### Nested Antichains for WS1S

### Tomáš Fiedor<sup>1,2</sup> Lukáš Holík<sup>2</sup>

<sup>1</sup>Red Hat, Czech Republic

Ondřej Lengál<sup>2</sup> Tomáš Vojnar<sup>2</sup>

<sup>2</sup>Brno University of Technology, Czech Republic

AVM'15

## WS1S

weak monadic second-order logic of one successor

- ► second-order ⇒ quantification over relations;
- monadic  $\Rightarrow$  relations are unary (i.e. sets);
- weak ⇒ sets are finite;
- of one successor  $\Rightarrow$  reasoning about linear structures.
- corresponds to finite automata [Büchi'60]

#### decidable

## WS1S

weak monadic second-order logic of one successor

- ► second-order ⇒ quantification over relations;
- monadic  $\Rightarrow$  relations are unary (i.e. sets);
- weak ⇒ sets are finite;
- of one successor  $\Rightarrow$  reasoning about linear structures.
- corresponds to finite automata [Büchi'60]

### decidable — but NONELEMENTARY

constructive proof via translation to finite automata

# Application of WS1S

- allows one to define rich invariants
- famous decision procedure: the MONA tool
  - often efficient (in practice)
- used in tools for checking structural invariants
  - Pointer Assertion Logic Engine (PALE)
  - STRucture ANd Data (STRAND)
- many other applications
  - program and protocol verifications, linguistics, theorem provers ...

# Application of WS1S

- allows one to define rich invariants
- famous decision procedure: the MONA tool
  - often efficient (in practice)
- used in tools for checking structural invariants
  - Pointer Assertion Logic Engine (PALE)
  - STRucture ANd Data (STRAND)
- many other applications
  - program and protocol verifications, linguistics, theorem provers ...
- but sometimes the complexity strikes back
  - unavoidable in general
  - however, we try to push the usability border further
    - using the recent advancements in non-deterministic automata

# WS1S

### Syntax:

- ► term  $\psi ::= X \subseteq Y \mid \text{Sing}(X) \mid X = \{0\} \mid X = \sigma(Y)$
- ► formula  $\varphi ::= \psi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \neg \varphi \mid \exists X. \varphi$
- Interpretation: over finite subsets of N
  - models of formulae = assignments of sets to variables
- sets can be encoded as binary strings:

| ▶ ${1,4,5} \rightarrow$ | Index:                   | 012345                           | 0123456              | 01234567             |     |
|-------------------------|--------------------------|----------------------------------|----------------------|----------------------|-----|
|                         | Membership:<br>Encoding: | <mark>x√xx</mark> √√ ,<br>010011 | x√xx√√x 0<br>0100110 | x√xx√√xx<br>01001100 | ••• |

for each variable we have one track in the alphabet

• e.g. 
$$\begin{bmatrix} 0\\0 \end{bmatrix}$$
 is symbol

**Example:**  $\{X_1 \mapsto \emptyset, X_2 \mapsto \{4, 2\}\} \models \varphi \stackrel{\text{def } X_1: \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \in L(\mathcal{A}_{\varphi})$ 

• example of base automaton for  $X = \sigma(Y)$ 



Example:

 $\neg (X \subseteq Y) \land \exists Z. \operatorname{Sing}(Z) \lor \exists W. W = \sigma(Z)$ 

• example of base automaton for  $X = \sigma(Y)$ 



$$\neg (X \subseteq Y) \land \exists Z. \operatorname{Sing}(Z) \lor \exists W. W = \sigma(Z)$$
$$| \qquad | \qquad | \\ \mathcal{A}_3 \qquad \mathcal{A}_2 \qquad \mathcal{A}_1$$

• example of base automaton for  $X = \sigma(Y)$ 



• example of base automaton for  $X = \sigma(Y)$ 





• example of base automaton for  $X = \sigma(Y)$ 





example of base automaton for  $X = \sigma(Y)$ 





example of base automaton for  $X = \sigma(Y)$ 





■ issue with projection (existential quantification)

- after removing of the tracks not all models would be accepted
- so we need to adjust the final states



■ issue with projection (existential quantification)

- after removing of the tracks not all models would be accepted
- so we need to adjust the final states



■ issue with projection (existential quantification)

- after removing of the tracks not all models would be accepted
- so we need to adjust the final states



issue with projection (existential quantification)

- after removing of the tracks not all models would be accepted
- so we need to adjust the final states



issue with projection (existential quantification)

