Nested Antichains for WS1S

Tomáš Fiedor ${ }^{1,2}$ Lukáš Holík ${ }^{2}$

${ }^{1}$ Red Hat, Czech Republic

Ondřej Lengál ${ }^{2}$ Tomáš Vojnar ${ }^{2}$
${ }^{2}$ Brno University of Technology, Czech Republic

AVM'15

WS1S

■ weak monadic second-order logic of one successor

- second-order \Rightarrow quantification over relations;
- monadic \Rightarrow relations are unary (i.e. sets);
- weak \Rightarrow sets are finite;
- of one successor \Rightarrow reasoning about linear structures.

■ corresponds to finite automata [Büchi'60]

- decidable

WS1S

■ weak monadic second-order logic of one successor

- second-order \Rightarrow quantification over relations;
- monadic \Rightarrow relations are unary (i.e. sets);
- weak \Rightarrow sets are finite;
- of one successor \Rightarrow reasoning about linear structures.

■ corresponds to finite automata [Büchi'60]

■ decidable — but NONELEMENTARY

- constructive proof via translation to finite automata

Application of WS1S

■ allows one to define rich invariants
■ famous decision procedure: the MONA tool

- often efficient (in practice)

■ used in tools for checking structural invariants

- Pointer Assertion Logic Engine (PALE)
- STRucture ANd Data (STRAND)
- many other applications
- program and protocol verifications, linguistics, theorem provers ...

Application of WS1S

■ allows one to define rich invariants
■ famous decision procedure: the MONA tool

- often efficient (in practice)

■ used in tools for checking structural invariants

- Pointer Assertion Logic Engine (PALE)
- STRucture ANd Data (STRAND)
- many other applications
- program and protocol verifications, linguistics, theorem provers ...
- but sometimes the complexity strikes back
- unavoidable in general
- however, we try to push the usability border further
- using the recent advancements in non-deterministic automata

WS1S

■ Syntax:

- term $\psi::=X \subseteq Y|\operatorname{Sing}(X)| X=\{0\} \mid X=\sigma(Y)$
- formula $\varphi::=\psi|\varphi \wedge \varphi| \varphi \vee \varphi|\neg \varphi| \exists X . \varphi$

■ Interpretation: over finite subsets of \mathbb{N}

- models of formulae = assignments of sets to variables
$■$ sets can be encoded as binary strings:

■ for each variable we have one track in the alphabet
- e.g. $\left[\begin{array}{l}0 \\ 0\end{array}\right]$ is symbol

■ Example: $\left\{X_{1} \mapsto \emptyset, X_{2} \mapsto\{4,2\}\right\} \models \varphi \stackrel{\text { def }}{\Leftrightarrow} X_{1}:\left[\begin{array}{l}0 \\ X_{2} \\ 0\end{array}\right]\left[\begin{array}{l}0 \\ 0\end{array}\right]\left[\begin{array}{l}0 \\ 1\end{array}\right]\left[\begin{array}{l}0 \\ 0\end{array}\right]\left[\begin{array}{l}0 \\ 1\end{array}\right] \in L\left(\mathcal{A}_{\varphi}\right)$

Deciding WS1S using deterministic automata

■ example of base automaton for $X=\sigma(Y)$

■ Example:

$$
\neg(X \subseteq Y) \wedge \exists Z . \operatorname{Sing}(Z) \vee \exists W . W=\sigma(Z)
$$

Deciding WS1S using deterministic automata

■ example of base automaton for $X=\sigma(Y)$

■ Example:

$$
\neg(X \subseteq Y) \wedge \exists Z . \operatorname{Sing}(Z) \vee \exists W . W=\sigma(Z)
$$

Deciding WS1S using deterministic automata

■ example of base automaton for $X=\sigma(Y)$

■ Example:

$$
\neg(X \subseteq Y) \wedge \exists Z . \operatorname{Sing}(Z) \vee \exists W . W=\sigma(Z)
$$

