining non false literal to true and continue

decision:

heuristically find a variable that is still unassigned

heuristically determine phase for assignment of this variable

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

More Implementation Details advdp
Version 2016.1

66

decision level is the depth of recursive calls (= #nested decisions)

the trail is a stack to remember order in which variables are assigned

for each decision level the old trail height is saved on the control stack

undoing assignments in backtracking:

get old trail height from control stack

unassign all variables up to the old trail height

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

BCP Example advdp
Version 2016.1

67

TrailControldecision level

1

ClausesVariables

2

3

4

5
−4 5

3−2

−1 2

X

X

X

X

X

0 0

A
s
s
ig

n
m

e
n
t

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Example cont. advdp
Version 2016.1

68

TrailControldecision level

1

ClausesVariables

2

3

4

5
−4 5

3−2

−1 2

X

X

X

X

X

1

0

0

Decide

A
s
s
ig

n
m

e
n
t

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Example cont. advdp
Version 2016.1

69

TrailControldecision level

1

ClausesVariables

2

3

4

5
−4 5

3−2

−1 2

X

X

X

X

Assign

1

1

0

0 1

A
s
s
ig

n
m

e
n
t

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Example cont. advdp
Version 2016.1

70

TrailControldecision level

1

ClausesVariables

2

3

4

5
−4 5

3−2

−1 2

X

X

0

BCP

1

1

1

1 0

3

2

1

A
s
s
ig

n
m

e
n
t

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Example cont. advdp
Version 2016.1

71

TrailControldecision level

1

ClausesVariables

2

3

4

5
−4 5

3−2

−1 2

X

X

Decide

1

1

1

0

0

3 3

2

12

A
s
s
ig

n
m

e
n
t

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Example cont. advdp
Version 2016.1

72

TrailControldecision level

1

ClausesVariables

2

3

4

5
−4

3−2

−1 2

X

Assign

1

1

1

1

5

4

3

2

10

0

3

2

A
s
s
ig

n
m

e
n
t

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Example cont. advdp
Version 2016.1

73

TrailControldecision level

1

ClausesVariables

2

3

4

5
−4

3−2

−1 2

1

1

1

1

5

BCP

1

2

3

0

0 1

2

3

4

5

A
s
s
ig

n
m

e
n
t

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Decision Heuristics advdp
Version 2016.1

74

static heuristics:

one linear order determined before solver is started

usually quite fast, since only calculated once

can also use more expensive algorithms

dynamic heuristics

typically calculated from number of occurences of literals
(in unsatisfied clauses)

rather expensive, since it requires traversal of all clauses
(or more expensive updates in BCP)

recently, second order dynamic heuristics (VSIDS in Chaff⇒ see learning)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Cut Width Heuristics advdp
Version 2016.1

75

view CNF as a graph:

clauses as nodes, edges between clauses with same variable

a cut is a set of variables that splits the graph in two parts

recursively find short cuts that cut of parts of the graph

static or dynamically order variables according to the cuts

−2 1 −3 1−1 2 3 −43 1, 2, −1, −2

assume
no occurences of

on the right side

short cut

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Cut Width Algorithm advdp
Version 2016.1

76

int

sat (CNF cnf)

{

 SetOfVariables cut = generate_good_cut (cnf);

 CNF assignment, left, right;

 left = cut_off_left_part (cut, cnf);

 right = cut_off_right_part (cut, cnf);

 forall_assignments (assignment, cut)

 {

 if (sat (apply (assignment, left)) && sat (apply (assignment, right)))

 return 1;

 }

 return 0;

}

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Cut Width Heuristics cont. advdp
Version 2016.1

77

resembles cuts in circuits when CNF is generated with Tseitin transformation

ideally cuts have constant or logarithmic size . . .

for instance in tree like circuits

so the problem is reconvergence:
the same signal / variable is used multiple times

. . . then satisfiability actually becomes polynomial (see exercise)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

CNF in Horn Form advdp
Version 2016.1

78

A clause is called positive if it contains a positive literal.

A clause is called negative if all its literals are negative.

A clause is a Horn clause if contains at most one positive literal.

CNF is in Horn Form iff all clauses are Horn clause (Prolog without negation)

Order assignments point-wise: σ≤ σ′ iff σ(x)≤ σ′(x) for all x ∈V

Horn Form with only positive clauses has minimal satisfying assignment.

Minimal satisfying assignment is obtained by BCP (polynomial).

A Horn Form is satisfiable iff the minimal assignments of its positive part satisfies all its
negative clauses as well.

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

DP and Horn Form advdp
Version 2016.1

79

CNF in Horn Form: use above specialized fast algorithm

non Horn: split on literals which occurs positive in non Horn clauses

actually choose variable which occurs most often in such clauses

this gradually transforms non Horn CNF into Horn Form

main heuristic in SAT solver SATO

Note: In general, BCP in DP prunes search space by avoiding assignments incom-
patible to minimal satisfying assingment for the Horn part of the CNF.

non Horn part of CNF Horn part of CNF

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Other popular Decision Heuristics advdp
Version 2016.1

80

Dynamic Largest Individual Sum (DLIS)

fastest dynamic first order heuristic (e.g. GRASP solver)

choose literal (variable + phase) which occurs most often

ignore satisfied clauses

requires explicit traversal of CNF (or more expensive BCP)

look-forward heuristics (e.g. SATZ or MARCH solver) failed literals, probing

do trial assignments and BCP for all unassigned variables (both phases)

if BCP leads to conflict, force toggled assignment of current trial decision

skip trial assignments implied by previous trial assignments
(removes a factor of |V | from the runtime of one decision search)

decision variable maximizes number of propagated assignments

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Restarts advdp
Version 2016.1

81

distribution of SAT solver run-time shows heavy tail behaviour

for satisfiable instances the solver may get stuck in the unsatisfiable part

even if the search space contains a large satisfiable part

often it is a good strategy to abandon the current search and restart

restart after the number of decisions reached a restart limit

avoid to run into the same dead end

by randomization (either on the decision variable or its phase)

and/or just keep all the learned clauses

for completeness dynamically increase restart limit

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Inner/Outer Restart Intervals advdp
Version 2016.1

82

378 restarts in 104408 conflicts

 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200 250 300 350 400

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Inner/Outer Restart Scheduling advdp
Version 2016.1

83

int inner = 100, outer = 100;

int restarts = 0, conflicts = 0;

for (;;)

{

... // run SAT core loop for ’inner’ conflicts

restarts++;

conflicts += inner;

if (inner >= outer)

{

outer *= 1.1;

inner = 100;

}

else

inner *= 1.1;

}

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Luby’s Restart Intervals advdp
Version 2016.1

84

70 restarts in 104448 conflicts

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Luby Restart Scheduling advdp
Version 2016.1

85

unsigned

luby (unsigned i)

{

unsigned k;

for (k = 1; k < 32; k++)

if (i == (1 << k) - 1)

return 1 << (k - 1);

for (k = 1;; k++)

if ((1 << (k - 1)) <= i && i < (1 << k) - 1)

return luby (i - (1 << (k-1)) + 1);

}

limit = 512 * luby (++restarts);

... // run SAT core loop for ’limit’ conflicts

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Reluctant Doubling Sequence advdp
Version 2016.1

86

[Knuth’12]

(u1,v1) := (1,1)

(un+1,vn+1) := (un &−un = vn ? (un+1,1) : (un,2vn))

(1,1), (2,1), (2,2), (3,1), (4,1), (4,2), (4,4), (5,1), . . .

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Phase Saving and Rapid Restarts advdp
Version 2016.1

87

phase assignment:

assign decision variable to 0 or 1?

the only thing that matters in satisfiable instances

“phase saving” as in RSat:

pick phase of last assignment (if not forced to, do not toggle assignment)

initially use statically computed phase (typically LIS)

rapid restarts: varying restart interval with bursts of restarts

not ony theoretically avoids local minima

works nicely together with phase saving

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Backjumping learn
Version 2016.1

88

x

y

xx

y

If y has never been used to derive a conflict, then skip y case.

Immediately jump back to the x case – assuming x was used.

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Backjumping Example learn
Version 2016.1

89

−3

(1 2)

(1 −2)

(−1 2)

(−1 −2)

(−3 1)

(−3 2)

(−1 −2 3)

Split on −3 first (bad decision).

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Backjumping Example learn
Version 2016.1

90

−3

−1

(1 2)

(1 −2)

(−1 2)

(−1 −2)

(−3 1)

(−3 2)

(−1 −2 3)

Split on −1 and get first conflict.

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Backjumping Example learn
Version 2016.1

91

−3

1−1

(1 2)

(1 −2)

(−1 2)

(−1 −2)

(−3 1)

(−3 2)

(−1 −2 3)

Regularly backtrack and assign 1 to get second conflict.