- after removing of the tracks not all models would be accepted
- so we need to adjust the final states



■ we consider only formulae in Prenex Normal Form (∃PNF)

- we focus on dealing with prefix and alternations of quantifications
- based on number of alternations m

$$\varphi = \neg \exists \mathcal{X}_{m} \neg \ldots \neg \exists \mathcal{X}_{2} \underbrace{\neg \exists \mathcal{X}_{1} : \varphi_{0}(\mathbb{X})}_{\varphi_{1}}$$

$$\underbrace{\cdot}_{\varphi_{m}}$$
(1)

■ we consider only formulae in Prenex Normal Form (∃PNF)

- we focus on dealing with prefix and alternations of quantifications
- based on number of alternations m

$$\varphi = \neg \exists \mathcal{X}_{m} \neg \dots \neg \exists \mathcal{X}_{2} \underbrace{\neg \exists \mathcal{X}_{1} : \varphi_{0}(\mathbb{X})}_{\varphi_{1}}$$
(1)

 $\rightarrow$  hierarchical family of automata defined as follows:

Key observation for ground formulae

$$\varphi \models \mathsf{iff} \ I_m \cap F_m \neq \emptyset$$

### Key observation for ground formulae

$$\varphi \models \mathsf{iff} \ I_m \cap F_m \neq \emptyset$$

### Why?



### Key observation for ground formulae

$$\varphi \models \mathsf{iff} \ I_m \cap F_m \neq \emptyset$$

### Why?



### Key observation for ground formulae

$$\varphi \models \mathsf{iff} \ I_m \cap F_m \neq \emptyset$$

### Why?



### Key observation for ground formulae

$$\varphi \models \mathsf{iff} \ I_m \cap F_m \neq \emptyset$$

### Why?



### Constructing the whole automaton for $\varphi_m$ is unnecessary!

- we construct initial/final states only
- and test whether they intersect

• Constructing the whole automaton for  $\varphi_m$  is unnecessary!

- we construct initial/final states only
- and test whether they intersect
- construction of initial states is straightforward; starting from *l*<sub>0</sub>:

• Constructing the whole automaton for  $\varphi_m$  is unnecessary!

- we construct initial/final states only
- and test whether they intersect
- construction of initial states is straightforward; starting from *l*<sub>0</sub>:

•  $I_1 = \{I_0\}$ 

• Constructing the whole automaton for  $\varphi_m$  is unnecessary!

- we construct initial/final states only
- and test whether they intersect
- construction of initial states is straightforward; starting from *I*<sub>0</sub>:

• 
$$I_1 = \{I_0\}$$

•  $I_2 = \{I_1\} = \{\{I_0\}\}$ 

• Constructing the whole automaton for  $\varphi_m$  is unnecessary!

- we construct initial/final states only
- and test whether they intersect
- construction of initial states is straightforward; starting from *l*<sub>0</sub>:

▶ 
$$I_1 = \{I_0\}$$
  
▶  $I_2 = \{I_1\} = \{\{I_0\}\}$   
⋮  
▶  $I_m = \{I_{m-1}\} = \underbrace{\{\{\dots, \{I_0\}, \dots\}\}}_{m}$   
• based on determinisation procedure

Constructing the whole automaton for  $\varphi_m$  is unnecessary!

- we construct initial/final states only
- and test whether they intersect
- construction of initial states is straightforward; starting from *l*<sub>0</sub>:

• 
$$I_1 = \{I_0\}$$
  
•  $I_2 = \{I_1\} = \{\{I_0\}\}$ 

$$I_m = \{I_{m-1}\} = \underbrace{\{\{\ldots, \{I_0\} \ldots\}\}}$$

• based on determinisation procedure

m

- final states are more tricky
  - issue with projection (previously described)
  - multiple levels of determinisation

### Introduction to the computation of final states

#### we already have:

- formula in  $\exists \mathsf{PNF}: \varphi = \neg \exists \mathcal{X}_m \neg \ldots \neg \exists \mathcal{X}_2 \neg \exists \mathcal{X}_1: \varphi_0(\mathbb{X})$
- base automaton for  $\varphi_0$