Deciding WS1S using deterministic automata

■ example of base automaton for $X=\sigma(Y)$

■ Example:

$$
\neg(X \subseteq Y) \wedge \exists Z . \operatorname{Sing}(Z) \vee \exists W . W=\sigma(Z)
$$

Deciding WS1S using deterministic automata

■ example of base automaton for $X=\sigma(Y)$

■ Example:

Deciding WS1S using deterministic automata

■ example of base automaton for $X=\sigma(Y)$

■ Example:

Deciding WS1S using deterministic automata

■ example of base automaton for $X=\sigma(Y)$

■ Example:

How to handle quantification

- issue with projection (existential quantification)
- after removing of the tracks not all models would be accepted
- so we need to adjust the final states

How to handle quantification

- issue with projection (existential quantification)
- after removing of the tracks not all models would be accepted
- so we need to adjust the final states

How to handle quantification

- issue with projection (existential quantification)
- after removing of the tracks not all models would be accepted
- so we need to adjust the final states

How to handle quantification

- issue with projection (existential quantification)
- after removing of the tracks not all models would be accepted
- so we need to adjust the final states

How to handle quantification

- issue with projection (existential quantification)
- after removing of the tracks not all models would be accepted
- so we need to adjust the final states

Deciding WS1S using non-deterministic automata

■ we consider only formulae in Prenex Normal Form ($\exists \mathrm{PNF}$)

- we focus on dealing with prefix and alternations of quantifications

■ based on number of alternations m

$$
\begin{equation*}
\varphi=\neg \exists \mathcal{X}_{m} \neg \ldots \neg \exists \mathcal{X}_{2} \underbrace{\neg \exists \mathcal{X}_{1}: \varphi_{0}(\mathbb{X})}_{\varphi_{1}} \tag{1}
\end{equation*}
$$

Deciding WS1S using non-deterministic automata

■ we consider only formulae in Prenex Normal Form ($\exists \mathrm{PNF}$)

- we focus on dealing with prefix and alternations of quantifications

■ based on number of alternations m

$$
\begin{equation*}
\varphi=\neg \exists \mathcal{X}_{m} \neg \ldots \neg \exists \mathcal{X}_{2} \underbrace{\neg \exists \mathcal{X}_{1}: \varphi_{0}(\mathbb{X})}_{\varphi_{1}} \tag{1}
\end{equation*}
$$

\rightarrow hierarchical family of automata defined as follows:

- $\mathcal{A}_{\varphi_{0}}=$ by composition of atomic automata (previously described) $.2^{Q_{0}}$
- $\mathcal{A}_{\varphi_{m}}=(\underbrace{2^{2}}_{m}, \Delta_{m}, I_{m}, F_{m})$

The intuition behind the procedure

Key observation for ground formulae

$$
\varphi \models \text { iff } I_{m} \cap F_{m} \neq \emptyset
$$

The intuition behind the procedure

Key observation for ground formulae

$$
\varphi \models \text { iff } I_{m} \cap F_{m} \neq \emptyset
$$

- Why?
- eventually the symbols degenerate to empty ones ...

The intuition behind the procedure

Key observation for ground formulae

$$
\varphi \models \text { iff } I_{m} \cap F_{m} \neq \emptyset
$$

- Why?
- eventually the symbols degenerate to empty ones ...

The intuition behind the procedure

Key observation for ground formulae

$$
\varphi \models \text { iff } I_{m} \cap F_{m} \neq \emptyset
$$

■ Why?

- eventually the symbols degenerate to empty ones ...

The intuition behind the procedure

Key observation for ground formulae

$$
\varphi \models \text { iff } I_{m} \cap F_{m} \neq \emptyset
$$

■ Why?

- eventually the symbols degenerate to empty ones ...

Construction of initial states I_{m}

■ Constructing the whole automaton for φ_{m} is unnecessary!

- we construct initial/final states only
- and test whether they intersect

Construction of initial states I_{m}

$■$ Constructing the whole automaton for φ_{m} is unnecessary!

