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Abstract. We extend the well-established assumption-based interface
of incremental SAT solvers to clauses, allowing the addition of tempo-
rary clauses that have the same lifespan as literal assumptions. Our ap-
proach is efficient and easy to implement in modern CDCL-based solvers
and simplifies incremental SAT solver usage. Compared to previous ap-
proaches, it does not come with any memory overhead and does not slow
down the solver due to disabled activation literals. All clauses learned
under literal and clause assumptions are safe to keep and not implicitly
invalidated for containing an activation literal. We implement the exten-
sion in the award-winning SAT solver CaDiCaL and evaluate it with the
IC3 implementation in the model checker ABC. Our experiments on the
benchmarks from a recent hardware model checking competition show a
considerable improvement in model checking time.

Introduction

Modern SAT solving is based on Conflict-Driven Clause Learning (CDCL) [23].
Many applications require solving a sequence of related SAT problems incremen-
tally [16,2], making use of inprocessing techniques [13,21,17] that make modern
SAT solvers so efficient. Among the applications that gain the most from incre-
mental solvers are problems directly related to SAT, including MaxSAT [24] and
minimal core extraction [26], planning [19,28] and in particular model check-
ing [12], which is the focus of this paper. Starting with bounded model check-
ing (BMC) [6,15], different SAT-based model checking techniques, such as k-
induction [8,29], interpolation [25] and most recently IC3 [9], have been studied.

Motivated by the use of incremental SAT solving in IC3, consider the tran-
sition system of a three bit (b2b1b0) counter, encoding integers up to seven, in
Fig. 1. Non-deterministically, the counter is incremented, remains unchanged or
is reset to zero after reaching five. Suppose we want to ensure that starting at
state zero, all states with values greater than five are unreachable.

A typical query by IC3 asks “is state six reachable from any other state?”,
expressed as SAT?[T ∧ (¬b2 ∨ ¬b1 ∨ b0) ∧ b′2 ∧ b′1 ∧ ¬b′0], where T encodes the
transition system for one step from b2b1b0 to b′2b

′
1b

′
0. It is unsatisfiable, telling us

that state six is in fact unreachable. We can try to generalize this result to a set of
states by considering a cube – an assignment to a subset of variables. The query
SAT?[T∧(¬b1∨b0)∧b′1∧¬b′0] is satisfiable because state two can be reached from
state one and SAT?[T ∧ (¬b2 ∨ b0)∧ b′2 ∧¬b′0] is satisfiable due to the transition
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Fig. 1. Transition system

from state three to state four. However, the query SAT?[T ∧(¬b2∨¬b1)∧b′2∧b′1]
is unsatisfiable, allowing us to conclude that all states in the cube b2 ∧ b1 are
not reachable from outside the cube. We can use that insight to strengthen T
by adding ¬b′2 ∨ ¬b′1 permanently to all future queries. This is in contrast to
the clauses we previously added for only one query. To use an incremental SAT
solver in this application, we need to add clauses temporarily.

The popular assumption-based interface pioneered by MiniSat [16,15] allows
the user to specify a set of literals that are assumed to be true and picked by
the solver as the first decisions. This allows us to handle the temporary clauses
of length one, but we still need temporary addition of longer clauses. While
assumption literals are implemented by nearly every incremental SAT solver,
temporary clauses are less commonly supported.

The logic solver Satire [31] supports pseudo-Boolean and other constraints
beyond Boolean clauses. It maintains a constraint hierarchy that records the
dependencies between original and learned constraints. This allows the deletion
of arbitrary constraints by identifying and recursively deleting all learned con-
straints dependent on them. Maintaining the hierarchy, however, is costly.

In the SMT community, an interface based on pushing and popping logical
formulas on the assertion stack is prevalent [4]. Since the formulas are removed in
order, it is possible to mark a point in the data structures that maintain learned
knowledge and remove everything past it, when a pop operation is executed.
This might however delete a lot more learned knowledge than necessary.

