Continuous Optimal Timing

Yuliya Butkova, Hassan Hatefi, Holger Hermanns, Jan Krčál

Saarland University - Computer Science, Saarbrücken, Germany

May 6, 2015

Motivation

- Preliminaries
- Existing Algorithms
- Our Algorithm
- Empirical Evaluation
- Conclusion

Motivation

Probabilistic models

- unreliable/unpredictable system behaviour:

message loss, component failure, ...

- randomized algorithms:

the probability of reaching consensus in leader election algorithms is almost $1 \end{tabular}$

Motivation

Models we work with:

- run in continuous time
- comprise non-deterministic and probabilistic behaviour

are good for:

- optimization over multiple available choices
- finding worst case results

properties:

Is the maximal probability of reaching a failure state within an hour \$<0.01?\$

Motivation

 Model checking boils down to time-bounded reachability problem:

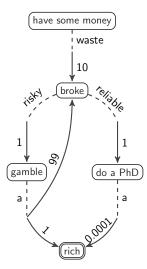
What is the maximal/minimal probability to reach a given set of states within a given time bound?

• Several algorithms to tackle this problem are known

- they are polynomial, but still slow on industrial size benchmarks
- there is no proper comparison between all of them
- no one has a clue which algorithm will be faster on a specific benchmark

- Motivation
- Preliminaries
- Existing Algorithms
- Our Algorithm
- Empirical Evaluation
- Conclusion

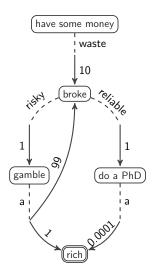
CTMDPs



CTMDPs

Continuous Time Markov Decision Process (CTMDP) is a tuple C = (S, Act, R), where

- S set of states
- Act set of actions
- $\mathbf{R}: S imes Act imes S \mapsto \mathbb{R}_{\geq 0}$ rate function



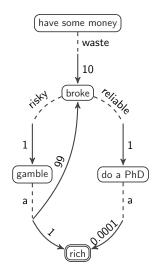
CTMDPs

Continuous Time Markov Decision Process (CTMDP) is a tuple C = (S, Act, R), where

- S set of states
- Act set of actions
- $\mathbf{R}: S imes Act imes S \mapsto \mathbb{R}_{\geq 0}$ rate function

• Exit Rate
$$E(s, \alpha) = \sum_{s' \in S} R(s, \alpha, s')$$

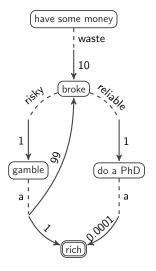
• CTMDP is **Uniform** if exit rates over all states and all available actions are the same



Motivation Definitions and Problem Statement Existing Algorithms Our Algorithm Empirical Evaluation Conclusion

Resolution of Non-Determinism. Schedulers.

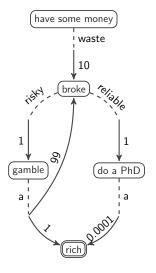
What is the probability of becoming reach before I die?



Resolution of Non-Determinism. Schedulers.

What is the probability of becoming reach before I die?

The answer depends on chosen actions



Resolution of Non-Determinism. Schedulers.

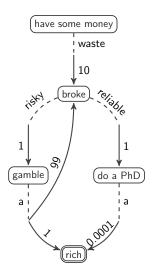
What is the probability of becoming reach before I die?

The answer depends on chosen actions

• A Scheduler σ (or controller, policy):

 $\sigma:\mathsf{History}\to \mathit{Act}$

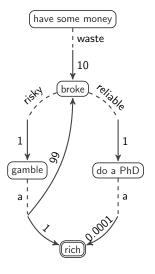
- Classes of schedulers:
 - **Timed/Untimed** knowledge of time passed (*Tim/Unt*)
 - Early/Late decision is fixed on entering a state/maybe changed at any time later



Reachability Problem

What is the maximal/minimal probability to reach a given set of states within given time?

$$\operatorname{val}^{\nabla}(s) := \sup_{\sigma \in \operatorname{Tim}_{\nabla}} \operatorname{Pr}_{\sigma}^{s} \left[\Diamond^{\leq T} G \right]$$
$$\nabla \in \{\ell, e\}$$



- Motivation
- Preliminaries
- Existing Algorithms
- Our Algorithm
- Empirical Evaluation
- Conclusion

Existing Algorithms

Early

- Exponential Approximation EXPSTEP-1
 - (by M. Neuhaeussar, L. Zhang)
- Improved Exponential Approximation EXPSTEP-k (by H. Hatefi, H. Hermanns)

Late

- Polynomial Approximation POLYSTEP-k
 - (by J. Fearnley, M. Rabe, et al.)
- Adaptive Step Approximation ADAPTSTEP
 - (by P. Buchholz, I. Schulz)

