
Nested Antichains for WS1S

Tomáš Fiedor1,2 Lukáš Holı́k2

1Red Hat, Czech Republic

Ondřej Lengál2 Tomáš Vojnar2

2Brno University of Technology, Czech Republic

AVM’15

WS1S

weak monadic second-order logic of one successor
I second-order⇒ quantification over relations;
I monadic⇒ relations are unary (i.e. sets);
I weak⇒ sets are finite;
I of one successor⇒ reasoning about linear structures.

corresponds to finite automata [Büchi’60]

decidable

— but NONELEMENTARY
I constructive proof via translation to finite automata

T. Fiedor Nested Antichains for WS1S AVM’15 2 / 17

WS1S

weak monadic second-order logic of one successor
I second-order⇒ quantification over relations;
I monadic⇒ relations are unary (i.e. sets);
I weak⇒ sets are finite;
I of one successor⇒ reasoning about linear structures.

corresponds to finite automata [Büchi’60]

decidable — but NONELEMENTARY
I constructive proof via translation to finite automata

T. Fiedor Nested Antichains for WS1S AVM’15 2 / 17

Application of WS1S

allows one to define rich invariants

famous decision procedure: the MONA tool
I often efficient (in practice)

used in tools for checking structural invariants
I Pointer Assertion Logic Engine (PALE)
I STRucture ANd Data (STRAND)

many other applications
I program and protocol verifications, linguistics, theorem provers . . .

but sometimes the complexity strikes back
I unavoidable in general
I however, we try to push the usability border further

• using the recent advancements in non-deterministic automata

T. Fiedor Nested Antichains for WS1S AVM’15 3 / 17

Application of WS1S

allows one to define rich invariants

famous decision procedure: the MONA tool
I often efficient (in practice)

used in tools for checking structural invariants
I Pointer Assertion Logic Engine (PALE)
I STRucture ANd Data (STRAND)

many other applications
I program and protocol verifications, linguistics, theorem provers . . .

but sometimes the complexity strikes back
I unavoidable in general
I however, we try to push the usability border further

• using the recent advancements in non-deterministic automata

T. Fiedor Nested Antichains for WS1S AVM’15 3 / 17

WS1S

Syntax:
I term ψ ::= X ⊆ Y | Sing(X) | X = {0} | X = σ(Y)
I formula ϕ ::= ψ | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | ∃X .ϕ

Interpretation: over finite subsets of N
I models of formulae = assignments of sets to variables

sets can be encoded as binary strings:

I {1,4,5} →
Index:
Membership:
Encoding:

012345
xXxxXX

010011
,

0123456
xXxxXXx
0100110

or
01234567
xXxxXXxx
01001100

. . .

for each variable we have one track in the alphabet
I e.g.

[
0
0

]
is symbol

Example: {X1 7→ ∅,X2 7→ {4,2}} |= ϕ
def⇔ X1:

X2:

[
0
0

][
0
0

][
0
1

][
0
0

][
0
1

]
∈ L(Aϕ)

T. Fiedor Nested Antichains for WS1S AVM’15 4 / 17

Deciding WS1S using deterministic automata
example of base automaton for X = σ(Y)

0 1 2

X:
Y:

[
0
0

]
X:
Y:

[
0
1

]
X:
Y:

[
1
0

] X:
Y:

[
0
0

]

Example:

¬(X ⊆ Y) ∧ ∃Z .Sing(Z) ∨ ∃W .W = σ(Z)

A1

project W

A2 ∪ A4

A2

project Z

A6 ∩ A7

A3

complementA6

A7

A4

T. Fiedor Nested Antichains for WS1S AVM’15 5 / 17

Deciding WS1S using deterministic automata
example of base automaton for X = σ(Y)

0 1 2

X:
Y:

[
0
0

]
X:
Y:

[
0
1

]
X:
Y:

[
1
0

] X:
Y:

[
0
0

]

Example:

¬(X ⊆ Y) ∧ ∃Z .Sing(Z) ∨ ∃W .W = σ(Z)

A1

project W

A2 ∪ A4

A2

project Z

A6 ∩ A7

A3

complementA6

A7

A4

T. Fiedor Nested Antichains for WS1S AVM’15 5 / 17

Deciding WS1S using deterministic automata
example of base automaton for X = σ(Y)