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Backjumping Example learn
Version 2016.1

92

1−1

−3

1−1

(1 2)

(1 −2)

(−1 2)

(−1 −2)

(−3 1)

(−3 2)

(−1 −2 3)3

Backtrack to root, assign 3 and derive same conflicts.

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Backjumping Example learn
Version 2016.1

93

−3

−1

(1 2)

(1 −2)

(−1 2)

(−1 −2)

(−3 1)

(−3 2)

(−1 −2 3)

Assignment −3 does not contribute to conflict.

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Backjumping Example learn
Version 2016.1

94

(1 2)

(1 −2)

(−1 2)

(−1 −2)

(−3 1)

(−3 2)

(−1 −2 3)−3

−1

1

So just backjump to root before assigning 1.

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Backjumping learn
Version 2016.1

95

backjumping helps to recover from bad decisions

bad decisions are those that do not contribute to conflicts

without backjumping same conflicts are generated in second branch

with backjumping the second branch of bad decisions is just skipped

particularly useful for unsatisfiable instances

in satisfiable instances good decisions will guide us to the solution

with backjumping many bad decisions increase search space roughly quadratically
instead of exponentially with the number of bad decisions

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Implication Graph learn
Version 2016.1

96

the implication graph maps inputs to the result of resolutions

backward from the empty clause all contributing clauses can be found

the variables in the contributing clauses are contributing to the conflict

important optimization, since we only use unit resolution

generate graph only for resolutions that result in unit clauses

the assignment of a variable is result of a decision or a unit resolution

therefore the graph can be represented by saving the reasons for assignments with
each assigned variable

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

General Implication Graph as Hyper-Graph learn
Version 2016.1

97

a

a cb

b

c∨∨

reason implied
assignment

original
assignments

(edges of directed hyper graphs may have multiple source and target nodes)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Optimized Implication Graph for Unit Resolution in DP learn
Version 2016.1

98

a

b

a cb ∨∨

c

c

implied
assignment

assignments
original

reason associated to

graph becomes an ordinary (non hyper) directed graph

simplifies implementation:

store a pointer to the reason clause with each assigned variable

decision variables just have a null pointer as reason

decisions are the roots of the graph

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Learning learn
Version 2016.1

99

can we learn more from a conflict?

backjumping does not fully avoid the occurrence of the same conflict

the same (partial) assignments may generate the same conflict

generate conflict clauses and add them to CNF

the literals contributing to a conflict form a partial assignment

this partial assignment is just a conjunction of literals

its negation is a clause (implied by the original CNF)

adding this clause avoids this partial assignment to happen again

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Conflict Driven Backtracking/Backjumping learn
Version 2016.1

100

[MarquesSilvaSakallah’96: GRASP]

observation: current decision always contributes to conflict

otherwise BCP would have generated conflict one decision level lower

conflict clause has (exactly one) literal assigned on current decision level

instead of backtracking

generate and add conflict clause

undo assignments as long conflict clause is empty or unit clause
(in case conflict clause is the empty clause conclude unsatisfiability)

resulting assignment from unit clause is called conflict driven assignment

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

CNF for following Examples learn
Version 2016.1

101

-3 1 2 0

3 -1 0

3 -2 0

-4 -1 0

-4 -2 0

-3 4 0

3 -4 0

-3 5 6 0

3 -5 0

3 -6 0

4 5 6 0

We use a version of the DIMACS format.

Variables are represented as positive integers.

Integers represent literals.

Subtraction means negation.

A clause is a zero terminated list of integers.

CNF has a good cut made of variables 3 and 4 (cf Exercise 4 + 5).
(but we are going to apply DP with learning to it)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

DP with Learning Run 1 (3 as 1st decision) learn
Version 2016.1

102

= 0l

= 0l

= 1l

= 0l

3

(conflict)

empty clause

(conflict)

empty clause

unit clause −3 is generated as learned clause and we backtrackt to

3

−1

−2

3 4
−3 1 2

(no unit clause originally, so no implications)

since −3 has a real unit clause as reason, an empty conflict clause is learned

−3

−6

−5

−4

4 5 6

decision

unit

1st conflict clause

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

DP with Learning Run 2 Fig. 1 (-1, 3 as decision order) learn
Version 2016.1

103

= 0l

= 1l

= 2l

3

−1

(conflict)

empty clause

= 1l

decision

−1

(no unit clause originally, so no implications)

(no implications on this decision level either)

decision

(using the FIRST clause)

23

4

−4 −2

since FIRST clause was used to derive 2, conflict clause is (1 −3)

backtrack to (smallest level for which conflict clause is a unit clause)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

DP with Learning Run 2 Fig. 2 (-1, 3 as decision order) learn
Version 2016.1

104

= 0l

= 1l

(conflict)

empty clause

= 0l

decision

−1

(no unit clause originally, so no implications)

1st conflict clause

3

−1

−3

−4

−5

−6

4 5 6

backtrack to decision level

learned conflict clause is the unit clause 1

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

DP with Learning Run 2 Fig. 3 (-1, 3 as decision order) learn
Version 2016.1

105

= 0l

(conflict)

empty clause

3

−1

since the learned clause is the empty clause, conclude unsatisfiability

1

unit

2nd conflict clause

−4

−3

−5

−6

4 5 6

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

DP with Learning Run 3 Fig. 1 (-6, 3 as decision order) learn
Version 2016.1

106

= 0l

= 1l

= 2l

(conflict)

empty clause

= 0l

decision

(no unit clause originally, so no implications)

(no implications on this decision level either)

decision

3

3

−6

−6

4

−1

−2
−3 1 2

learn the unit clause −3 and BACKJUMP to decision level

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

DP with Learning Run 3 Fig. 1 (-6, 3 as decision order) learn
Version 2016.1

107

= 0l

(conflict)

empty clause

3

−6

−3

−4

−6

−5 4 5 6

finally the empty clause is derived which proves unsatisfiability

unit

1st conflict clause

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Toplevel Loop in DP with Learning learn
Version 2016.1

108

int

sat (Solver solver)

{

 Clause conflict;

 for (;;)

 {

 if (bcp_queue_is_empty (solver) && !decide (solver))

 return SATISFIABLE;

 conflict = deduce (solver);

 if (conflict && !backtrack (solver, conflict))

 return UNSATISFIABLE;

 }

}

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Backtracking in DP with Learning learn
Version 2016.1

109

int

backtrack (Solver solver, Clause conflict)

{

 Clause learned_clause; Assignment assignment; int new_level;

 if (decision_level(solver) == 0)

 return 0;

 analyze (solver, conflict);

 learned_clause = add (solver);

 assignment = drive (solver, learned_clause);

 enqueue_bcp_queue (solver, assignment);

 new_level = jump (solver, learned_clause);

 undo (solver, new_level);

 return 1;

}

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Learning as Resolution learn
Version 2016.1

110

conflict clause: obtained by backward resolving empty clause with reasons

start at clause which has all its literals assigned to false

resolve one of the false literals with its reason

invariant: result still has all its literals assigned to false

continue until user defined size is reached

gives a nice correspondence between resolution and learning in DP

allows to generate a resolution proof from a DP run

implemented in RELSAT solver [BayardoSchrag’97]

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Conflict Clauses as Cuts in the Implication Graph learn
Version 2016.1

111

decision conflict

−2nlevel

level

level

n

n

−1

a simple cut always exists: set of roots (decisions) contributing to the conflict

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Unique Implication Points (UIP) learn
Version 2016.1

112

d = 1 @ 1 e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f g = 1 @ 2 i = 1 @ 2

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4 s = 1 @ 4

= 1 @ 4x

top−level

decision

decision

decision

unit unit

= 1 @ 4

= 1 @ 4y

z conflictκ

h = 1 @ 2

t = 1 @ 4decision

UIP = articulation point in graph decomposition into biconnected components
(simply a node which, if removed, would disconnect two parts of the graph)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Detection of UIPs learn
Version 2016.1

113

can be found by graph traversal in the order of made assignments

trail respects this order

traverse reasons of variables on trail starting with conflict

count “open paths”
(initially size of clause with only false literals)

if all paths converged at one node, then UIP is found

decision of current decision level is a UIP and thus a sentinel

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Further Options in Using UIPs learn
Version 2016.1

114

assume a non decision UIP is found

this UIP is part of a potential cut

graph traversal may stop (everything behind the UIP is ignored)

negation of the UIP literal constitutes the conflict driven assignment

may start new clause generation (UIP replaces conflict)

each conflict may generate multiple learned clauses

however, using only the first UIP encountered seems to work best

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Backjumping and UIPs learn
Version 2016.1

115

decision conflict

−2

UIP

nlevel

level

level

n

n

−1

1st UIP learned clause increases chance of backjumping
(“pulls in” as few decision levels as possible)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