- we construct initial/final states only
- and test whether they intersect

■ construction of initial states is straightforward; starting from I_{0} :

Construction of initial states I_{m}

$■$ Constructing the whole automaton for φ_{m} is unnecessary!

- we construct initial/final states only
- and test whether they intersect

■ construction of initial states is straightforward; starting from I_{0} :

- $I_{1}=\left\{I_{0}\right\}$

Construction of initial states I_{m}

$■$ Constructing the whole automaton for φ_{m} is unnecessary!

- we construct initial/final states only
- and test whether they intersect

■ construction of initial states is straightforward; starting from I_{0} :

- $I_{1}=\left\{I_{0}\right\}$
- $I_{2}=\left\{I_{1}\right\}=\left\{\left\{I_{0}\right\}\right\}$

Construction of initial states I_{m}

$■$ Constructing the whole automaton for φ_{m} is unnecessary!

- we construct initial/final states only
- and test whether they intersect

■ construction of initial states is straightforward; starting from I_{0} :

- $I_{1}=\left\{I_{0}\right\}$
- $I_{2}=\left\{I_{1}\right\}=\left\{\left\{I_{0}\right\}\right\}$
- $I_{m}=\left\{I_{m-1}\right\}=\underbrace{\left\{\left\{\ldots\left\{I_{0}\right\} \ldots\right\}\right\}}_{m}$
- based on determinisation procedure

Construction of initial states I_{m}

■ Constructing the whole automaton for φ_{m} is unnecessary!

- we construct initial/final states only
- and test whether they intersect
- construction of initial states is straightforward; starting from I_{0} :
- $I_{1}=\left\{I_{0}\right\}$
- $I_{2}=\left\{I_{1}\right\}=\left\{\left\{I_{0}\right\}\right\}$
- $I_{m}=\left\{I_{m-1}\right\}=\underbrace{\left\{\left\{\ldots\left\{I_{0}\right\} \ldots\right\}\right\}}_{m}$
- based on determinisation procedure
- final states are more tricky
- issue with projection (previously described)
- multiple levels of determinisation

Introduction to the computation of final states

■ we already have:

- formula in \exists PNF: $\varphi=\neg \exists \mathcal{X}_{m} \neg \ldots \neg \exists \mathcal{X}_{2} \neg \exists \mathcal{X}_{1}: \varphi_{0}(\mathbb{X})$
- base automaton for φ_{0}

Introduction to the computation of final states

■ we already have:

- formula in \exists PNF: $\varphi=\neg \exists \mathcal{X}_{m} \neg \ldots \neg \exists \mathcal{X}_{2} \neg \exists \mathcal{X}_{1}: \varphi_{0}(\mathbb{X})$
- base automaton for φ_{0}

■ our proposed method

- is based on generalized backward reachability of final states
- works on symbolic representation of states, sets of states, sets of sets of states ...
- for final states \rightarrow compute their predecessors pre 0_{0} (Intuition) states reaching final states become non-final after negation
- for non-final states \rightarrow compute their controllable predecessors cpre $_{0}$ (Intuition) states leading outside of non-final states become final after negation
- prunes states on all levels of the hierarchy to achieve minimal representation

Towards symbolic representation

■ Motivating example: $\neg \exists X . \varphi$

- $Q=\{0,1,2,3\}$
- $F=\{3\}$

Towards symbolic representation

■ Motivating example: $\neg \exists X . \varphi$

- $Q=\{0,1,2,3\}$
- $F=\{3\}$

■ After projection:

- $F^{\exists}=\{2,3\}$
- $N^{\exists}=Q \backslash F^{\exists}=\{0,1\}$

Towards symbolic representation

■ Motivating example: $\neg \exists X . \varphi$

- $Q=\{0,1,2,3\}$
- $F=\{3\}$

■ After projection:

- $F^{\exists}=\{2,3\}$
- $N^{\exists}=Q \backslash F^{\exists}=\{0,1\}$

■ After negation:

- $F_{1}=F_{\urcorner \exists}=\{\{0\},\{1\},\{0,1\}\}$
- $N_{1}=\{\{2\},\{3\},\{2,0\},\{3,0\}, \ldots\{2,3,0\},\{2,3,1\}, \ldots\{0,1,2,3\}\}$

Towards symbolic representation

■ Motivating example: $\neg \exists X . \varphi$

- $Q=\{0,1,2,3\}$
- $F=\{3\}$

■ After projection:

- $F^{\exists}=\{2,3\}$
- $N^{\exists}=Q \backslash F^{\exists}=\{0,1\}$

■ After negation:

- $F_{1}=F_{\neg \exists}=\{\{0\},\{1\},\{0,1\}\}$
- $N_{1}=\{\{2\},\{3\},\{2,0\},\{3,0\}, \ldots\{2,3,0\},\{2,3,1\}, \ldots\{0,1,2,3\}\}$

Towards symbolic representation

■ Motivating example: $\neg \exists X . \varphi$

- $Q=\{0,1,2,3\}$
- $F=\{3\}$

■ After projection:

- $F^{\exists}=\{2,3\}$
- $N^{\exists}=Q \backslash F^{\exists}=\{0,1\}$

■ After negation:

- $F_{1}=F_{\neg \exists}=\{\{0\},\{1\},\{0,1\}\}$

$$
=\downarrow\{\{0,1\}\}
$$

- $N_{1}=\{\{2\},\{3\},\{2,0\},\{3,0\}, \ldots\{2,3,0\},\{2,3,1\}, \ldots\{0,1,2,3\}\}$ $=\uparrow\{\{2\},\{3\}\}$

Towards symbolic representation

■ Motivating example: $\neg \exists X . \varphi$

- $Q=\{0,1,2,3\}$
- $F=\{3\}$

■ After projection:

- $F^{\exists}=\{2,3\}$
- $N^{\exists}=Q \backslash F^{\exists}=\{0,1\}$
- After negation:
- $F_{1}=F_{\neg \exists}=\{\{0\},\{1\},\{0,1\}\}$

$$
=\downarrow\{\{0,1\}\}
$$

- $N_{1}=\{\{2\},\{3\},\{2,0\},\{3,0\}, \ldots\{2,3,0\},\{2,3,1\}, \ldots\{0,1,2,3\}\}$

$$
=\uparrow\{\{2\},\{3\}\}
$$

■ so why not work with this symbolic representation only?

Computing final states F_{m} of formula φ_{m}
■ Given $\varphi=\neg \exists \mathcal{X}_{m} \neg \ldots \neg \exists \mathcal{X}_{2} \neg \exists \mathcal{X}_{1}: \varphi_{0}(\mathbb{X})$

Computing final states F_{m} of formula φ_{m}

■ Given $\varphi=\neg \exists \mathcal{X}_{m} \neg \ldots \neg \exists \mathcal{X}_{2} \neg \exists \mathcal{X}_{1}: \varphi_{0}(\mathbb{X})$
1 Extend set of final states after $\exists: F_{0}^{\exists}=\left\{\mu Z . F \cup \operatorname{pre}_{0}(Z)\right\}$

Computing final states F_{m} of formula φ_{m}

■ Given $\varphi=\neg \exists \mathcal{X}_{m} \neg \ldots \neg \exists \mathcal{X}_{2} \neg \exists \mathcal{X}_{1}: \varphi_{0}(\mathbb{X})$
1 Extend set of final states after $\exists: F_{0}^{\exists}=\left\{\mu Z . F \cup\right.$ pre $\left._{0}(Z)\right\}$
2 Negate the final states: $N_{1}=\uparrow\left\{F_{0}^{\exists}\right\}$

Computing final states F_{m} of formula φ_{m}

■ Given $\varphi=\neg \exists \mathcal{X}_{m} \neg \ldots \neg \exists \mathcal{X}_{2} \neg \exists \mathcal{X}_{1}: \varphi_{0}(\mathbb{X})$
1 Extend set of final states after $\exists: F_{0}^{\exists}=\left\{\mu Z . F \cup\right.$ pre $\left._{0}(Z)\right\}$
2 Negate the final states: $N_{1}=\uparrow\left\{F_{0}^{\exists}\right\}$
3 Reduce set of non-final states after \exists : $N_{1}^{\exists}=\left\{\nu Z . N_{1} \cap \operatorname{cpre}(Z)\right\}$