0 1 2

X:
Y:

[
0
0

]
X:
Y:

[
0
1

]
X:
Y:

[
1
0

] X:
Y:

[
0
0

]

Example:

¬(X ⊆ Y) ∧ ∃Z .Sing(Z) ∨ ∃W .W = σ(Z)

A1

project W

A2 ∪ A4

A2

project Z

A6 ∩ A7

A3

complementA6

A7

A4

T. Fiedor Nested Antichains for WS1S AVM’15 5 / 17

Deciding WS1S using deterministic automata
example of base automaton for X = σ(Y)

0 1 2

X:
Y:

[
0
0

]
X:
Y:

[
0
1

]
X:
Y:

[
1
0

] X:
Y:

[
0
0

]

Example:

¬(X ⊆ Y) ∧ ∃Z .Sing(Z) ∨ ∃W .W = σ(Z)

A1

project W

A2 ∪ A4

A2

project Z

A6 ∩ A7

A3

complementA6

A7

A4

T. Fiedor Nested Antichains for WS1S AVM’15 5 / 17

Deciding WS1S using deterministic automata
example of base automaton for X = σ(Y)

0 1 2

X:
Y:

[
0
0

]
X:
Y:

[
0
1

]
X:
Y:

[
1
0

] X:
Y:

[
0
0

]

Example:

¬(X ⊆ Y) ∧ ∃Z .Sing(Z) ∨ ∃W .W = σ(Z)

A1

project W

A2 ∪ A4

A2

project Z

A6 ∩ A7

A3

complementA6

A7

A4

T. Fiedor Nested Antichains for WS1S AVM’15 5 / 17

Deciding WS1S using deterministic automata
example of base automaton for X = σ(Y)

0 1 2

X:
Y:

[
0
0

]
X:
Y:

[
0
1

]
X:
Y:

[
1
0

] X:
Y:

[
0
0

]

Example:

¬(X ⊆ Y) ∧ ∃Z .Sing(Z) ∨ ∃W .W = σ(Z)

A1

project W

A2 ∪ A4

A2

project Z

A6 ∩ A7

A3

complementA6

A7

A4

T. Fiedor Nested Antichains for WS1S AVM’15 5 / 17

Deciding WS1S using deterministic automata
example of base automaton for X = σ(Y)

0 1 2

X:
Y:

[
0
0

]
X:
Y:

[
0
1

]
X:
Y:

[
1
0

] X:
Y:

[
0
0

]

Example:

¬(X ⊆ Y) ∧ ∃Z .Sing(Z) ∨ ∃W .W = σ(Z)

A1

project W

A2 ∪ A4

A2

project Z

A6 ∩ A7

A3

complementA6

A7

A4

T. Fiedor Nested Antichains for WS1S AVM’15 5 / 17

How to handle quantification

issue with projection (existential quantification)
I after removing of the tracks not all models would be accepted
I so we need to adjust the final states

1 2 3

X:
Y:

[
0
1

]X:
Y:

[
0
0

]
X:
Y:

[
1
0

] X:
Y:

[
0
0

]

AX=σ(Y)

1 2 3

X:
Y:

[
0
1

]X:
Y:

[
0
0

]
X:
Y:

[
1
0

] X:
Y:

[
0
0

]

→ Projection

1 2 3
Y: [1]

Y: [0]

Y: [0]

Y: [0]

→ Adjust states
to accept models:

1, 01, 001, . . .

T. Fiedor Nested Antichains for WS1S AVM’15 6 / 17

How to handle quantification

issue with projection (existential quantification)
I after removing of the tracks not all models would be accepted
I so we need to adjust the final states

1 2 3

X:
Y:

[
0
1

]X:
Y:

[
0
0

]
X:
Y:

[
1
0

] X:
Y:

[
0
0

]

AX=σ(Y)

1 2 3

X:
Y:

[
0
1

]X:
Y:

[
0
0

]
X:
Y:

[
1
0

] X:
Y:

[
0
0

]

→ Projection

1 2 3
Y: [1]

Y: [0]

Y: [0]

Y: [0]

→ Adjust states
to accept models:

1, 01, 001, . . .