More Heuristics for Conflict Clauses Generation learn
Version 2016.1

116

intuitively it is important to localize the search (cf cutwidth heuristics)

cuts for learned clauses may only include UIPs of current decision level

on lower decision levels an arbitrary cut can be chosen

multiple alternatives

include all the roots contributing to the conflict

find minimal cut (heuristically)

cut off at first literal of lower decision level (works best)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Implication Graph learn
Version 2016.1

117

d = 1 @ 1 e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f g = 1 @ 2 h = 1 @ 2 i = 1 @ 2

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4 s = 1 @ 4 t = 1 @ 4 y = 1 @ 4

= 1 @ 4x z = 1 @ 4 κ

top−level

decision

decision

decision

unit unit

conflict

decision

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Antecedents / Reasons learn
Version 2016.1

118

e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f h = 1 @ 2 i = 1 @ 2

= 1 @ 1c

r = 1 @ 4 y = 1 @ 4

= 1 @ 4x z = 1 @ 4 κ

top−level

decision

decision

decision

unit unit

conflict

decision

d

g

s t

= 1 @ 2

= 1 @ 1

= 1 @ 4= 1 @ 4

k = 1 @ 3 = 1 @ 3l

d∧g∧ s → t ≡ (d∨g∨ s∨ t)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Conflicting Clauses learn
Version 2016.1

119

d = 1 @ 1 e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f g = 1 @ 2 i = 1 @ 2

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4 s = 1 @ 4

= 1 @ 4x

top−level

decision

decision

decision

unit unit

= 1 @ 4

= 1 @ 4y

z conflictκ

h = 1 @ 2

t = 1 @ 4decision

¬(y∧ z) ≡ (y∨ z)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Resolving Antecedents 1st Time learn
Version 2016.1

120

d = 1 @ 1 e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f g = 1 @ 2

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4 s = 1 @ 4

= 1 @ 4x

top−level

decision

decision

decision

unit unit

= 1 @ 4

= 1 @ 4y

z conflictκ

decision

h i

t

= 1 @ 2 = 1 @ 2

= 1 @ 4

(h∨ i∨ t ∨ y) (y∨ z)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Resolving Antecedents 1st Time learn
Version 2016.1

121

d = 1 @ 1 e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f g = 1 @ 2

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4 s = 1 @ 4

= 1 @ 4x

top−level

decision

decision

decision

unit unit

= 1 @ 4

= 1 @ 4y

z conflictκ

decision

h i

t

= 1 @ 2 = 1 @ 2

= 1 @ 4

(h∨ i∨ t ∨ y) (y∨ z)

(h∨ i∨ t ∨ z)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Resolvents = Cuts = Potential Learned Clauses learn
Version 2016.1

122

d = 1 @ 1 e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f g = 1 @ 2

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4 s = 1 @ 4

= 1 @ 4x

d = 1 @ 1 e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f g = 1 @ 2

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4 s = 1 @ 4

= 1 @ 4x

top−level

decision

decision

decision

unit unit

= 1 @ 4

= 1 @ 4y

z conflictκ

decision

h i

t

= 1 @ 2 = 1 @ 2

= 1 @ 4

top−level

decision

decision

decision

unit unit

= 1 @ 4

= 1 @ 4y

z conflictκ

decision

h i

t

= 1 @ 2 = 1 @ 2

= 1 @ 4

(h∨ i∨ t ∨ y) (y∨ z)

(h∨ i∨ t ∨ z)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Potential Learned Clause After 1 Resolution learn
Version 2016.1

123

d = 1 @ 1 e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f g = 1 @ 2

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

= 1 @ 4x

top−level

decision

decision

decision

unit unit

z

decision

h i

t

= 1 @ 2 = 1 @ 2

= 1 @ 4s = 1 @ 4 = 1 @ 4

= 1 @ 4 κ conflict

y

(h∨ i∨ t ∨ z)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Resolving Antecedents 2nd Time learn
Version 2016.1

124

e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

= 1 @ 4x

top−level

decision

decision

decision

unit unit

z

decision

h i

t

= 1 @ 2 = 1 @ 2

= 1 @ 4 = 1 @ 4

= 1 @ 4 κ conflict

ys

g

d = 1 @ 1

= 1 @ 2

= 1 @ 4

(d∨g∨ s∨ t) (h∨ i∨ t ∨ z)

(d∨g∨ s∨h∨ i∨ z)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Resolving Antecedents 3rd Time learn
Version 2016.1

125

e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit unit

z

decision

h i= 1 @ 2 = 1 @ 2

= 1 @ 4

= 1 @ 4 κ conflict

y= 1 @ 4t= 1 @ 4

= 1 @ 2

= 1 @ 1d

g

s

= 1 @ 4x

(x∨ z) (d∨g∨ s∨h∨ i∨ z)

(x∨d∨g∨ s∨h∨ i)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Resolving Antecedents 4th Time learn
Version 2016.1

126

e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit unit

decision

h i= 1 @ 2 = 1 @ 2

= 1 @ 4

κ conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

x = 1 @ 4

= 1 @ 4

= 1 @ 4

t

z

(s∨ x) (x∨d∨g∨ s∨h∨ i)

(d∨g∨ s∨h∨ i)
self subsuming resolution

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

1st UIP Clause after 4 Resolutions learn
Version 2016.1

127

e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit unit

decision

h i= 1 @ 2 = 1 @ 2

= 1 @ 4

κ conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

1st UIP

backjump level

(d∨g∨ s∨h∨ i)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Resolving Antecedents 5th Time learn
Version 2016.1

128

e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

= 1 @ 1c

k = 1 @ 3

top−level

decision

decision

decision

unit unit

decision

h i= 1 @ 2 = 1 @ 2

= 1 @ 4

κ conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

l = 1 @ 3

= 1 @ 4r

(l∨ r∨ s) (d∨g∨ s∨h∨ i)

(l∨ r∨d∨g∨h∨ i)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Decision Learned Clause learn
Version 2016.1

129

e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

= 1 @ 1c

top−level

decision

decision

decision

unit unit

decision

h i= 1 @ 2 = 1 @ 2

= 1 @ 4

κ conflict

y

g

d

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

r = 1 @ 4 = 1 @ 4s

l = 1 @ 3= 1 @ 3k
backtrack

level

last UIP

(d∨g∨ l∨ r∨h∨ i)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

1st UIP Clause after 4 Resolutions learn
Version 2016.1

130

e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit unit

decision

h i= 1 @ 2 = 1 @ 2

= 1 @ 4

κ conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

(d∨g∨ s∨h∨ i)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Locally Minimizing 1st UIP Clause learn
Version 2016.1

131

e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit unit

decision

i = 1 @ 2

= 1 @ 4

κ conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

h = 1 @ 2

(h∨ i) (d∨g∨ s∨h∨ i)

(d∨g∨ s∨h)
self subsuming resolution

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Locally Minimized Learned Clause learn
Version 2016.1

132

e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit unit

decision = 1 @ 4

κ conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

= 1 @ 2i= 1 @ 2h

(d∨g∨ s∨h)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Local Minimization Algorithm learn
Version 2016.1

133

Two step algorithm:

1. mark all variables in 1st UIP clause

2. remove literals with all antecedent literals also marked

Correctness:

removal of literals in step 2 are self subsuming resolution steps.

implication graph is acyclic.

Confluence: produces a unique result.

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Minimizing Locally Minimized Learned Clause Further? learn
Version 2016.1

134

e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit unit

decision = 1 @ 4

κ conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

= 1 @ 2i

Remove ?

h = 1 @ 2

(d∨g∨ s∨6 h)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Recursively Minimizing Learned Clause learn
Version 2016.1

135

a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit

decision = 1 @ 4

κ conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

= 1 @ 2i= 1 @ 2h

unit b

e

= 1 @ 0

= 1 @ 1

(b)
(d∨b∨ e)

(e∨g∨h) (d∨g∨ s∨h)
(e∨d∨g∨ s)

(b∨d∨g∨ s)

(d∨g∨ s)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Recursively Minimized Learned Clause learn
Version 2016.1

136

a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit

decision = 1 @ 4

κ conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

= 1 @ 2i

unit

= 1 @ 2

= 1 @ 1

= 1 @ 0

h

e

b

(d∨g∨ s)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Recursive Minimization Algorithm learn
Version 2016.1

137

[MiniSAT 1.13]

Four step algorithm:

1. mark all variables in 1st UIP clause

2. for each candidate literal: search implication graph

3. start at antecedents of candidate literals

4. if search always terminates at marked literals remove candidate

Correctness and Confluence as in local version!!!