## Introduction to the computation of final states

#### we already have:

- formula in  $\exists \mathsf{PNF}: \varphi = \neg \exists \mathcal{X}_m \neg \ldots \neg \exists \mathcal{X}_2 \neg \exists \mathcal{X}_1 : \varphi_0(\mathbb{X})$
- base automaton for  $\varphi_0$
- our proposed method
  - is based on generalized backward reachability of final states
  - works on symbolic representation of states, sets of states, sets of states ...
    - for final states → compute their predecessors pre<sub>0</sub> (Intuition) states reaching final states become non-final after negation
    - for non-final states → compute their controllable predecessors cpre<sub>0</sub> (Intuition) states leading outside of non-final states become final after negation
  - prunes states on all levels of the hierarchy to achieve minimal representation

### Towards symbolic representation

### **Motivating example:** $\neg \exists X. \varphi$

Q = {0, 1, 2, 3}
F = {3}



### Towards symbolic representation

### • Motivating example: $\neg \exists X. \varphi$

Q = {0, 1, 2, 3}
F = {3}



After projection:

▶ 
$$F^{\exists} = \{2, 3\}$$
  
▶  $N^{\exists} = Q \setminus F^{\exists} = \{0, 1\}$ 

## Towards symbolic representation

### ■ Motivating example: $\neg \exists X. \varphi$

•  $Q = \{0, 1, 2, 3\}$ 



After projection:

► 
$$F^{\exists} = \{2,3\}$$
  
►  $N^{\exists} = Q \setminus F^{\exists} = \{0,1\}$ 

After negation:

•  $F_1 = F_{\neg \exists} = \{\{0\}, \{1\}, \{0, 1\}\}$ 

•  $N_1 = \{\{2\}, \{3\}, \{2,0\}, \{3,0\}, \dots, \{2,3,0\}, \{2,3,1\}, \dots, \{0,1,2,3\}\}$ 

## Towards symbolic representation

#### **Motivating example:** $\neg \exists X. \varphi$

Q = {0, 1, 2, 3}
F = {3}



After projection:

▶ 
$$F^{\exists} = \{2, 3\}$$
  
▶  $N^{\exists} = Q \setminus F^{\exists} = \{0, 1\}$ 

After negation:

• 
$$F_1 = F_{\neg \exists} = \{\{0\}, \{1\}, \{0, 1\}\}$$

 $\blacktriangleright \ N_1 = \{\{2\}, \{3\}, \{2,0\}, \{3,0\}, \dots \{2,3,0\}, \{2,3,1\}, \dots \{0,1,2,3\}\}$ 

## Towards symbolic representation

#### **Motivating example:** $\neg \exists X. \varphi$

Q = {0, 1, 2, 3}
F = {3}



After projection:

▶ 
$$F^{\exists} = \{2, 3\}$$
  
▶  $N^{\exists} = Q \setminus F^{\exists} = \{0, 1\}$ 

After negation:

► 
$$F_1 = F_{\neg \exists} = \{\{0\}, \{1\}, \{0, 1\}\}\$$
  
=  $\downarrow \{\{0, 1\}\}$   
►  $N_1 = \{\{2\}, \{3\}, \{2, 0\}, \{3, 0\}, \dots \{2, 3, 0\}, \{2, 3, 1\}, \dots \{0, 1, 2, 3\}\}\$   
=  $\uparrow \{\{2\}, \{3\}\}\}$ 

# Towards symbolic representation

#### **Motivating example:** $\neg \exists X. \varphi$

Q = {0, 1, 2, 3}
F = {3}



After projection:

▶ 
$$F^{\exists} = \{2, 3\}$$
  
▶  $N^{\exists} = Q \setminus F^{\exists} = \{0, 1\}$ 

After negation:

$$N_{1} = \{\{2\}, \{3\}, \{2,0\}, \{3,0\}, \dots, \{2,3,0\}, \{2,3,1\}, \dots, \{0,1,2,3\}\}$$
  
=  $\uparrow \{\{2\}, \{3\}\}$ 

so why not work with this symbolic representation only?