- Notice the duality with step 1.

$$
\begin{equation*}
\cap \mapsto \cup \text { cpre }_{0} \mapsto \text { pre }_{0} \quad \nu \mapsto \mu \tag{2}
\end{equation*}
$$

Computing final states F_{m} of formula φ_{m}

■ Given $\varphi=\neg \exists \mathcal{X}_{m} \neg \ldots \neg \exists \mathcal{X}_{2} \neg \exists \mathcal{X}_{1}: \varphi_{0}(\mathbb{X})$
1 Extend set of final states after $\exists: F_{0}^{\exists}=\left\{\mu Z . F \cup\right.$ pre $\left._{0}(Z)\right\}$
2 Negate the final states: $N_{1}=\uparrow\left\{F_{0}^{\exists}\right\}$
3 Reduce set of non-final states after \exists : $N_{1}^{\exists}=\left\{\nu Z . N_{1} \cap \operatorname{cpre}(Z)\right\}$

- Notice the duality with step 1.

$$
\begin{equation*}
\cap \mapsto \cup \text { cpre }_{0} \mapsto \text { pre }_{0} \quad \nu \mapsto \mu \tag{2}
\end{equation*}
$$

4 Negate the non-final states: $F_{2}=\downarrow\left\{N_{1}^{\exists}\right\}$

Computing final states F_{m} of formula φ_{m}

■ Given $\varphi=\neg \exists \mathcal{X}_{m} \neg \ldots \neg \exists \mathcal{X}_{2} \neg \exists \mathcal{X}_{1}: \varphi_{0}(\mathbb{X})$
1 Extend set of final states after $\exists: F_{0}^{\exists}=\left\{\mu Z . F \cup \operatorname{pre}_{0}(Z)\right\}$
2 Negate the final states: $N_{1}=\uparrow\left\{F_{0}^{\exists}\right\}$
3 Reduce set of non-final states after \exists : $N_{1}^{\exists}=\left\{\nu Z . N_{1} \cap \operatorname{cpre}_{0}(Z)\right\}$

- Notice the duality with step 1.

$$
\begin{equation*}
\cap \mapsto \cup \text { cpre }_{0} \mapsto \text { pre }_{0} \quad \nu \quad \mapsto \tag{2}
\end{equation*}
$$

4 Negate the non-final states: $F_{2}=\downarrow\left\{N_{1}^{\exists}\right\}$

5 and keep alternating between computing final and non-final states until F_{m} as follows:

- $F_{i+1}=\downarrow\left\{\nu Z . N_{i} \cap \operatorname{cpre}_{0}(Z)\right\}$
- $N_{i+1}=\uparrow\left\{\mu Z . F_{i} \cup \operatorname{pre}_{0}(Z)\right\}$

Computing predecessors of the state

■ Can we compute cpre $_{0} /$ pre $_{0}$ of symbolic states?

Computing predecessors of the state

■ Can we compute cpre $_{0} /$ pre $_{0}$ of symbolic states? Yes!

Computing predecessors of the state

■ Can we compute cpre $_{0} /$ pre $_{0}$ of symbolic states? Yes!
Lemma. 1

$$
\operatorname{cpre}_{0}(\uparrow\{Q\})=\uparrow \amalg\left\{\operatorname{pre}_{0}(Q)\right\}
$$

■ note that we define the dual lemma for downward closed sets

Computing predecessors of the state

■ Can we compute cpre $_{0} /$ pre $_{0}$ of symbolic states? Yes!
Lemma. 1

$$
\operatorname{cpre}_{0}(\uparrow\{Q\})=\uparrow \amalg\left\{\operatorname{pre}_{0}(Q)\right\}
$$