Optimization: terminate early with failure if new decision level is “pulled in”

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Experiments on 100 SAT’08 Race Instances learn
Version 2016.1

138

solved time space out of deleted
instances in hours in GB memory literals

MINISAT recur 788 9% 170 11% 198 49% 11 89% 33%
with local 774 7% 177 8% 298 24% 72 30% 16%

preprocessing none 726 192 392 103
MINISAT recur 705 13% 222 8% 232 59% 11 94% 37%
without local 642 3% 237 2% 429 24% 145 26% 15%

preprocessing none 623 242 565 196
PICOSAT recur 767 10% 182 13% 144 45% 10 60% 31%

with local 745 6% 190 9% 188 29% 10 60% 15%
preprocessing none 700 209 263 25

PICOSAT recur 690 6% 221 8% 105 63% 10 68% 33%
without local 679 5% 230 5% 194 31% 10 68% 14%

preprocessing none 649 241 281 31
recur 2950 9% 795 10% 679 55% 42 88% 34%

altogether local 2840 5% 834 6% 1109 26% 237 33% 15%
none 2698 884 1501 355

10 runs for each configuration with 10 seeds for random number generator

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Large Variance for Different Seeds learn
Version 2016.1

139

MINISAT
with preprocessing

seed solved time space mo del

1. recur 8 82 16 19 1 33%
2. recur 6 81 17 20 1 33%
3. local 0 81 16 29 7 16%
4. local 7 80 17 29 8 15%
5. recur 4 80 17 20 1 33%
6. recur 1 79 17 20 1 33%
7. recur 9 79 17 20 1 34%
8. local 5 78 18 29 7 16%
9. local 1 78 17 29 6 16%

10. recur 0 78 17 20 1 34%
11. recur 5 78 17 19 1 33%
12. local 3 77 18 31 7 16%
13. local 8 77 18 30 8 16%
14. recur 7 77 17 20 1 34%
15. recur 3 77 17 20 1 34%
16. recur 2 77 17 20 2 33%
17. none 7 76 19 39 9 0%

...
Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Second Order Dynamic Decision Heuristics: VSIDS learn
Version 2016.1

140

[MoskewiczMadiganZhaoZhangMalik-DAC’01: CHAFF]

“second order” because it involves statistics about the search

Variable State Independent Decaying Sum (VSIDS) decision heuristic
(implemented in Chaff, Limmat, MiniSAT, PicoSAT, and many more)

VSIDS just counts the occurrences of literals in conflict clauses

literal/variable with maximal count (score) is chosen
(from a priority queue ordered by score)

score is multiple by a factor f < 1 after a certain number of conflicts occurred
(this is the “decaying” part and also called rescoring)

emphasizes (negation of) literals contributing recently to conflicts (localization)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Normalized VSIDS: NVSIDS learn
Version 2016.1

141

[Biere-SAT’08]

VSIDS score can be normalized to the interval [0,1] as follows:

pick a decay factor f per conflict: typically f = 0.95

each variable is punished by this decay factor at every conflict

if a variable is involved in conflict, add 1− f to score

s, f ≤ 1, then s′ ≤ s
decay in any case︷︸︸︷

· f +1− f︸ ︷︷ ︸
increment if involved

≤ f +1− f = 1

with s old score before conflict, s′ new score after conflict

recomputing score of all variables at each conflict is costly

linear in the number of variables, e.g. millions

particularly, because number of involved variabels << number of variables

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Exponential VSIDS: EVSIDS learn
Version 2016.1

142

Chaff: precision of score traded for faster decay

increment score of involved variables by 1

decay score of all variables every 256 conflicts by halfing the score

sort priority queue after decay and not at every conflict

MiniSAT uses Exponential VSIDS

also just update score of involved variables

dynamically adjust increment: δ′ = δ · 1f (typically increment δ by 5%)

use floating point representation of score

“rescore” to avoid overflow in regular intervals

EVSIDS linearly related to NVSIDS

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Relating EVSIDS and NVSIDS learn
Version 2016.1

143

consider again only one variable with score sequence sn resp. Sn

δk =

{
1 if involved in k-th conflict

0 otherwise

ik = (1− f) ·δk

sn = (. . .(i1 · f + i2) · f + i3) · f · · ·) · f + in =
n

∑
k=1

ik · f n−k = (1− f) ·
n

∑
k=1

δk · f n−k (NVSIDS)

Sn =
f−n

(1− f)
· sn =

f−n

(1− f)
· (1− f) ·

n

∑
k=1

δk · f n−k =
n

∑
k=1

δk · f−k (EVSIDS)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

BERKMIN’s Dynamic Second Order Heuristics learn
Version 2016.1

144

[GoldbergNovikov-DATE’02]

observation:

recently added conflict clauses contain all the good variables of VSIDS

the order of those clauses is not used in VSIDS

basic idea:

simply try to satisfy recently learned clauses first

use VSIDS to chose the decision variable for one clause

if all learned clauses are satisfied use other heuristics

intuitively obtains another order of localization (no proofs yet)

results are mixed (by some authors considered to be more robust than just VSIDS)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Other Variable Scoring Variants learn
Version 2016.1

145

variable move to front strategy (VMTF)

Siege SAT Solver [Ryan’04]

easy and cheap to implement with doubly linked list

need pointer to last picked variable in queue

reset during back-tracking

rather aggressive

clause move to front strategy (CMTF)

HaifaSAT [GershanStrichman’08] variant keeps clauses in a queue

queue can also be used to find less important clauses to throw away

refined version in PrecoSAT [Biere’09] (multiple queues per glucose level)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

How to Compute the Score? learn
Version 2016.1

146

SAT solver picks unassigned variable with largest score as next decision

consider only change of the score si of one variable v during i-th conflict

let βi = 1 if v is bumped in the i-th conflict otherwise 0

some possible variable score update functions:

static si+1 = si initialize score statically and do not change it

inc si+1 = si+βi this is in essence DLIS from Grasp

vmtf si+1 = i

sum si+1 = si+ i ·βi emphasis on recent conflicts unpublished

vsids si+1 = d · si+βi decay d ∈ [0,1) e.g. d = 0.95

evsids si+1 = si+gi ·βi, gi+1 = e ·gi factor e ∈ [1,2) e.g. e = 1.05

avg si+1 = si+βi · (i− si)/2 another filter function unpublished

last four share the idea of “low-pass filtering” of the involvement of variables

for this interpretation see our SAT’08 paper and the video

important practical issue: number of bumped variables is usually small

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 20 40 60 80 100 120 140 160

R
u
n
-T

im
e
 D

is
tr

ib
u
ti
o
n
 (

T
im

e
 L

im
it
 1

0
0
0
 s

e
c
o
n
d
s
)

SAT Competition 2013 Application Track Benchmarks Solved by Lingeling

static
inc

sum
vmtf

vsids256
evsids

avg
sc13

Reduction Strategies learn
Version 2016.1

148

should not keep all learned clauses forever

some of them become useless

for instance subsumed or satisfied under learned units

were but are not anymore relevant to current search focus

memory consumption / BCP speed

throw unimportant learned clauses away (reduce)

in regular intervals (controlled by geometric, Luby, arithmetic scheme)

size heuristics: discard long clauses

least recently used (LRU): as in HW cache (see also CMTF)

clause scores with bumping scheme as for VSDIS (BerkMin)

glucose level: number decision levels in learned clause
called also LBD in original paper [AudemardLaurentSimon’09]

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Classical Other Types of Learning / Preprocessing / Inprocessing learn
Version 2016.1

149

similar to look-ahead heuristics: polynomially bounded search

may be recursively applied (however, is often too expensive)

Stålmarck’s Method

works on triplets (intermediate form of the Tseitin transformation):

x = (a∧b), y = (c∨d), z = (e⊕ f) etc.

generalization of BCP to (in)equalities between variables

test rule splits on the two values of a variable

Recursive Learning (Kunz & Pradhan)

(originally) works on circuit structure (derives implications)

splits on different ways to justify a certain variable value

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Stålmarck’s Method learn
Version 2016.1

150

1. BCP over (in)equalities: x = y z = (x⊕ y)
z = 0

x = 0 z = (x∨ y)
z = y

etc.

2. structural rules: x = (a∨b) y = (a∨b)
x = y

etc.

3. test rule:

{x = 0}∪E
⇓

E0∪E

{x = 1}∪E
⇓

E1∪E
(E0∩E1)∪E

Assume x = 0, BCP and derive (in)equalities E0, then assume x = 1, BCP and derive
(in)equalities E1. The intersection of E0 and E1 contains the (in)equalities valid in any
case.