T. Fiedor Nested Antichains for WS1S AVM’15 6 / 17

How to handle quantification

issue with projection (existential quantification)
I after removing of the tracks not all models would be accepted
I so we need to adjust the final states

1 2 3

X:
Y:

[
0
1

]X:
Y:

[
0
0

]
X:
Y:

[
1
0

] X:
Y:

[
0
0

]

AX=σ(Y)

1 2 3

X:
Y:

[
0
1

]X:
Y:

[
0
0

]
X:
Y:

[
1
0

] X:
Y:

[
0
0

]

→ Projection

1 2 3
Y: [1]

Y: [0]

Y: [0]

Y: [0]

→ Adjust states
to accept models:

1, 01, 001, . . .

T. Fiedor Nested Antichains for WS1S AVM’15 6 / 17

How to handle quantification

issue with projection (existential quantification)
I after removing of the tracks not all models would be accepted
I so we need to adjust the final states

1 2 3

X:
Y:

[
0
1

]X:
Y:

[
0
0

]
X:
Y:

[
1
0

] X:
Y:

[
0
0

]

AX=σ(Y)

1 2 3

X:
Y:

[
0
1

]X:
Y:

[
0
0

]
X:
Y:

[
1
0

] X:
Y:

[
0
0

]

→ Projection

1 2 3
Y: [1]

Y: [0]

Y: [0]

Y: [0]

→ Adjust states
to accept models:

1, 01, 001, . . .

T. Fiedor Nested Antichains for WS1S AVM’15 6 / 17

How to handle quantification

issue with projection (existential quantification)
I after removing of the tracks not all models would be accepted
I so we need to adjust the final states

1 2 3

X:
Y:

[
0
1

]X:
Y:

[
0
0

]
X:
Y:

[
1
0

] X:
Y:

[
0
0

]

AX=σ(Y)

1 2 3

X:
Y:

[
0
1

]X:
Y:

[
0
0

]
X:
Y:

[
1
0

] X:
Y:

[
0
0

]

→ Projection

1 2 3
Y: [1]

Y: [0]

Y: [0]

Y: [0]

→ Adjust states
to accept models:

1, 01, 001, . . .

T. Fiedor Nested Antichains for WS1S AVM’15 6 / 17

Deciding WS1S using non-deterministic automata

we consider only formulae in Prenex Normal Form (∃PNF)
I we focus on dealing with prefix and alternations of quantifications

based on number of alternations m

ϕ = ¬∃Xm ¬. . .¬∃X2 ¬∃X1 : ϕ0(X)︸ ︷︷ ︸
ϕ1

. .
.︸ ︷︷ ︸

ϕm

(1)

→ hierarchical family of automata defined as follows:
I Aϕ0 = by composition of atomic automata (previously described)

I Aϕm = (22··
·2

Q0︸ ︷︷ ︸
m

,∆m, Im,Fm)

T. Fiedor Nested Antichains for WS1S AVM’15 7 / 17

Deciding WS1S using non-deterministic automata

we consider only formulae in Prenex Normal Form (∃PNF)
I we focus on dealing with prefix and alternations of quantifications

based on number of alternations m

ϕ = ¬∃Xm ¬. . .¬∃X2 ¬∃X1 : ϕ0(X)︸ ︷︷ ︸
ϕ1

. .
.︸ ︷︷ ︸

ϕm

(1)

→ hierarchical family of automata defined as follows:
I Aϕ0 = by composition of atomic automata (previously described)

I Aϕm = (22··
·2

Q0︸ ︷︷ ︸
m

,∆m, Im,Fm)

T. Fiedor Nested Antichains for WS1S AVM’15 7 / 17

The intuition behind the procedure

Key observation for ground formulae
ϕ |= iff Im ∩ Fm 6= ∅

Why?
I eventually the symbols degenerate to empty ones . . .

1 2 3
Y: [1]

Y: [0]

Y: [0]

Y: [0]

A∃X .X=σ(Y)

1 2 3

→ Projection

1 2 3
[]

[]

[]

[]

A∃Y ,X .X=σ(Y)

T. Fiedor Nested Antichains for WS1S AVM’15 8 / 17

The intuition behind the procedure

Key observation for ground formulae
ϕ |= iff Im ∩ Fm 6= ∅

Why?
I eventually the symbols degenerate to empty ones . . .