■ note that we define the dual lemma for downward closed sets

Computing predecessors of the state

■ Can we compute cpre $_{0} /$ pre $_{0}$ of symbolic states? Yes!
Lemma. 1

$$
\operatorname{cpre}_{0}(\uparrow\{Q\})=\uparrow \amalg\left\{\operatorname{pre}_{0}(Q)\right\}
$$

- note that we define the dual lemma for downward closed sets

Computing predecessors of the state

■ Can we compute cpre $_{0} /$ pre $_{0}$ of symbolic states? Yes!
Lemma. 1

$$
\operatorname{cpre}_{0}(\uparrow\{Q\})=\uparrow \amalg\left\{\operatorname{pre}_{0}(Q)\right\}
$$

■ \amalg breaks the predecessors into new generators that cover the Q
■ note that we define the dual lemma for downward closed sets

Computing predecessors of the state

■ Can we compute cpre $_{0} /$ pre $_{0}$ of symbolic states? Yes!
Lemma. 1

$$
\operatorname{cpre}_{0}(\uparrow\{Q\})=\uparrow \amalg\left\{\operatorname{pre}_{0}(Q)\right\}
$$

■ \amalg breaks the predecessors into new generators that cover the Q
■ note that we define the dual lemma for downward closed sets

Computing predecessors of the state

■ Can we compute cpre $_{0} /$ pre $_{0}$ of symbolic states? Yes!
Lemma. 1

$$
\operatorname{cpre}_{0}(\uparrow\{Q\})=\uparrow \amalg\left\{\operatorname{pre}_{0}(Q)\right\}
$$

■ \amalg breaks the predecessors into new generators that cover the Q
■ note that we define the dual lemma for downward closed sets

Computing predecessors of the state

■ Can we compute cpre $_{0} /$ pre $_{0}$ of symbolic states? Yes!
Lemma. 1

$$
\operatorname{cpre}_{0}(\uparrow\{Q\})=\uparrow \amalg\left\{\operatorname{pre}_{0}(Q)\right\}
$$

■ \amalg breaks the predecessors into new generators that cover the Q
■ note that we define the dual lemma for downward closed sets

How to achieve state space reduction

■ We showed the nested structure of F_{m} is very complex,

How to achieve state space reduction

\square We showed the nested structure of F_{m} is very complex,

- but we only work with the symbolic representation of the generators (with antichains)
-... and the generators of the generators and ...
- this itself is the first source of space reduction

How to achieve state space reduction

■ We showed the nested structure of F_{m} is very complex,

- but we only work with the symbolic representation of the generators (with antichains)
- ... and the generators of the generators and ...
- this itself is the first source of space reduction
- further we prune the generators subsumed by other generators
- the subsumption relation is computed on nested structure of symbolic representation of lower levels

Experimental results

- implemented in dWiNA
- compared with MONA:
- on generated and real formulae
- in generic and \exists PNF form

real	MONA				dWiNA	
	Time [s]		Space [states]		Time [s]	Space [states]
	normal	ヨPNF	normal	ヨPNF	Prefix	Prefix
list-reverse-after-loop	0.01	0.01	179	1326	0.01	100
list-reverse-in-loop	0.02	0.47	1311	70278	0.02	260
bubblesort-else	0.01	0.45	1285	12071	0.01	14
bubblesort-if-else	0.02	2.17	4260	116760	0.23	234
bubblesort-if-if	0.12	5.29	8390	233372	1.14	28
generated						
3 alternations	-	0.57	-	60924	0.01	50
4 alternations	-	1.79	-	145765	0.02	58
5 alternations	-	4.98	-	349314	0.02	70
6 alternations	-	TO	-	TO	0.47	90

Conclusion and Future Work

■ Future work

- extension to WS2S
- opens whole new world of tree structures
- generalization of symbolic tree representation
- to process logical connectives
- to handle general (non- \exists PNF) formulae
- Conclusion
- WS1S = Great expressivity, yet decidable!
- Novel approach based on antichains
- Encouraging results in terms of space reduction

Thank you for your attention!

Any questions?