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Stålmarck’s Method Recursively learn
Version 2016.1

151

x = 0

⇓

x = 1

⇓

y = 0 y = 1 y = 0 y = 1

E00 E01 E10 E11

E0 E1

⇓⇓⇓⇓

E

(we do not show the (in)equalities that do not change)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Stålmarck’s Method Summary learn
Version 2016.1

152

recursive application

depth of recursion bounded by number of variables

complete procedures (determines satisfiability or unsatisfiability)

for a fixed (constant) recursion depth k polynomial!

k-saturation:

apply split rule on recursively up to depth k on all variables

0-saturation: apply all rules except test rule (just BCP: linear)

1-saturation: apply test rule (not recursively) for all variables
(until no new (in)equalities can be derived)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Recursive Learning learn
Version 2016.1

153

circuits
0

0
output 0 implies middle input 0 indirectly

CNF

for each clause c in the CNF

for each literal l in the clause c

· assume l and propagate

· collect set of all implied literals (direct/indirect “implications” of l)

intersect these sets of implied literals over all l in c

literals in the intersection are implied without any assumption

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Variable Elimination learn
Version 2016.1

154

[DavisPutnam60][Biere SAT’04] [SubbarayanPradhan SAT’04] [EénBiere SAT’05]

use DP to existentially quantify out variables as in [DavisPutnam60]

only remove a variable if this does not add (too many) clauses

do not count tautological resolvents

detect units on-the-fly

schedule removal attempts with a priority queue [Biere SAT’04] [EénBiere SAT’05]

variables ordered by the number of occurrences

strenthen and remove subsumed clauses (on-the-fly)
(SATeLite [EénBiere SAT’05] and Quantor [Biere SAT’04])

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Fast (Self) Subsumption learn
Version 2016.1

155

for each (new or strengthened) clause

traverse list of clauses of the least occuring literal in the clause

check whether traversed clauses are subsumed or

strengthen traversed clauses by self-subsumption [EénBiere SAT’05]

use Bloom Filters (as in “bit-state hashing”), aka signatures

checking new clauses against existing clauses: backward (self) subsumption

new clause (self) subsumes existing clause

new clause smaller or equal in size

check clause being subsumed by existing clauses forward (self) subsumption

can be made more efficient by one-watcher scheme [Zhang-SAT’05]

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Variable Instantiation learn
Version 2016.1

156

[AnderssonBjesseCookHanna DAC’02] also in Oepir SAT solver, this is our reformulation

for all iterals l

for all clauses c in which l occurs (with this particular phase)

assume the negation of all the other literals in c, assume l

if BCP does not lead to a conflict continue with next literal in outer loop

if all clauses produced a conflict permanently assign ¬l

Correctness: Let c = l∨d, assume ¬d∧ l.

If this leads to a conflict d∨¬l could be learned (but is not added to the CNF).

Self subsuming resolution with c results in d and c is removed.

If all such cases lead to a conflict, ¬l becomes a pure literal.
Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Autarkies learn
Version 2016.1

157

Generalization of pure literals.

Given a partial assignment σ.

A clause of a CNF is “touched” by σ if it contains a literal assigned by σ.

A clause of a CNF is “satisfied” by σ if it contains a literal assigned to true by σ.

If all touched clauses are satisfied then σ is an “autarky”.

All clauses touched by an autarky can be removed.

Example: (−1 2)(−1 3)(1 −2 −3)(2 5) · · · (more clauses without 1 and 3).

Then σ = {−1,−3} is an autarky.

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Blocked Clauses learn
Version 2016.1

158

[Kullman’99]

fix a CNF F

blocked clause C ∈ F all clauses in F with l̄

(l̄∨ ā∨ c)

(a∨b∨ l)

(l̄∨ b̄∨d)

since all resolvents of C on l are tautological C can be removed

Proof

assignment σ satisfying F\C but not C

can be extended to a satisfying assignment of F by flipping value of l
Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Blocked Clauses and Encoding / Preprocessing Techniques learn
Version 2016.1

159

[JärvisaloBiereHeule-TACAS’10]

COI Cone-of-Influence reduction

MIR Monontone-Input-Reduction

NSI Non-Shared Inputs reduction

PG Plaisted-Greenbaum polarity based encoding

TST standard Tseitin encoding

VE Variable-Elimination as in DP / Quantor / SATeLite

BCE Blocked-Clause-Elimination

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Plaisted−Greenbaum encoding

C
ir
c
u
it
−

le
v
e
l
s
im

p
lif

ic
a
ti
o
n

Tseitin encoding

C
N

F
−

le
v
e
l
s
im

p
lif

ic
a
ti
o
n [BCE+VE](PG)

VE(PG) BCE(PG)

PL(PG)

PG(MIR)PG(COI)

PG

PG(NSI) COI MIR NSI

VE

BCE+VE

BCE

PL

TST

Inprocessing: Interleaving Preprocessing and Search learn
Version 2016.1

161

PrecoSAT [Biere’09], Lingeling [Biere’10], also in CryptoMiniSAT (Mate Soos)

preprocessing can be extremely beneficial

most SAT competition solvers use variable elimination (VE)
[EénBiere SAT’05]

equivalence / XOR reasoning

probing / failed literal preprocessing / hyper binary resolution

however, even though polynomial, can not be run until completion

simple idea to benefit from full preprocessing without penalty

“preempt” preprocessors after some time

resume preprocessing between restarts

limit preprocessing time in relation to search time

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Benefits of Inprocessing learn
Version 2016.1

162

special case incremental preprocessing:

preprocessing during incremental SAT solving

allows to use costly preprocessors

without increasing run-time “much” in the worst-case

still useful for benchmarks where these costly techniques help

good examples: probing and distillation even VE can be costly

additional benefit:

makes units / equivalences learned in search available to preprocessing

particularly interesting if preprocessing simulates encoding optimizations

danger of hiding “bad” implementation though . . .

. . . and hard(er) to debug and get right [JävisaloHeuleBiere’12]

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

ZChaff Occurrence Stacks watch
Version 2016.1

163

start

top

end

−2

start

top

end

2

−2 3 −5

−87

−8

3

−2

−21

1

1

start

top

end

start

top

end

1

−3

Literals

ClausesStack

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Average Number Clauses Visited Per Propagation watch
Version 2016.1

164

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60 70 80

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Average Learned Clause Length watch
Version 2016.1

165

 0

 100

 200

 300

 400

 500

 600

 0 10 20 30 40 50 60 70 80

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Percentage Visited Clauses With Other Watched Literal True watch
Version 2016.1

166

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 0 10 20 30 40 50 60 70 80

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Limmat / FunEx Occurrence Stacks watch
Version 2016.1

167

start

top

end

−2

−2 3 −5

−87−21

Watcher of B

A

B

Watcher of A

−8

3

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

CompSAT / MiniSAT Occurrence Stacks watch
Version 2016.1

168

start

top

end

−2

−2 3 −5

7

−8

3

−2

−2

1

1

−8 1

invariant: first two literals are watched

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Average Number Literals Traversed Per Visited Clause watch
Version 2016.1

169

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 0 10 20 30 40 50 60 70 80

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

MChaff / PicoSAT Occurrence Lists watch
Version 2016.1

170

−21

−2 3 −5

7−2

head

−8 1

−2

1

invariant: first two literals are watched

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Occurrence Stacks for Binary Clauses watch
Version 2016.1

171

start

top

end

1

−2
−3

−2 1

−3 −2

Additional Binary Clause Watcher Stack

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Caching Potential Satisfied Literals (Blocking Literals) watch
Version 2016.1

172

start

top

end

1

−7 2 −7 −1−3

2 3−5

3

watch 2

watch −7

observation: often the other watched literal satisfies the clause

so cache this literals in watch list to avoid pointer dereference

for binary clause no need to store clause at all

can easily be adjusted for ternary clauses (with full occurrence lists)

LINGELING uses more compact pointer-less variant

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Model Checking mc
Version 2016.1

173

[ClarkeEmerson’82] [QuielleSifakis’82] Turing Award 2007

check algorithmically temporal / sequential properties

systems are originally finite state

simple model: finite state automaton

comparison of automata can be seen as model checking

check that the output streams of two finite state systems “match”

process algebra: simulation and bisimulation checking

temporal logics as specification mechanism

safety, liveness and more general temporal operators, fairness

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Model Checking for Infinite Systems mc
Version 2016.1

174

fixpoint algorithms with symbolic representations:

timed automata (clocks)

hybrid automata (differential equations)

termination guaranteed if finite quotient structure exists

simply run model checker for some time, e.g. Java Pathfinder

run time verification

1. example: add checker synthesized from temporal spec

2. example: run all schedules for one test case

check programs (incl. loops and recursion) over finite domains, e.g. SLAM

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Traffic Light Controller (TLC) mc
Version 2016.1

175

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Traffic Light Controller (TLC) mc
Version 2016.1

176

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Traffic Light Controller (TLC) mc
Version 2016.1

177

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Traffic Light Controller (TLC) mc
Version 2016.1

178

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Traffic Light Controller (TLC) mc
Version 2016.1

179

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Traffic Light Controller (TLC) mc
Version 2016.1

180

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Traffic Light Controller (TLC) mc
Version 2016.1

181

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Traffic Light Controller (TLC) mc
Version 2016.1

182

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Traffic Light Controller (TLC) mc
Version 2016.1