The last SAT solver to explicitly support the removal of clauses is Zchaff [18].
It implements general clause deletion by associating every clause, learned or
original, with an additional 32-Bit integer. The user can set one of the bits when
adding a new clause, signaling that it is part of one of 32 groups that might be
deleted later. Learned clauses collect the bits of all clauses they depend on. To
delete a group, all clauses with the corresponding bit are removed. This approach
comes with a high overhead in memory and implementation effort.

The most common way to implement temporary clauses is to simulate the
desired behavior using activation literals [15,3]. Let C be a clause we wish to
add temporarily and let a, the activation literal, be a free variable, i.e., it does
not occur in the formula. By adding C ∨ a to the formula and assuming ¬a, we
achieve the same as adding C to the formula. After solving the formula the clause
a is added, effectively removing C from the formula. The main problem with
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activation literals is, that they clutter up the variable space after disabling their
clause and slow down propagation. This makes it necessary to restart the solver
periodically. How to schedule these restarts in IC3 specifically, has been explicitly
investigated in [11]. Another problem that the last two approaches share is that
they tend to learn clauses, that will not be used after the temporary clause has
been removed. This is in contrast to clauses learned under literal assumptions,
which are safe to keep and are useful after discarding the assumptions [15].

In this paper we present an extension to the assumption mechanism prevalent
in modern SAT solvers, that allows the addition of a temporary clause. This
clause, called constraint in the following, has the same lifespan as an assumption.
The extension can be implemented by a simple modification to the decision
mechanism in a CDCL-based SAT solver. We implemented it in under 100 lines of
code in the state-of-the-art SAT solver CaDiCaL. To evaluate our implementation
we modify the implementation of IC3 provided by the model checker ABC to use
CaDiCaL as the SAT solving back-end and use the extended interface where
possible. As a first result, the changes simplify solver usage and eliminate the
need for external restarts as well as some book-keeping for activation literals.
An empirical evaluation on the 2019 hardware model checking competition [27]
benchmark set shows that we gain a substantial increase in efficiency.

Incremental SAT and IC3

We introduce the Boolean satisfiability problem in the context of incremental
solvers. A literal is a Boolean variable or its negation. Variables are identified
with a non-zero integer (1) and negative literals with the negative variable (−1).
A clause is a logical disjunction of literals. Its negation is a conjunction of literals
called a cube. A formula is a conjunction of clauses. An assignment maps each
variable that occurs in a formula to true or false. An assignment satisfies a
positive literal if the variable is assigned true, a negative literal if it is assigned
false, a clause if one of the literals is satisfied and a formula if all of the clauses
are satisfied. An incremental SAT solver solves a series of related formulas effi-
ciently. It communicates with an application integrating it through an interface
such as IPASIR [3]. All solvers participating in the incremental library track of
the SAT Competition since 2015 implement it. The popular solver MiniSat [16]
along with all of its incremental descendants implement something very similar.
We describe the relevant subset:

add(int lit) Used to add clauses. Add lit to the current clause or if lit
equals 0, finalize the current clause and add it to the formula.

assume(int lit) Assume lit to be true for the next solve call. Assumptions
are discarded after the next call to solve.

solve() If an assignment A exists that satisfies the formula and all assumptions
return SAT. Otherwise return UNSAT.

val(int lit) Valid in SAT case. Return the truth value of lit in A.
failed(int lit) Valid in UNSAT case. Return true if assumption lit was used

to prove unsatisfiability. Otherwise return false.
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A prominent applications of incremental SAT-solving is the symbolic model
checking algorithm IC3 by Bradley [9]. Given a transition system and a property
P , IC3 tries to prove that it is not possible to reach a state that violates the
property. It maintains a sequence of frames F0, F1, . . . Fk, each frame Fi is a
formula encoding an overapproximation of the set of states reachable in at most i
steps. The frames are refined by adding additional clauses until one of the frames
contains all reachable states and none violates the property or a counterexample
is found. Each frame has its own SAT solver instance that is initialized with an
encoding of the transition function and updated with the new frame clauses.