All existing approaches use discretization

- Motivation
- Preliminaries
- Existing Algorithms
- Our Algorithm
- Empirical Evaluation
- Conclusion

Our Approach

Features:

- Does NOT discretize the time horizon, instead
- approximate via different class of schedulers:
 - Less powerfull Untimed for lower bound
 - More powerfull "Prophetic" for upper bound

Definitions and Problem Statement Existing Algorithms Our Algorithm (U_{NIF}^+)

Motivation

: CTMDP $C = (S, Act, \mathbf{R})$, goal states $G \subseteq S$, horizon $T \in \mathbb{R}_{>0}$, input scheduler class $\nabla \in \{\ell, e\}$, and approximation error $\varepsilon > 0$ **params**: truncation error ratio $\kappa \in (0, 1)$ **output** : vector v such that $\|v - val^{\nabla}\|_{\infty} \leq \varepsilon$

Our Algorithm

Empirical Evaluation

Conclusion

$$_1$$
 $\lambda \leftarrow$ maximal exit rate $\mathit{E_{max}}$ in $\mathcal C$

² repeat
³
$$| C_{\lambda}^{\nabla} \leftarrow \nabla$$
-uniformisation of C to the rate λ
⁴ $\underline{v} \leftarrow approximation of the lower bound val for C_{λ}^{∇} up to error $\varepsilon \cdot \kappa$
⁵ $\overline{v} \leftarrow approximation of the upper bound val for C_{λ}^{∇} up to error $\varepsilon \cdot \kappa$
⁶ $| \lambda \leftarrow 2 \cdot \lambda$
⁷ until $\|\overline{v} - \underline{v}\|_{\infty} \le \varepsilon \cdot (1 - \kappa)$
⁸ return $\underline{v}$$$

Motivation Definitions and Problem Statement Existing Algorithms Our Algorithm Our Algorithm (UNIF⁺)

 $\begin{array}{ll} \text{input} & : \text{CTMDP } \mathcal{C} = (S, Act, \mathbf{R}) \text{, goal states } \mathcal{G} \subseteq S \text{, horizon } \mathcal{T} \in \mathbb{R}_{>0}, \\ & \text{scheduler class } \nabla \in \{\ell, e\} \text{, and approximation error } \varepsilon > 0 \\ \text{params: truncation error ratio } \kappa \in (0, 1) \\ & \text{output : vector } v \text{ such that } \|v - val^{\nabla}\|_{\infty} \leq \varepsilon \\ \end{array}$

Empirical Evaluation

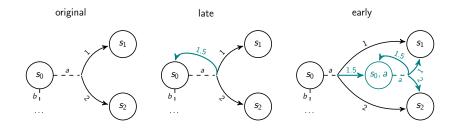
Conclusion

1
$$\lambda \leftarrow \mathsf{maximal}$$
 exit rate E_{max} in $\mathcal C$

² repeat ³ $\begin{array}{c|c} \mathcal{C}_{\lambda}^{\nabla} \leftarrow \nabla \text{-uniformisation of } \mathcal{C} \text{ to the rate } \lambda \\ \overset{\mathbf{y}}{\leftarrow} & \text{approximation of the lower bound } \underline{\text{val}} \text{ for } \mathcal{C}_{\lambda}^{\nabla} \text{ up to error } \varepsilon \cdot \kappa \\ \overset{\overline{\mathbf{y}}}{\leftarrow} & \text{approximation of the upper bound } \overline{\text{val}} \text{ for } \mathcal{C}_{\lambda}^{\nabla} \text{ up to error } \varepsilon \cdot \kappa \\ & \lambda \leftarrow 2 \cdot \lambda \\ \textbf{7} \text{ until } \|\overline{\mathbf{v}} - \underline{\mathbf{v}}\|_{\infty} \leq \varepsilon \cdot (1 - \kappa) \\ \textbf{8} \text{ return } \underline{\mathbf{v}} \end{array}$

UNIF⁺. Uniformization

Uniformize to the rate 4.5:



Motivation Definitions and Problem Statement Existing Algorithms Our Algorithm Empirical Evaluation Conclusion

Our Algorithm $(UNIF^+)$

- $\begin{array}{ll} \text{input} & : \text{CTMDP } \mathcal{C} = (S, \textit{Act}, \mathbf{R}), \text{ goal states } \mathcal{G} \subseteq S, \text{ horizon } \mathcal{T} \in \mathbb{R}_{>0}, \\ & \text{scheduler class } \nabla \in \{\ell, e\}, \text{ and approximation error } \varepsilon > 0 \\ \text{params: truncation error ratio } \kappa \in (0, 1) \\ & \text{output: vector } v \text{ such that } \|v val^{\nabla}\|_{\infty} \leq \varepsilon \\ \end{array}$
- 1 $\lambda \leftarrow \mathsf{maximal}$ exit rate E_{max} in $\mathcal C$