183

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Safety mc
Version 2016.1

184

the two traffic lights should never show a green light at the same time

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

State Space mc
Version 2016.1

185

state space is the set of assignments to variables of the system

state space is finite if the range of variables is finite

this notion works for inifinite state spaces as well

TLC example:

single assignment σ:{southnorth,eastwest}→ {green,yellow,red}

set of assignments is isomorphic to {green,yellow,red}2

eg state space is isomorphic to the crossproduct of variable ranges

not all states are reachable: (green,green)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Safety mc
Version 2016.1

186

safety properties specify invariants of the system

simple generic algorithm for checking safety properties:

1. iteratively generate all reachable states

2. check for violation of invariant for newly reached states

3. terminate if all newly reached states can be found

compare with assertions

used in run time checking: assert in C and VHDL

contract checking: require, ensure, etc. in Eiffel

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Unsafe TLC in SMV mc
Version 2016.1

187

MODULE trafficlight (enable)

VAR

 light : { green, yellow, red };

 back : boolean;

ASSIGN

 init (light) := red;

 next (light) :=

 case

 light = red & !enable : red;

 light = red & enable : yellow;

 light = yellow & back : red;

 light = yellow & !back : green;

 TRUE : yellow;

 esac;

 next (back) :=

 case

 light = red & enable : FALSE;

 light = green : TRUE;

 TRUE : back;

 esac;

MODULE main

VAR

 southnorth : trafficlight (TRUE);

 eastwest : trafficlight (TRUE);

SPEC

 AG !(southnorth.light = green & eastwest.light = green)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

SMV mc
Version 2016.1

188

symbolic model checker implemented by Ken McMillan at CMU (early 90’ies)

input language: finite models + temporal specification

hierarchical description, similar to hardward description language (HDL)

integer and enumeration types, arithmetic operations

heavily relies on the data structure Binary Decision Diagrams (BDDs)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Reachable States of One Traffic Light mc
Version 2016.1

189

0

1
red

1

1
red

1

0
red

1

0
yellow

0

0
red

1 0

1
yellowyellow

1

0

0
yellow

1

0

0

0
green green

states out

12 reachable

light
enable

back

of 12 states

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Reachable States of Unsafe TLC mc
Version 2016.1

190

1

0
yellow

1

0
yellow

1

0
green

1
yellow
1

1

0
green

1
yellow
1

1

0
red

1

0
red

1

1
red

1

1
red

1

0
red

1

1
red

1
red
1

1
red
0

unfortunately
buggy state
is among them

7 reachable states out
of 144 states
(or 72 if only one ’enable’)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Safe TLC in SMV mc
Version 2016.1

191

MODULE main

VAR

 turn : { ew, sn };

 southnorth : trafficlight (enablesouthnorth);

 eastwest : trafficlight (enableeastwest);

DEFINE

 enableeastwest := southnorth.light = red & turn = ew;

 enablesouthnorth := eastwest.light = red & turn = sn;

SPEC

 AG !(southnorth.light = green & eastwest.light = green)

idea: disable traffic light as long the other is not red and its not the others turn

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Liveness mc
Version 2016.1

192

traffic lights showing red should eventually show green

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Liveness mc
Version 2016.1

193

traffic lights showing red should eventually show green

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Liveness mc
Version 2016.1

194

traffic lights showing red should eventually show green

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Boolean Encoding mc
Version 2016.1

195

compilation of finite model into pure propositional domain

first step is to flatten the hierarchy

recursive instantiation of all submodules

name and parameter substitution

may increase program size exponentially

second step is to encode variables with boolean variables

light light@1 light@0

green 7→ 0 0
yellow 7→ 0 1
red 7→ 1 0

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Result of Boolean Encoding mc
Version 2016.1

196

initial state predicate I represented as boolean formula

!eastwest.light@0 & eastwest.light@1

(equivalent to init(eastwest.light) := red)

transition relation T represented as boolean formula

encoding of atomic predicates p as boolean formulae

!eastwest.light@1 & !eastwest.light@0

(equivalent to eastwest.light != green)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Bounded Model Checking bmc
Version 2016.1

197

[BiereCimattiClarkeZhu-TACAS’99]

uses SAT for model checking

historically not the first symbolic model checking approach

scales better than original BDD based techniques

mostly incomplete in practice

validity of a formula can often not be proven

focus on counter example generation

only counter example up to certain length (the bound k) are searched

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Bounded Model Checking Safety bmc
Version 2016.1

198

checking safety property Gp for a bound k as SAT problem:

∨ ∨ ∨ ∨p¬ p¬ p¬ p¬p¬

0s s1 l+1s sksl

I(s0) ∧ T (s0,s1) ∧·· ·∧ T (sk−1,sk) ∧
k∨

i=0
¬p(si)

check occurrence of ¬p in the first k states

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Bounded Model Checking Liveness bmc
Version 2016.1

199

generic counter example trace of length k for liveness Fp

p¬ p¬ p¬ p¬p¬

0s sls1 l+1s sk

I(s0) ∧ T (s0,s1) ∧·· ·∧ T (sk,sk+1) ∧
k∨

l=0
sl = sk+1 ∧

k∧
i=0
¬p(si)

(however we recently showed that liveness can always
be reformulated as safety [BiereArthoSchuppan02])

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Time Frame Expansion in HW bmc
Version 2016.1

200

inputs
sequential
feedback
loop

states
outputs

sequential circuit

combinational
logic

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Time Frame Expansion in HW bmc
Version 2016.1

201

inputs

outputs
statesstates

break sequential loop

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Time Frame Expansion in HW bmc
Version 2016.1

202

inputs

outputs
states

inputs

outputs
statesstates

added 1st copy

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Time Frame Expansion in HW bmc
Version 2016.1

203

inputs

outputs
states

inputs

outputs
states

inputs

outputs
statesstates

added 2nd copy

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Time Frame Expansion in HW bmc
Version 2016.1

204

inputs

outputs
states

inputs

outputs
states

inputs

outputs
states

inputs

outputs
statesstates

added 3rd copy

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Time Frame Expansion in HW bmc
Version 2016.1

205

inputs

outputs
states

inputs

outputs
states

inputs

outputs
states

inputs

outputs
states

inputs

outputs
statesstates

added 4th copy

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Time Frame Expansion in HW bmc
Version 2016.1

206

inputs

observed signals

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Bounded Model Checking Safety in HW bmc
Version 2016.1

207

inputs

!prop0 !prop1 !prop2 !prop3 !prop4

failed

find inputs for which failed becomes true

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Bounded Model Checking Liveness in HW bmc
Version 2016.1

208

inputs

!prop0 !prop1 !prop2 !prop3 !prop4

failed

sel

CMP

find inputs for which failed becomes true

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Completeness in Bounded Model Checking bmc
Version 2016.1

209

find bounds on the maximal length of counter examples

also called completeness threshold

exact bounds are hard to find⇒ approximations

induction

use inductive invariants as we have seen before

generalization of inductive invariants: pseudo induction

use SAT for quantifier elimination as with BDDs

then model checking becomes fixpoint calculation

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Measuring Distances bmc
Version 2016.1

210

Distance: length of shortest path between two states

δ(s, t)≡min{n | ∃s0, . . . ,sn[s = s0, t = sn and T (si,si+1) for 0≤ i < n]}

(distance can be infinite if s and t are not connected)

Diameter: maximal distance between two connected states

d(T)≡max{δ(s, t) | T ∗(s, t)}

with T ∗ defined as the transitive reflexive hull of T .

Radius: maximal distance of a reachable state from the initial states

r(T, I)≡max{δ(s, t) | T ∗(s, t) and I(s) and δ(s, t)≤ δ(s′, t) for all s′ with I(s′)}

(minimal number of steps to reach an arbitrary state in BFS)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Diameter Example bmc
Version 2016.1

211

initial states
unreachable states

states with distance 1 from initial states

single state with distance 2 from initial states

0 1

2 3

4

5 6 7 8

9

diameter 4, radius 2

(reachable diameter 3, distance from 0 to 4 or max. distance between 2,3,4)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Completeness Threshold for Safety bmc
Version 2016.1

212

a bad state is reached in at most r(T, I) steps from the initial states

a bad state is a state violating the invariant to be proven

thus, the radius is a completeness threshold for safety properties

for safety properties the max. k for doing bounded model checking is r(T, I)

if no counter example of this length can be found the safety property holds

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

How to determine the radius? bmc
Version 2016.1

213

reformulation:

the radius is the max. length r of a path leading from an initial state to a state t, such there
is no other path from an initial state to t with length less than r.

Thus radius r is the minimal number which makes the following formula valid:

∀s0, . . . ,sr+1[(I(s0)∧
r∧

i=0
T (si,si+1))→

∃ n≤ r [∃t0, . . . , tn[I(t0)∧
n−1∧
i=0

T (ti, ti+1)∧ tn = sr+1]]]

after replacing ∃ n≤ r · · · by
∨r

n=0 · · · we get a Quantified Boolean Formula (QBF), which
is much harder to prove un/satisfiable (PSPACE complete).