1 2 3
Y: [1]

Y: [0]

Y: [0]

Y: [0]

A∃X .X=σ(Y)

1 2 3
Y: [1]

Y: [0]

Y: [0]

Y: [0]

→ Projection

1 2 3
[]

[]

[]

[]

A∃Y ,X .X=σ(Y)

T. Fiedor Nested Antichains for WS1S AVM’15 8 / 17

The intuition behind the procedure

Key observation for ground formulae
ϕ |= iff Im ∩ Fm 6= ∅

Why?
I eventually the symbols degenerate to empty ones . . .

1 2 3
Y: [1]

Y: [0]

Y: [0]

Y: [0]

A∃X .X=σ(Y)

1 2 3
Y: [1]

Y: [0]

Y: [0]

Y: [0]

→ Projection

1 2 3
[]

[]

[]

[]

A∃Y ,X .X=σ(Y)

T. Fiedor Nested Antichains for WS1S AVM’15 8 / 17

The intuition behind the procedure

Key observation for ground formulae
ϕ |= iff Im ∩ Fm 6= ∅

Why?
I eventually the symbols degenerate to empty ones . . .

1 2 3
Y: [1]

Y: [0]

Y: [0]

Y: [0]

A∃X .X=σ(Y)

1 2 3
Y: [1]

Y: [0]

Y: [0]

Y: [0]

→ Projection

1 2 3
[]

[]

[]

[]

A∃Y ,X .X=σ(Y)

T. Fiedor Nested Antichains for WS1S AVM’15 8 / 17

The intuition behind the procedure

Key observation for ground formulae
ϕ |= iff Im ∩ Fm 6= ∅

Why?
I eventually the symbols degenerate to empty ones . . .

1 2 3
Y: [1]

Y: [0]

Y: [0]

Y: [0]

A∃X .X=σ(Y)

1 2 3
Y: [1]

Y: [0]

Y: [0]

Y: [0]

→ Projection

1 2 3
[]

[]

[]

[]

A∃Y ,X .X=σ(Y)

T. Fiedor Nested Antichains for WS1S AVM’15 8 / 17

Construction of initial states Im

Constructing the whole automaton for ϕm is unnecessary!
I we construct initial/final states only
I and test whether they intersect

construction of initial states is straightforward; starting from I0:
I I1 = {I0}
I I2 = {I1} = {{I0}}...
I Im = {Im−1} = {{. . . {︸ ︷︷ ︸

m

I0} . . .}}

• based on determinisation procedure

final states are more tricky
I issue with projection (previously described)
I multiple levels of determinisation

T. Fiedor Nested Antichains for WS1S AVM’15 9 / 17

Construction of initial states Im

Constructing the whole automaton for ϕm is unnecessary!
I we construct initial/final states only
I and test whether they intersect

construction of initial states is straightforward; starting from I0:

I I1 = {I0}
I I2 = {I1} = {{I0}}...
I Im = {Im−1} = {{. . . {︸ ︷︷ ︸

m

I0} . . .}}

• based on determinisation procedure

final states are more tricky
I issue with projection (previously described)
I multiple levels of determinisation

T. Fiedor Nested Antichains for WS1S AVM’15 9 / 17

Construction of initial states Im

Constructing the whole automaton for ϕm is unnecessary!
I we construct initial/final states only
I and test whether they intersect

construction of initial states is straightforward; starting from I0:
I I1 = {I0}

I I2 = {I1} = {{I0}}...
I Im = {Im−1} = {{. . . {︸ ︷︷ ︸

m

I0} . . .}}

• based on determinisation procedure

final states are more tricky
I issue with projection (previously described)
I multiple levels of determinisation

T. Fiedor Nested Antichains for WS1S AVM’15 9 / 17

Construction of initial states Im

Constructing the whole automaton for ϕm is unnecessary!
I we construct initial/final states only
I and test whether they intersect

construction of initial states is straightforward; starting from I0:
I I1 = {I0}
I I2 = {I1} = {{I0}}