Given  $\varphi = \neg \exists \mathcal{X}_m \neg \ldots \neg \exists \mathcal{X}_2 \neg \exists \mathcal{X}_1 : \varphi_0(\mathbb{X})$ 

Given  $\varphi = \neg \exists \mathcal{X}_m \neg \ldots \neg \exists \mathcal{X}_2 \neg \exists \mathcal{X}_1 : \varphi_0(\mathbb{X})$ 

**1** Extend set of final states after  $\exists: F_0^{\exists} = \{\mu Z.F \cup \text{pre}_0(Z)\}$ 

- Given  $\varphi = \neg \exists \mathcal{X}_m \neg \ldots \neg \exists \mathcal{X}_2 \neg \exists \mathcal{X}_1 : \varphi_0(\mathbb{X})$
- **1** Extend set of final states after  $\exists: F_0^{\exists} = \{\mu Z.F \cup \text{pre}_0(Z)\}$
- 2 Negate the final states:  $N_1 = \uparrow \{F_0^{\exists}\}$

- Given  $\varphi = \neg \exists \mathcal{X}_m \neg \ldots \neg \exists \mathcal{X}_2 \neg \exists \mathcal{X}_1 : \varphi_0(\mathbb{X})$
- **1** Extend set of final states after  $\exists: F_0^{\exists} = \{\mu Z.F \cup pre_0(Z)\}$
- **2** Negate the final states:  $N_1 = \uparrow \{F_0^\exists\}$
- **3** Reduce set of non-final states after  $\exists: N_1^{\exists} = \{\nu Z.N_1 \cap cpre_0(Z)\}$ 
  - Notice the duality with step 1.

$$\cap \mapsto \cup \operatorname{cpre}_{0} \mapsto \operatorname{pre}_{0} \nu \mapsto \mu$$
(2)

- Given  $\varphi = \neg \exists \mathcal{X}_m \neg \ldots \neg \exists \mathcal{X}_2 \neg \exists \mathcal{X}_1 : \varphi_0(\mathbb{X})$
- **1** Extend set of final states after  $\exists: F_0^{\exists} = \{\mu Z.F \cup pre_0(Z)\}$
- **2** Negate the final states:  $N_1 = \uparrow \{F_0^\exists\}$
- **3** Reduce set of non-final states after  $\exists: N_1^{\exists} = \{\nu Z. N_1 \cap cpre_0(Z)\}$ 
  - Notice the duality with step 1.

 $\cap \mapsto \cup \text{ cpre}_{\mathbf{0}} \mapsto \text{ pre}_{\mathbf{0}} \quad \nu \mapsto \mu$  (2)

4 Negate the non-final states:  $F_2 = \downarrow \{N_1^{\exists}\}$ 

- Given  $\varphi = \neg \exists \mathcal{X}_m \neg \ldots \neg \exists \mathcal{X}_2 \neg \exists \mathcal{X}_1 : \varphi_0(\mathbb{X})$
- **1** Extend set of final states after  $\exists: F_0^{\exists} = \{\mu Z.F \cup pre_0(Z)\}$
- **2** Negate the final states:  $N_1 = \uparrow \{F_0^\exists\}$
- **3** Reduce set of non-final states after  $\exists: N_1^{\exists} = \{\nu Z.N_1 \cap cpre_0(Z)\}$ 
  - Notice the duality with step 1.

 $\cap \mapsto \cup \text{ cpre}_{\mathbf{0}} \mapsto \text{ pre}_{\mathbf{0}} \quad \nu \mapsto \mu$  (2)

- 4 Negate the non-final states:  $F_2 = \downarrow \{N_1^\exists\}$
- **5** and keep alternating between computing final and non-final states until  $F_m$  as follows:
  - $F_{i+1} = \downarrow \{\nu Z.N_i \cap \operatorname{cpre}_0(Z)\}$
  - $N_{i+1} = \uparrow \{ \mu Z.F_i \cup \text{pre}_0(Z) \}$

■ Can we compute *cpre*<sub>0</sub>/*pre*<sub>0</sub> of symbolic states?

■ Can we compute *cpre*<sub>0</sub>/*pre*<sub>0</sub> of symbolic states? Yes!

#### ■ Can we compute *cpre*<sub>0</sub>/*pre*<sub>0</sub> of symbolic states? Yes!

Lemma. 1

 $\operatorname{cpre}_0(\uparrow \{Q\}) = \uparrow \coprod \{\operatorname{pre}_0(Q)\}$ 



note that we define the dual lemma for downward closed sets

#### ■ Can we compute *cpre*<sub>0</sub>/*pre*<sub>0</sub> of symbolic states? Yes!

Lemma. 1

 $\operatorname{cpre}_0(\uparrow \{Q\}) = \uparrow \coprod \{\operatorname{pre}_0(Q)\}$ 



note that we define the dual lemma for downward closed sets

#### ■ Can we compute *cpre*<sub>0</sub>/*pre*<sub>0</sub> of symbolic states? Yes!

Lemma. 1

$$\operatorname{cpre}_0(\uparrow \{Q\}) = \uparrow \coprod \{\operatorname{pre}_0(Q)\}$$



note that we define the dual lemma for downward closed sets

#### ■ Can we compute *cpre*<sub>0</sub>/*pre*<sub>0</sub> of symbolic states? Yes!

Lemma. 1

$$\operatorname{cpre}_0(\uparrow \{Q\}) = \uparrow \coprod \{\operatorname{pre}_0(Q)\}$$