The solvers are used almost exclusively to answer queries for predecessors
of the form SAT?[T ∧ Fi ∧ ¬s ∧ s′], where T is the transition function and s
is a cube. To refine the frames, a state s in the last frame that violates the
property is identified with the query SAT?[Fk ∧ ¬P ]. If no such state exists,
a new frame is appended, otherwise IC3 tries to prove that the state is not
actually reachable. The frames are queried for predecessors until an initial state
is reached, thus producing a counterexample, or one of the frames returns unsat.
In the latter case failed can be used to generalize the unreachable state to a
cube, the negation of which is added to the frame. IC3 is guaranteed to eventually
terminate with two consecutive frames containing the same set of states.

Assuming Clauses

Our main contribution is an extension to incremental SAT solvers that allows
the addition of a temporary clause, called constraint, which is only valid during
the next satisfiability query. We add two functions to the incremental interface:

constrain(int lit) Adds lit to the current constraint. If a finalized constraint
exists, delete it. If lit equals zero, finalizes the constraint.

constraint_failed() Valid in UNSAT case. Return true if the constraint was
used to prove unsatisfiability. Otherwise return false.

Our approach is similar to the idea of model elimination [30]. We modify
the decision heuristic to restrict the search to assignments that satisfy the con-
straint. The modified decision procedure is outlined in Fig. 2. The function decide
is called initially at decision level 0. Decisions assigned to the trail are propa-
gated outside of the function to assign truth values. Whenever a conflict arises,
the decision level decreases and the assignments are backtracked [23]. Every as-
sumption has a fixed decision level. In the case where an assumption is already
satisfied, a pseudo decision level is introduced. Otherwise if an assumed literal is
assigned to false at this point, the assignment is the result of propagating other
assumptions together with original or learned clauses. Therefore the formula is
unsatisfiable under the current assumptions if line 4 is reached.

At the first decision level after all assumptions have been assigned, three cases
need to be considered: if one of the literals of the constraint is already satisfied,
the search is not further restricted. Otherwise one of the literals is picked as a
decision to satisfy the constraint. In the case where all literals are assigned to
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decide ( )

1 if level < |assumptions|
2 ℓ = assumptions[level]
3 if val(ℓ) = false
4 failingAssumption()
5 else if val(ℓ) = true
6 level++ // pseudo decision level
7 else trail[level++] = ℓ

8 else if level = |assumptions|
9 unassignedLit = 0

10 for ℓ in constraint
11 if val(ℓ) = true
12 level++ // pseudo decision level
13 else if val(ℓ) = unassigned
14 unassigendLit = ℓ

15 if unassigendLit = 0
16 failingConstraint() // cannot be satisfied
17 else trail[level++] = unassigendLit
18 else
19 ℓ = literalSelectionHeuristic()
20 trail[level++] = ℓ

Fig. 2. Algorithm decide picks the next decision to propagate.

false, they are implied by the assumptions, thus cannot be assigned differently.
The formula is therefore declared unsatisfiable under the assumptions and the
constraint. This might only happen after additional clauses have been learned.

This approach to handle assumptions was pioneered by MiniSat [16]. It has
been improved upon by collectively propagating the assumptions and using trail
saving even between incremental calls [20] or factoring out assumptions [22].
These techniques can be combined with the presented constraint mechanism.

Modern SAT solvers not only report unsatisfiability as a result, but also allow
the user to query whether a particular assumption failed, i.e., was used to prove
unsatisfiability. This concept, introduced as analyzeFinal by MiniSat [14], is
essential for the efficiency of many applications. If an original or learned clause
is inconsistent with the assumptions, the last assumption picked as a decision
is already assigned to false. Using a simple breadth-first search, the reasons for
this assignment can be traced back through the implication graph [23]. The
assumptions at the leaves of the search tree are marked as failed. In line 16, a
similar search is initialized with the negation of every literal in the constraint.
Thus, all assumptions necessary to prove unsatisfiability of the constraint in
conjunction with the formula are marked as failed.
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Experiments

We implemented the constraint interface in CaDiCaL version 1.3.1 [5]. To in-
crease confidence in the correctness of the SAT solver and its new extension,
we used the model-based tester [1] mobical that is integrated with CaDiCaL. It
generates random sequences of API calls including assumptions and constraints
together with random configurations for the solver. The returned models and
failed assumption sets are checked for correctness. We ran the tester on 8 cores
for multiple days to validate 1.2 billion test runs.

