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k-Induction for Software Verification

I Bounded Model Checking (BMC) is successful for finding
bugs

I But not all loop bounds are small enough or even
known/computable

I BMC is good for falsification, but often cannot prove
absence of bugs

I (k-)Induction extends BMC towards unbounded safety
proofs
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1-Induction

I 1-Induction:
I Check that the safety property holds in the first loop

iteration: P(1)
I Equivalent to BMC with loop bound 1
I Check that the safety property is 1-inductive:
∀n : P(n) =⇒ P(n + 1)
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k-Induction

I k-Induction generalizes the induction principle:
I Check that the property holds in the first k iterations:

k∧
i=1

P(i)
I Equivalent to BMC with loop bound k
I Check that the safety property is k-inductive:

∀n :
(

k∧
i=1

P(n + i − 1)
)

=⇒ P(n + k)

I Stronger hypothesis is more likely to succeed [Wahl’13]
I Iteratively increase k

I Done, next talk?
I No!
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Example
int main() {

unsigned int x1 = 0, x2 = 0;
int s = 1;

while (nondet()) {
if (s == 1) x1++;
else if (s == 2) x2++;

s++;
if (s == 5) s = 1;

if (s == 1) assert(x1 == x2);
}
return 0;

}

data variables
state variable

unbounded loop

some calculationssome calculations

state computation

safety property
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}

I Explicit state analysis?

Too many states.
I Predicate analysis?
“Interpolants suck”

I Intervals, Octagons?
Too imprecise.

I BMC?
Unbounded loop.

I 1-Induction?
Hypothesis too weak.

I k-Induction
Hypothesis too weak!
Needs s > 0
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Further Strengthening

I Proofs still fail too often
I Introduce auxiliary invariants to strengthen the hypothesis:

∀n :
(

Inv(n) ∧
k∧

i=1
P(n + i − 1)

)
=⇒ P(n + k)

I Auxilary invariants must hold
I Auxiliary invariants must be inductive
I Where do these invariants come from?
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Auxiliary Invariants

I An additional component provides auxiliary invariants: The
invariant generator

I Should be strong enough so that the proof succeeds
I Should not waste more resources than necessary
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Experimental Results for k-Induction with static
Invariant Generation by Abstract Interpretation

2 814 verification tasks taken from SV-COMP’15

Approach KI KI←AI
weakest weak strongest

Correct results 1 082 1 900 1 934 1 861
CPU time (h) 380 190 180 200

k-Values for correct safe results only:
Max. final k 101 101 100 86

Powered by BenchExec
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Continuously-Refined Invariants

I An additional component provides auxiliary invariants: The
invariant generator

I Should be strong enough so that the proof succeeds
I Should not waste more resources than necessary

I But no single fixed-precision configuration can provide this!
I Invariant generator can be run in parallel and provide

invariants continuously
I Invariant generator improves invariants continuously over

time
I Pick up current set of auxiliary invariants in each

k-Induction iteration
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Algorithm

Induction:
1: k = 0
2: while !finished do
3: BMC(k)
4: Induction(k , invariants)
5: k++

Invariant generation:
1: prec = <weak>
2: invariants = ∅
3: while !finished do
4: invariants = GenInv(prec)
5: prec = RefinePrec(prec)
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Invariant Generation

How to generate invariants?

I Option 1: Abstract Interpretation
I Option 2: Candidate-based approaches

e.g. Kahsai, Tinelli: PKind [PDMC’11]
I Option 3: Policy Iteration (see next talk)
I ...
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Experimental Results for k-Induction with
Continuously-Refined Invariants

I 2 814 verification tasks taken from SV-COMP’15
I Best static configuration solved 1 934 tasks

in 180 CPU hours
Approach KI KI 			←−AI KI 			←−KI KI 			←−KI 			←−AI

Correct Results 1 082 1 984 1 690 2 005
CPU Time (h) 380 170 240 170

Powered by BenchExec
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k-Induction in Other Tools: Comparison

Tool Cbmc Esbmc CPAchecker
Configuration sequential parallel KI 			←−KI 			←−AI
Correct results 1 216 2 214 2 137 2 005
Wrong proofs 261 184 137 4
Wrong alarms 4 28 24 25
CPU time (h) 350 100 130 170

Powered by BenchExec
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Conclusion

I k-Induction for software verification is feasible

I k-Induction for software verification requires auxiliary
invariants

I Auxiliary invariants should be continously refined
I Combinations of KI and AI techniques are successful
I Unsound approaches are not worth their trouble
I Bounded model checkers can easily be extended to provide

proofs
I Read the upcoming paper:

Boosting k-Induction with Continuously-Refined Invariants
[CAV’15]
... or email me at dangl@fim.uni-passau.de
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