...
I Im = {Im−1} = {{. . . {︸ ︷︷ ︸

m

I0} . . .}}

• based on determinisation procedure

final states are more tricky
I issue with projection (previously described)
I multiple levels of determinisation

T. Fiedor Nested Antichains for WS1S AVM’15 9 / 17

Construction of initial states Im

Constructing the whole automaton for ϕm is unnecessary!
I we construct initial/final states only
I and test whether they intersect

construction of initial states is straightforward; starting from I0:
I I1 = {I0}
I I2 = {I1} = {{I0}}...
I Im = {Im−1} = {{. . . {︸ ︷︷ ︸

m

I0} . . .}}

• based on determinisation procedure

final states are more tricky
I issue with projection (previously described)
I multiple levels of determinisation

T. Fiedor Nested Antichains for WS1S AVM’15 9 / 17

Construction of initial states Im

Constructing the whole automaton for ϕm is unnecessary!
I we construct initial/final states only
I and test whether they intersect

construction of initial states is straightforward; starting from I0:
I I1 = {I0}
I I2 = {I1} = {{I0}}...
I Im = {Im−1} = {{. . . {︸ ︷︷ ︸

m

I0} . . .}}

• based on determinisation procedure

final states are more tricky
I issue with projection (previously described)
I multiple levels of determinisation

T. Fiedor Nested Antichains for WS1S AVM’15 9 / 17

Introduction to the computation of final states

we already have:
I formula in ∃PNF: ϕ = ¬∃Xm ¬ . . .¬∃X2 ¬∃X1 : ϕ0(X)
I base automaton for ϕ0

our proposed method
I is based on generalized backward reachability of final states
I works on symbolic representation of states, sets of states, sets of

sets of states . . .
• for final states→ compute their predecessors pre0

(Intuition) states reaching final states become non-final after negation
• for non-final states→ compute their controllable predecessors cpre0

(Intuition) states leading outside of non-final states become final after negation

I prunes states on all levels of the hierarchy to achieve minimal
representation

T. Fiedor Nested Antichains for WS1S AVM’15 10 / 17

Introduction to the computation of final states

we already have:
I formula in ∃PNF: ϕ = ¬∃Xm ¬ . . .¬∃X2 ¬∃X1 : ϕ0(X)
I base automaton for ϕ0

our proposed method
I is based on generalized backward reachability of final states
I works on symbolic representation of states, sets of states, sets of

sets of states . . .
• for final states→ compute their predecessors pre0

(Intuition) states reaching final states become non-final after negation
• for non-final states→ compute their controllable predecessors cpre0

(Intuition) states leading outside of non-final states become final after negation

I prunes states on all levels of the hierarchy to achieve minimal
representation

T. Fiedor Nested Antichains for WS1S AVM’15 10 / 17

Towards symbolic representation

Motivating example: ¬∃X .ϕ
I Q = {0,1,2,3}
I F = {3}

0 1 2 3

X:
Y:

[
0
1

]
X:
Y:

[
1
1

]
X:
Y:

[
1
0

]

After projection:
I F∃ = {2,3}
I N∃ = Q \ F∃ = {0,1}

After negation:
I F1 = F¬∃ = {{0}, {1}, {0,1}}

= ↓ {{0, 1}}

I N1 = {{2}, {3}, {2,0}, {3,0}, . . . {2,3,0}, {2,3,1}, . . . {0,1,2,3}}

= ↑ {{2}, {3}}

so why not work with this symbolic representation only?

T. Fiedor Nested Antichains for WS1S AVM’15 11 / 17

Towards symbolic representation

Motivating example: ¬∃X .ϕ
I Q = {0,1,2,3}
I F = {3}

0 1 2 3

X:
Y:

[
0
1

]
X:
Y:

[
1
1

]
X:
Y:

[
1
0

]

After projection:
I F∃ = {2,3}
I N∃ = Q \ F∃ = {0,1}

After negation:
I F1 = F¬∃ = {{0}, {1}, {0,1}}

= ↓ {{0, 1}}

I N1 = {{2}, {3}, {2,0}, {3,0}, . . . {2,3,0}, {2,3,1}, . . . {0,1,2,3}}

= ↑ {{2}, {3}}

so why not work with this symbolic representation only?