To evaluate our approach we integrated CaDiCaL into the bit-level model
checker ABC 1 [10]. By default ABC uses a version of MiniSat [16] that is tightly
integrated. Therefore not all functionality is fully implemented with CaDiCaL.
Firstly, restarts of the solver without reallocating everything are not supported.
Secondly, the on-demand compression of the clause database, which in MiniSat
simply means unit propagation, is not implemented.

Temporary clauses are implemented with activation literals in ABC. To deal
with the accumulating useless activation literals, the solver is restarted after
adding 300 of them. A syntactic search on the source code of ABC indicated two
places where temporary clauses are used. The first is an alternative implemen-
tation of cube generalization, that is not used in the default configuration. In
fact, this implementation seems to not work correctly in our version of ABC1.
We will not use it for our experiments. The other occurrence is in the function
CheckCube that implements the predecessor query SAT?[T ∧Fi∧¬s∧s′]. While
the transition function T and the frame Fi will only be extended with additional
clauses, the cube s changes every query. The next-step cube s′ is in conjunction
with the rest of the formula and therefore translates to a set of unit clauses
that can be implemented with assumptions. Using the extended interface, the
negated cube ¬s can be added as a constraint. Since no activation literals are
used, the solver will not be restarted. For one of the tested configurations (see
Table 1), we disable the solver restarts explicitly. No further modifications have
been made to the source code or the default settings of ABC.

Our evaluation follows the principles laid out in SAT manifesto v1.0. [7]. The
source code used for the evaluation and the generated log files are available on
our website2. The experiments are run in parallel on 32 nodes of our cluster. Each
node has access to two 8-core Intel Xeon E5-2620 v4 CPUs running at 2.10 GHz
(turbo-mode disabled) and 128 GB main memory. We allocate 4 instances of ABC
to every node, each solving a different benchmark. The time limit is set to 1 hour
of wall-clock time, memory is limited to 30GB per instance. The memory limit is
the only aspect that differs from the setup used in the hardware model checking
competition. However, the maximum memory consumption was observed to be
below 1.5GB. The evaluation is based on the benchmark set used in the 2019
model checking competition [27]. The results are presented in Table 1.

1 commit f87c8b4
2 http://fmv.jku.at/assumingclauses

https://github.com/berkeley-abc/abc/commit/f87c8b434a3024972c6bc85c072d80adbed3e778
http://fmv.jku.at/assumingclauses
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Comparing the first two columns, it is evident that if activation literals are
used, solver restarts are necessary. It has been suggested [11] that because the
queries posed by IC3 are small but numerous, IC3 implementations should pre-
fer faster SAT solvers to more powerful ones. Comparing the original with the
CaDiCaL version shows, that while using MiniSat is faster on a number of in-
stances, using CaDiCaL seems to be an advantage on the harder instances. In
fact, using the newer SAT solver, one additional instance can be verified. Over-
all, using the mean PAR2 score as a metric, a speedup of 2.82 is observed.

With the version using CaDiCaL and activation literals as a baseline, we
observe a speedup of 1.84 when switching to constraints. Besides the actual time
it takes to restart the SAT solver, the average SAT call is 16% faster. This can be
explained by the solver not being slowed down by activation literal clutter and
additional clauses at all. We conjecture that, more importantly, the “quality”
of the learned clauses is higher. Since clauses are not deleted by restarts and
none of the learned clauses are implicitly disabled for containing an activation
literal, the solver can profit from shorter and more useful clauses. Measuring this
quality however, is outside the scope of this paper. An additional effect is that
these clauses allow conflicts earlier in the search tree, resulting in fewer failed
literals and thus allows for better generalization in IC3. This can explain why
21% fewer calls are made, when using constraints.