Upper Bound

$UNIF^+$. Bounds

Lower Bound

$$\underline{\mathrm{val}}(s) := \sup_{\sigma \in Unt} \sum_{i=0}^{\infty} \mathrm{Pr}_{\sigma}^{\mathcal{C}_{\lambda}^{\nabla}, s} \left[\diamondsuit_{=i}^{\leq T} G \right]$$

Optimal reachability probability over untimed schedulers

Optimal reachability probability over "prophetic" schedulers

 $\overline{\mathrm{val}}(s) := \sum_{i=0}^{\infty} \sup_{\sigma \in Unt} \mathrm{Pr}_{\sigma}^{\mathcal{C}^{\nabla},s} \left[\diamondsuit_{=i}^{\leq T} G \right]$

Motivation Definitions and Problem Statement Existing Algorithms Our Algorithm Our Algorithm (UNIF⁺)

 $\begin{array}{ll} \text{input} & : \mathsf{CTMDP}\ \mathcal{C} = (S, \mathit{Act}, \mathbf{R}), \text{ goal states } G \subseteq S, \text{ horizon } \mathcal{T} \in \mathbb{R}_{>0}, \\ & \text{scheduler class } \nabla \in \{\ell, e\}, \text{ and approximation error } \varepsilon > 0 \\ \text{params: truncation error ratio } \kappa \in (0, 1) \\ \text{output: vector } v \text{ such that } \|v - val^{\nabla}\|_{\infty} \leq \varepsilon \\ \end{array}$

Empirical Evaluation

Conclusion

1
$$\lambda \leftarrow \mathsf{maximal}$$
 exit rate E_{max} in $\mathcal C$

$$\begin{array}{c|c} \mathbf{repeat} \\ \mathbf{3} & \mathcal{C}_{\lambda}^{\nabla} \leftarrow \nabla \text{-uniformisation of } \mathcal{C} \text{ to the rate } \lambda \\ \mathbf{4} & \underline{v} \leftarrow \text{approximation of the lower bound } \underline{val} \text{ for } \mathcal{C}_{\lambda}^{\nabla} \text{ up to error } \varepsilon \cdot \kappa \\ \mathbf{5} & \overline{v} \leftarrow \text{approximation of the upper bound } \overline{val} \text{ for } \mathcal{C}_{\lambda}^{\nabla} \text{ up to error } \varepsilon \cdot \kappa \\ \mathbf{6} & \lambda \leftarrow 2 \cdot \lambda \\ \mathbf{7} \text{ until } \|\overline{v} - \underline{v}\|_{\infty} \leq \varepsilon \cdot (1 - \kappa) \\ \mathbf{8} \text{ return } \underline{v} \end{array}$$

- Motivation
- Preliminaries
- Existing Algorithms
- Our Algorithm
- Empirical Evaluation
- Conclusion

Empirical Evaluation and Comparison

	max. <i>S</i>	max. 人	range of max. exit rates	best in early (# of cases)	best in late (# of cases)
PS:	743969	7	5,6 – 129,6	U ⁺ (32)	U ⁺ (47)
QS:	16924	36	6,5 - 44,9	U ⁺ (32)	PS-3(18), U ⁺ (17), AS (15)
DPMS:	366148	7	2,1-9,1	U^+ (31), ES-2(3), N/A(1)	AS (24), U ⁺ (14), PS-3(6)
GFS:	15258	2	252 - 612	U ⁺ (40)	AS (23) , U ⁺ (11)
FTWC:	2373650	5	2-3,02	υ ⁺ (25)	U ⁺ (32)
SJS:	18451	72	3 – 32	U ⁺ (57), ES-2(2)	U ⁺ (70), AS (29)
ES:	30004	2	10	U^+ (23), ES-2(4), N/A(1)	U ⁺ (28), PS-3(2)

Table: Overview of experiments summarizing which algorithm performed best how many times; N/A indicates that no algorithm completed within 15 minutes.

- Motivation
- Preliminaries
- Existing Algorithms
- Our Algorithm
- Empirical Evaluation
- Conclusion

Conclusion

- $\bullet~{\rm UNIF}^+$ performs very well for early scheduling problems
- $\bullet~{\rm UNIF}^+$ is competitive on late scheduling problems
- Results on late scheduling are inconclusive. Further insight into the problem is required
- The benefits of UNIF⁺:
 - it is easily switchable between early/late schedulers
 - a simplified version of $\rm UNIF^+$ with only 1 iteration is very fast and may give good a posteriori error bounds

The End

Yuliya Butkova, Hassan Hatefi, Holger Hermanns, Jan Krčál Continuous Optimal Timing