I breaks the predecessors into new generators that cover the Q
note that we define the dual lemma for downward closed sets

T. Fiedor

#### ■ Can we compute *cpre*<sub>0</sub>/*pre*<sub>0</sub> of symbolic states? Yes!

Lemma. 1

 $\operatorname{cpre}_0(\uparrow \{Q\}) = \uparrow \coprod \{\operatorname{pre}_0(Q)\}$ 



I breaks the predecessors into new generators that cover the Q
 note that we define the dual lemma for downward closed sets

#### ■ Can we compute *cpre*<sub>0</sub>/*pre*<sub>0</sub> of symbolic states? Yes!

Lemma. 1

$$\operatorname{cpre}_0(\uparrow \{Q\}) = \uparrow \coprod \{\operatorname{pre}_0(Q)\}$$



If breaks the predecessors into new generators that cover the Q
 note that we define the dual lemma for downward closed sets

T. Fiedor

Nested Antichains for WS1S

#### ■ Can we compute *cpre*<sub>0</sub>/*pre*<sub>0</sub> of symbolic states? Yes!

Lemma. 1

$$\operatorname{cpre}_0(\uparrow \{Q\}) = \uparrow \coprod \{\operatorname{pre}_0(Q)\}$$



If breaks the predecessors into new generators that cover the Q
 note that we define the dual lemma for downward closed sets

T. Fiedor

Nested Antichains for WS1S

### How to achieve state space reduction

• We showed the nested structure of  $F_m$  is very complex,

## How to achieve state space reduction

■ We showed the nested structure of *F<sub>m</sub>* is very complex,

- but we only work with the symbolic representation of the generators (with antichains)
- ... and the generators of the generators and ...
- this itself is the first source of space reduction

## How to achieve state space reduction

• We showed the nested structure of  $F_m$  is very complex,

- but we only work with the symbolic representation of the generators (with antichains)
- ... and the generators of the generators and ...
- this itself is the first source of space reduction

■ further we prune the generators subsumed by other generators

 the subsumption relation is computed on nested structure of symbolic representation of lower levels

# **Experimental results**

- implemented in dWiNA
- compared with MONA:
  - on generated and real formulae
  - ▶ in generic and ∃PNF form

|                         | MONA     |      |                |         | dWiNA    |                |
|-------------------------|----------|------|----------------|---------|----------|----------------|
|                         | Time [s] |      | Space [states] |         | Time [s] | Space [states] |
| real                    | normal   | ∃PNF | normal         | ∃PNF    | Prefix   | Prefix         |
| list-reverse-after-loop | 0.01     | 0.01 | 179            | 1 326   | 0.01     | 100            |
| list-reverse-in-loop    | 0.02     | 0.47 | 1311           | 70278   | 0.02     | 260            |
| bubblesort-else         | 0.01     | 0.45 | 1 285          | 12071   | 0.01     | 14             |
| bubblesort-if-else      | 0.02     | 2.17 | 4 260          | 116760  | 0.23     | 234            |
| bubblesort-if-if        | 0.12     | 5.29 | 8 390          | 233 372 | 1.14     | 28             |
| generated               |          |      |                |         |          |                |
| 3 alternations          | -        | 0.57 | -              | 60 924  | 0.01     | 50             |
| 4 alternations          | -        | 1.79 | -              | 145765  | 0.02     | 58             |
| 5 alternations          | -        | 4.98 | -              | 349314  | 0.02     | 70             |
| 6 alternations          | -        | то   | -              | то      | 0.47     | 90             |

# **Conclusion and Future Work**

#### Future work

- extension to WS2S
  - · opens whole new world of tree structures
- generalization of symbolic tree representation
  - to process logical connectives
  - to handle general (non-∃PNF) formulae

#### Conclusion

- WS1S = Great expressivity, yet decidable!
- Novel approach based on antichains
- Encouraging results in terms of space reduction

# Thank you for your attention!

# Any questions?