As an additional result we present a modification to CaDiCaL that defers the
collection of failed literals and the model reconstruction [17] until a literal is
queried or a model is requested. Adding this minor change in the SAT solver
to the configuration using constraints, results in an additional speedup of 9%,
increasing the total speedup compared to the original version to 5.64.

Conclusion

We presented a simple extension to the commonly used incremental SAT solver
interface IPASIR, that simplifies solver usage and is easy to implement by mod-
ern SAT solvers. Our experiments show that a considerable speedup can be
achieved by using constraints. Since the development of new SAT encodings de-
pends on the interface available, we hope that new applications will arise as more
solvers implement the extended interface. Handling more than one constraint
can be achieved using a complete model elimination search over the constraints.
This would however increase the implementation effort and might be less effec-
tive than using activation literals, if the number of temporary clauses is high.
We leave this to future work.

Acknowledgements This work is supported by the Austrian Science Fund
(FWF) under projects W1255-N23 and S11408-N23 as well as the LIT AI Lab
funded by the State of Upper Austria.
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Table 1. The benchmark set contains 219 instances, 15 of which we removed because
they were not solved by any tested configuration. We use PAR-2 scoring to compare
the performance of the five tested configurations (explained below). PAR-2 assigns the
runtime in seconds or twice the time limit (7200) if an instance was not solved. The
other columns list additional measurements for the two configurations using CaDiCaL,
one with activation literals and the other using constraints instead. The number of
restarts is zero if constraints are used and therefore not shown. Besides that, we list the
number of SAT calls (in thousands), along with the average time per call in milliseconds.
We display the measured data for all instances, where at least one configuration took
more than two seconds, along with an average over all 204 instances.

PAR-2 Res. Calls TpC

Di Og Ca Co De Ca Ca Co Ca Co

Mean 80 46 16 8.93 8.21 61 19 15 0.61 0.51

beemTele6Int 136 7200 53 181 101 520 157 574 0.24 0.27
toyLock4 7200 483 1731 357 359 7459 2251 1098 0.42 0.25
visArraysField5 7200 1.6 0.58 51 34 1 1 113 0.53 0.41
nan 208 421 163 158 140 1381 420 423 0.29 0.32
beemColl6Int 241 258 322 133 108 398 123 91 2.31 1.24
cal110 213 168 130 110 122 191 59 42 1.96 2.39
cal109 179 197 102 117 86 110 34 44 2.71 2.44
cal93 186 136 121 118 140 206 63 58 1.69 1.8
cal94 127 160 115 95 131 171 52 41 1.94 2.1
cal100 112 42 67 67 54 148 45 44 1.23 1.29
cal131 46 44 77 58 60 136 42 35 1.58 1.41
cal146 47 39 71 42 38 131 41 23 1.51 1.55
cal136 34 46 59 43 35 100 31 23 1.62 1.59
cal128 52 38 46 37 40 99 31 25 1.29 1.27
beemExit5Int 51 17 26 16 15 357 110 86 0.18 0.15
cal134 38 47 50 48 36 79 25 26 1.72 1.57
cal132 39 36 48 42 32 83 26 24 1.57 1.54
cal144 30 34 41 33 42 64 20 17 1.7 1.64
beemLampNat5Int 26 23 23 35 31 193 61 102 0.28 0.3
cal89 16 14 32 33 25 68 22 18 1.23 1.6
beemRether4Bstep 13 4.29 16 7.16 6.99 91 29 13 0.42 0.49
beemBrp2Int 16 5.1 3.6 0.76 0.74 86 29 7 0.08 0.07
beemFrogs2Bstep 2.47 2.53 12 5.59 4.74 31 10 4 1.12 1.27
beemAdding5Int 1.78 3.9 2.07 1.12 1.09 53 17 11 0.08 0.07
visArraysTwo 1.35 2.89 3.89 0.57 0.55 99 30 5 0.09 0.07
Heap 2.02 1.9 3.38 1.68 1.63 57 22 13 0.11 0.09

Di Disable SAT solver restarts in the original version Og Original version of ABC
Ca CaDiCaL is used as the solver Co Constraints are used instead of activation literals
De Defers the model reconstruction and only executes it if a model is needed
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