T. Fiedor Nested Antichains for WS1S AVM’15 11 / 17

Towards symbolic representation

Motivating example: ¬∃X .ϕ
I Q = {0,1,2,3}
I F = {3}

0 1 2 3

X:
Y:

[
0
1

]
X:
Y:

[
1
1

]
X:
Y:

[
1
0

]

After projection:
I F∃ = {2,3}
I N∃ = Q \ F∃ = {0,1}

After negation:
I F1 = F¬∃ = {{0}, {1}, {0,1}}

= ↓ {{0, 1}}

I N1 = {{2}, {3}, {2,0}, {3,0}, . . . {2,3,0}, {2,3,1}, . . . {0,1,2,3}}

= ↑ {{2}, {3}}

so why not work with this symbolic representation only?

T. Fiedor Nested Antichains for WS1S AVM’15 11 / 17

Towards symbolic representation

Motivating example: ¬∃X .ϕ
I Q = {0,1,2,3}
I F = {3}

0 1 2 3

X:
Y:

[
0
1

]
X:
Y:

[
1
1

]
X:
Y:

[
1
0

]

After projection:
I F∃ = {2,3}
I N∃ = Q \ F∃ = {0,1}

After negation:
I F1 = F¬∃ = {{0}, {1}, {0,1}}

= ↓ {{0, 1}}

I N1 = {{2}, {3}, {2,0}, {3,0}, . . . {2,3,0}, {2,3,1}, . . . {0,1,2,3}}

= ↑ {{2}, {3}}

so why not work with this symbolic representation only?

T. Fiedor Nested Antichains for WS1S AVM’15 11 / 17

Towards symbolic representation

Motivating example: ¬∃X .ϕ
I Q = {0,1,2,3}
I F = {3}

0 1 2 3

X:
Y:

[
0
1

]
X:
Y:

[
1
1

]
X:
Y:

[
1
0

]

After projection:
I F∃ = {2,3}
I N∃ = Q \ F∃ = {0,1}

After negation:
I F1 = F¬∃ = {{0}, {1}, {0,1}}

= ↓ {{0, 1}}
I N1 = {{2}, {3}, {2,0}, {3,0}, . . . {2,3,0}, {2,3,1}, . . . {0,1,2,3}}

= ↑ {{2}, {3}}

so why not work with this symbolic representation only?

T. Fiedor Nested Antichains for WS1S AVM’15 11 / 17

Towards symbolic representation

Motivating example: ¬∃X .ϕ
I Q = {0,1,2,3}
I F = {3}

0 1 2 3

X:
Y:

[
0
1

]
X:
Y:

[
1
1

]
X:
Y:

[
1
0

]

After projection:
I F∃ = {2,3}
I N∃ = Q \ F∃ = {0,1}

After negation:
I F1 = F¬∃ = {{0}, {1}, {0,1}}

= ↓ {{0, 1}}
I N1 = {{2}, {3}, {2,0}, {3,0}, . . . {2,3,0}, {2,3,1}, . . . {0,1,2,3}}

= ↑ {{2}, {3}}

so why not work with this symbolic representation only?

T. Fiedor Nested Antichains for WS1S AVM’15 11 / 17

Computing final states Fm of formula ϕm

Given ϕ = ¬∃Xm ¬ . . .¬∃X2 ¬∃X1 : ϕ0(X)

1 Extend set of final states after ∃: F∃
0 = {µZ .F ∪ pre0(Z)}

2 Negate the final states: N1 =↑ {F∃
0 }

3 Reduce set of non-final states after ∃: N∃
1 = {νZ .N1 ∩ cpre0(Z)}

I Notice the duality with step 1.

∩ 7→ ∪ cpre0 7→ pre0 ν 7→ µ (2)

4 Negate the non-final states: F2 =↓ {N∃
1}

...

5 and keep alternating between computing final and non-final states
until Fm as follows:

I Fi+1 =↓ {νZ .Ni ∩ cpre0(Z)}
I Ni+1 =↑ {µZ .Fi ∪ pre0(Z)}

T. Fiedor Nested Antichains for WS1S AVM’15 12 / 17

Computing final states Fm of formula ϕm

Given ϕ = ¬∃Xm ¬ . . .¬∃X2 ¬∃X1 : ϕ0(X)

1 Extend set of final states after ∃: F∃
0 = {µZ .F ∪ pre0(Z)}

2 Negate the final states: N1 =↑ {F∃
0 }

3 Reduce set of non-final states after ∃: N∃
1 = {νZ .N1 ∩ cpre0(Z)}

I Notice the duality with step 1.