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Visualization of Reformulation bmc
Version 2016.1

214

0t

s1

t1

s
r

s +1r
s −1r

t −1r

t
r

s +1r

s0

initial states

(=)

∀

∃

(we allow ti+1 to be identical to ti in the lower path)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Reoccurrence Radius/Diameter bmc
Version 2016.1

215

we can not find the real radius / diameter with SAT efficiently

over approximation idea:

drop requirement that there is no shorter path

enforce different (no reoccurring) states on single path instead

reoccurrence diameter:

length of the longest path without reoccurring states

reoccurrence radius:

length of the longest initialized path without reoccurring states

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Determination of Reoccurrence Diameter bmc
Version 2016.1

216

reformulation:

the reoccurrence radius is the length of the longest path from initial states without reoccur-
ring states (one may further assume that only the first state is an initial state)

The reoccurring radius is the minimal r which makes the following formula valid:

∀s0, . . . ,sr+1[(I(s0)∧
r∧

i=0
T (si,si+1)) →

∨
0≤i< j≤r+1

si = s j]

this is a propositional formula and can be checked by SAT

(exercise: reoccurrence radius/diameter is an upper bound on real radius/diameter)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Bad Example for Reoccurrence Radius bmc
Version 2016.1

217

1

0

2 n

radius 1, reoccurrence radius n

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

k-Induction bmc
Version 2016.1

218

for k = 0 . . .∞ check

1. k-induction base case:

I(s0)∧T (s0,s1)∧ . . .∧T (sk−1,sk) ∧ B(sk)∧
∧

0≤i<k
¬B(si) satisfiable?

2. k-induction induction step:

T (s0,s1)∧ . . .∧T (sk−1,sk) ∧ B(sk)∧
∧

0≤i<k
¬B(si) unsatisfiable?

if base case satisfiable (= BMC), then bad state reachable

if inductive step unsatisfiable, then bad state unreachable

incomplete without simple path constraints

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Incremental SAT Solving for BMC and k-Induction bmc
Version 2016.1

219

[EénSörensson’03]

I

B

k = 0 base case

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Incremental SAT Solving for BMC and k-Induction bmc
Version 2016.1

220

[EénSörensson’03]

B

k = 0 inductive step

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Incremental SAT Solving for BMC and k-Induction bmc
Version 2016.1

221

[EénSörensson’03]

I

T

B

k = 1 base case

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Incremental SAT Solving for BMC and k-Induction bmc
Version 2016.1

222

[EénSörensson’03]

T

B

k = 1 inductive step

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Incremental SAT Solving for BMC and k-Induction bmc
Version 2016.1

223

[EénSörensson’03]

I T

T B

k = 2 base case

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Incremental SAT Solving for BMC and k-Induction bmc
Version 2016.1

224

[EénSörensson’03]

T

T B

k = 2 inductive step

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Incremental SAT Solving for BMC and k-Induction bmc
Version 2016.1

225

[EénSörensson’03]

I T

T T

B

k = 3 base case

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Incremental SAT Solving for BMC and k-Induction bmc
Version 2016.1

226

[EénSörensson’03]

T

T T

B

k = 3 inductive step

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Incremental SAT Solving for BMC and k-Induction bmc
Version 2016.1

227

[EénSörensson’03]

I TT

T T B

k = 4 base case

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Incremental SAT Solving for BMC and k-Induction bmc
Version 2016.1

228

[EénSörensson’03]

TT

T T B

k = 4 inductive step

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Incremental SAT Solving for BMC and k-Induction bmc
Version 2016.1

229

[EénSörensson’03]

I TT

T T T

B

k = 5 base case

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Incremental SAT Solving for BMC and k-Induction bmc
Version 2016.1

230

[EénSörensson’03]

TT

T T T

B

k = 5 inductive step

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Incremental SAT Solving for BMC and k-Induction bmc
Version 2016.1

231

[EénSörensson’03]

I

B

TT

T T T

T

k = 6 base case

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Incremental SAT Solving for BMC and k-Induction bmc
Version 2016.1

232

[EénSörensson’03]

B

TT

T T T

T

k = 6 inductive step

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Simple Path Constraints bmc
Version 2016.1

233

bounded model checking: [BiereCimattiClarkeZhu’99]

I(s1)∧T (s1,s2)∧ . . .∧T (sk−1,sk)∧
∨

0≤i≤k
B(si) satisfiable?

reoccurrence diameter checking: [BiereCimattiClarkeZhu’99]

T (s1,s2)∧ . . .∧T (sk−1,sk) ∧
∧

1≤i< j≤k
si 6= s j unsatisfiable?

k-induction base case: [SheeranSinghStålmarck’00]

I(s1)∧T (s1,s2)∧ . . .∧T (sk−1,sk) ∧ B(sk)∧
∧

0≤i<k
¬B(si) satisfiable?

k-induction induction step: [SheeranSinghStålmarck’00]

T (s1,s2)∧ . . .∧T (sk−1,sk) ∧ B(sk)∧
∧

0≤i<k
¬B(si) ∧

∧
1≤i< j≤k

si 6= s j unsatisfiable?

automatic abstraction refinement = lemmas on demand of simple path constraints
[EénSörensson’03]

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Special Cases bmc
Version 2016.1

234

let G = ¬B denote the “good states”:

0-induction base case: I(s0)∧B(s0) satisfiable iff initial bad state exists

0-induction inductive step: B(s0) unsatisfiable iff ¬B propositional tautology

1-induction base: I(s0)∧T (s0,s1)∧B(s1) satisfiable iff bad state reachable in one step

1-induction inductive step: ¬B(s0)∧T (s0,s1)∧B(s1) unsatisfiable iff G inductive

assuming 0-induction base case was unsatisfiable and thus I |= G

where G = ¬B is called inductive iff 1. I |= G and 2. G∧T |= G′

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

SAT-based Deductive Model Checking bmc
Version 2016.1

235

[BiereCimattiClarkeFujitaZhu’00]

task is to prove that p is an invariant Gp holds on the model

guess a formula G stronger than p: G |= p 1st check

show G inductive: I |= G, G∧T |= G′ 2nd, 3rd check

all three checks can be formulated as UNSAT checks

if one check fails refine G based on satisfying assignment

manual process and thus complete on finite state systems

there are also automatic abstraction/refinement versions of this approach
CEGAR [ClarkeGrumbergJhaLuVeith’00]

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Interpolation bmc
Version 2016.1

236

Definition I interpolant of A and B iff A⇒ I, V (I)⊆V (A)∩V (B) and I∧B unsat.

Note: A∧B unsatisfiable as a consequence.

Intuition: I is an abstraction of A over the common (interface) variables of A and B
which still is inconsistent with B.

Let A and B formulas in CNF.

From a resolution proof in a refutation of A∧B generate interpolant I (next slide)

This is used in many applications,
generalizations exists,
also gives one of the fastet model checking algorithms.

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Interpolation Algorithm bmc
Version 2016.1

237

[McMillan’03, McMillan’05] + [Biere’09] (BMC chapter in Handbook)

Definition interpolating quadruple (A,B) c [f] is well-formed iff

(W1) V (c)⊆V (A)∪V (B) (W2) V (f)⊆ G∪ (V (c)∩V (A))⊆V (A)

Definition well-formed interpolating quadruple (A,B) c [f] is valid iff

(V1) A⇒ f (V2) B∧ f ⇒ c

Definitition proof rules for interpolating quadrupels

(R1) c ∈ A
(A,B) c [c]

(A,B) c
.
∨ l [f] (A,B) d

.
∨ l [g] |l| ∈V (B)

(A,B) c∨d [f ∧g]
(R3)

(R2) c ∈ B
(A,B) c [>]

(A,B) c
.
∨ l [f] (A,B) d

.
∨ l [g] |l| 6∈V (B)

(A,B) c∨d [f | l∨g| l]
(R4)

Theorem proof rules produce well-formed and valid interpolating quadruples
Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Interpolation-based Model Checking bmc
Version 2016.1

238

A︷ ︸︸ ︷
I(s−1)∧T (s−1,s0) ∧

B︷ ︸︸ ︷
T (s0,s1)∧T (s1,s2)∧T (s2,s3)∧

3∨
i=0
¬G(si)

interpolant P1(s0) let R1 ≡ I∨P1

R1(s−1)∧T (s−1,s0) ∧ T (s0,s1)∧T (s1,s2)∧T (s2,s3)∧
∨3

i=0¬G(si)

interpolant P2(s0)⇐ R1(s−1)∧T (s−1,s0) let R2 ≡ R1∨P2

R2(s−1)∧T (s−1,s0) ∧ T (s0,s1)∧T (s1,s2)∧T (s2,s3)∧
∨3

i=0¬G(si)

...

Rn−1(s−1)∧T (s−1,s0) ∧ T (s0,s1)∧T (s1,s2)∧T (s2,s3)∧
∨3

i=0¬G(si)

interpolant Pn(s0)

until Rn ≡ Rn−1 fix-point guaranteed for k = backward radius of ¬G

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Bounded Semantics with Loop bmc
Version 2016.1

239

(E)LTL formula in NNF

let the path π be a (k, l) lasso

π |=i
k p iff p ∈ L(π(i))

π |=i
k ¬p iff p 6∈ L(π(i))

π |=i
k f ∧g iff π |=i

k f and π |=i
k g

π |=i
k X f iff

{
π |=l

k f if i = k

π |=i+1
k f else

π |=i
k G f iff

∧k
j=min(i,l)π |= j

k f

π |=i
k F f iff

∨k
j=min(i,l)π |= j

k f

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Bounded Semantics without Loop bmc
Version 2016.1

240

ELTL formula in NNF

there is no l for which path π is a (k, l) lasso

π |=i
k p iff p ∈ L(π(i))

π |=i
k ¬p iff p 6∈ L(π(i))

π |=i
k f ∧g iff π |=i

k f and π |=i
k g

π |=i
k X f iff

{
false if i = k

π |=i+1
k f else

π |=i
k G f iff false

π |=i
k F f iff

∨k
j= i

π |= j
k f

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Bounded Semantics bmc
Version 2016.1

241

definition:

π |=k f :⇔ π |=0
k f

bounded semantics aproximates real semantics:

π |=k f ⇒ π |= f for all k

(theoretical) completeness:

if π |= f then there exists k with πk |= f

note: negate original property first (e.g. AGp 7→ EF¬p)

ALTL→ ELTL

counter example→ witness

bounded witness is also a non-bounded witness

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Translation of Bounded Semantics to SAT bmc
Version 2016.1

242

two recursive translations from (E)LTL in NNF for fixed k:

l[·]ik assumes (k, l)-loop

[·]ik assumes that no (k, l)-loop exists for all l

add time frame expansion of transition relation:

I(s0) ∧ T (s0,s1) ∧·· ·∧ T (sk−1,sk)

add loopk(l) constraint for looping translation: loopk(l) := T (sk,sl)

add noloopk constraint for non-looping translation:

noloopk := ¬
k∨

l=0
loopk(l)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Looping Translation bmc
Version 2016.1

243

l[p]ik := p(si)

l[¬p]ik := ¬p(si)

l[f ∧g]ik := l[f]ik∧ l[g]ik

l[X f]ik := l[f]
next(i)
k

l[G f]ik :=
k∧

j=min(l,i)
l[f]

j
k

l[F f]ik :=
k∨

j=min(l,i)
l[f]

j
k

with

next(i) :=
{

i+1 if i < k
l else

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Non-Looping Translation bmc
Version 2016.1

244

[p]ik := p(si)

[¬p]ik := ¬p(si)

[f ∧g]ik := [f]ik∧ [g]
i
k

[X f]ik :=

{
[f]i+1

k if i < k

false else

[G f]ik := false

[F f]ik :=
k∨

j=i
[f] j

k

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Translation bmc
Version 2016.1

245

[K, f]k := noloopk∧ [f]0k ∨
k∨

l=0
loopk(l)∧ l[f]

0
k

Theorem: K |= E f ⇔ ∃k [K, f]k satisfiable

l[·]ik and [·]ik are linear in k if subformulae are shared

unique table for automatic sharing syntactically equivalent formulae

implemented as hash table (keys are pairs of formulae ids)

more complex and quadratic translations for R and U

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Linear Circuit for Counterexample to Infinitely Often GF¬p bmc
Version 2016.1

246

original translation of FGp after applying associativity and sharing

p s
3
)(

p s
2
)(

p s
1
)(

p s
0
)(

L
3

L
2

L
1

L
0

with Li = loopk(i) and k = 3

(could be simplified further)

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Simple and Linear Translation for LTL bmc
Version 2016.1

247

[LatvalaBiereHeljankoJunttila FMCAD’04]

evaluate semantics on loop in two iterations

〈 〉= 1st iteration [] = 2nd iteration

:= i < k i = k

[p]i p(si) p(sk)

[¬p]i ¬p(si) ¬p(sk)

[X f]i [f]i+1
∨k

l=0 (T (sk,sl)∧ [f]l)

[G f]i [f]i∧ [G f]i+1
∨k

l=0 (T (sk,sl)∧〈G f 〉l)

[F f]i [f]i∨ [F f]i+1
∨k

l=0 (T (sk,sl)∧〈F f 〉l)

〈G f 〉i [f]i∧〈G f 〉i+1 [f]k
〈F f 〉i [f]i∨〈F f 〉i+1 [f]k

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Simple and Linear Translation for LTL cont. bmc
Version 2016.1

248

semantic of LTL on single path is the same as CTL semantic

symbolically implement fixpoint calculation for (A)CTL

fixpoint computation terminates after 2 iterations (not k)

boolean fixpoint equations ⇒ boolean graphs

easy to implement and optimize, fast

generalized to past time [LatvalaBiereHeljankoJunttila VMCAI’05]

minimal counter examples for past time [SchuppanBiere TACAS’05]

incremental (and complete) [LatvalaHeljankoJunttila CAV’05]

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Why Not Just Try to Satisfy Boolean Equations directly? bmc
Version 2016.1

249

recursive expansion Fp ≡ p∨XFp

p

checking Gp implemented as search for witness for Fp

Kripke structure: single state with self loop in which p does not hold

incorrect translation of Fp:

model constraints︷ ︸︸ ︷
I(s0)∧T (s0,s0) ∧ ([Fp]↔ p(s0)∨ [Fp])︸ ︷︷ ︸

translation

∧
assumption︷︸︸︷

[Fp]︸︷︷︸
x

since it is satisfiable by setting x = 1 though p(s0) = 0

(x fresh boolean variable introduced for [Fp])

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

SAT-based Model Checking without Unrolling
Version 2016.1

250

key concept in IC3 [Bradley’11]:

clause c relative inductive w.r.t. F iff c∧F ∧T ⇒ c′ iff c∧F ∧T ∧ c̄′ unsatisfiable

I initial states

G good states

B bad states

F
0

F
1

F
2

GI G B

s

(1)

(2)

F0 ⊇ F1 ⊇ F2

sets of rel. ind. clauses

(1) s is reachable from F0 then bad is reachable transitively

(2) otherwise exists c⊆ s̄ rel. ind. w.r.t. F0 and can be added to F1 and maybe to F2

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Extending Sequence of Sets of Relative Inductive Clauses
Version 2016.1

251

as soon the last set is good, i.e. Fk⇒ G increase k

s

GI G BG

F
3

F
1

F
2

F
0

propagate all relative inductive clauses of last set to new set

if all can been propagated Fk is an inductive invariant stronger than G

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

More Precisely . . .
Version 2016.1

252

Let F0, . . . ,Fk be a sequence of sets of clauses.

monotonic iff Fi ⊇ Fi+1 for i = 0 . . .k−1

(relative) inductive iff Fi T ⇒ F ′i+1 for i = 0 . . .k−1

initialized iff I ≡ F0

good iff Fi⇒ G for i = 0 . . .k−1 last set might be bad if Fk∧B satisfiable

F is k-adequat iff all states s satisfying F are at least k steps away from B
[McMillan’03]

sequence monotonic and inductive ⇒ Fk− j j-adequat

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

Sketch of the Algorithm
Version 2016.1

253

CHECK (s, i) { actually should be DFS prioritized on i

while s̄∧Fi−1∧T ∧ s′ satisfiable {
if i = 1 throw SATISFIABLE
choose cube t with t |= s̄∧Fi−1∧T ∧ s′

CHECK (t, i−1) optionally check t at i as well
}
choose clause c ⊆ s̄ with c∧Fi−1∧T ∧ c̄′ unsatisfiable
Fj := Fj ∪ {c} for all j = 1 . . . i and if possible for higher j

}

MAIN () {
F0 = I, F1 =>, k = 1 do not forget to check base cases first
forever {

CHECK (B,k)

k := k+1, Fi := all rel. ind. clauses of Fi−1 w.r.t. Fi−1 for i = 1 . . .k

if Fk ⊆ Fk−1 throw UNSATISFIABLE
}

}

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

SAT-based Model Checking without Unrolling
Version 2016.1

254

implemented in IC3 by Aaron Bradley

as single engine model checker extremely successful in HWMCC’10
Hardware Model Checking Competition 2010

based on rather out-dated SAT solver (ZChaff from 2004)

independent implementations such as [EénMishchenkoBrayton IWLS’11]

seem to be faster than BDDs, k-induction, interpolation

might be much easier to lift to SMT-based model checking than interpolation

opportunities for improvement: structural SAT/SMT solving

Model Checking #342.202 SS 2016 Armin Biere JKU Linz