∩ 7→ ∪ cpre0 7→ pre0 ν 7→ µ (2)

4 Negate the non-final states: F2 =↓ {N∃
1}

...

5 and keep alternating between computing final and non-final states
until Fm as follows:

I Fi+1 =↓ {νZ .Ni ∩ cpre0(Z)}
I Ni+1 =↑ {µZ .Fi ∪ pre0(Z)}

T. Fiedor Nested Antichains for WS1S AVM’15 12 / 17

Computing final states Fm of formula ϕm

Given ϕ = ¬∃Xm ¬ . . .¬∃X2 ¬∃X1 : ϕ0(X)

1 Extend set of final states after ∃: F∃
0 = {µZ .F ∪ pre0(Z)}

2 Negate the final states: N1 =↑ {F∃
0 }

3 Reduce set of non-final states after ∃: N∃
1 = {νZ .N1 ∩ cpre0(Z)}

I Notice the duality with step 1.

∩ 7→ ∪ cpre0 7→ pre0 ν 7→ µ (2)

4 Negate the non-final states: F2 =↓ {N∃
1}

...

5 and keep alternating between computing final and non-final states
until Fm as follows:

I Fi+1 =↓ {νZ .Ni ∩ cpre0(Z)}
I Ni+1 =↑ {µZ .Fi ∪ pre0(Z)}

T. Fiedor Nested Antichains for WS1S AVM’15 12 / 17

Computing final states Fm of formula ϕm

Given ϕ = ¬∃Xm ¬ . . .¬∃X2 ¬∃X1 : ϕ0(X)

1 Extend set of final states after ∃: F∃
0 = {µZ .F ∪ pre0(Z)}

2 Negate the final states: N1 =↑ {F∃
0 }

3 Reduce set of non-final states after ∃: N∃
1 = {νZ .N1 ∩ cpre0(Z)}

I Notice the duality with step 1.

∩ 7→ ∪ cpre0 7→ pre0 ν 7→ µ (2)

4 Negate the non-final states: F2 =↓ {N∃
1}

...

5 and keep alternating between computing final and non-final states
until Fm as follows:

I Fi+1 =↓ {νZ .Ni ∩ cpre0(Z)}
I Ni+1 =↑ {µZ .Fi ∪ pre0(Z)}

T. Fiedor Nested Antichains for WS1S AVM’15 12 / 17

Computing final states Fm of formula ϕm

Given ϕ = ¬∃Xm ¬ . . .¬∃X2 ¬∃X1 : ϕ0(X)

1 Extend set of final states after ∃: F∃
0 = {µZ .F ∪ pre0(Z)}

2 Negate the final states: N1 =↑ {F∃
0 }

3 Reduce set of non-final states after ∃: N∃
1 = {νZ .N1 ∩ cpre0(Z)}

I Notice the duality with step 1.

∩ 7→ ∪ cpre0 7→ pre0 ν 7→ µ (2)

4 Negate the non-final states: F2 =↓ {N∃
1}

...

5 and keep alternating between computing final and non-final states
until Fm as follows:

I Fi+1 =↓ {νZ .Ni ∩ cpre0(Z)}
I Ni+1 =↑ {µZ .Fi ∪ pre0(Z)}

T. Fiedor Nested Antichains for WS1S AVM’15 12 / 17

Computing final states Fm of formula ϕm

Given ϕ = ¬∃Xm ¬ . . .¬∃X2 ¬∃X1 : ϕ0(X)

1 Extend set of final states after ∃: F∃
0 = {µZ .F ∪ pre0(Z)}

2 Negate the final states: N1 =↑ {F∃
0 }

3 Reduce set of non-final states after ∃: N∃
1 = {νZ .N1 ∩ cpre0(Z)}

I Notice the duality with step 1.

∩ 7→ ∪ cpre0 7→ pre0 ν 7→ µ (2)

4 Negate the non-final states: F2 =↓ {N∃
1}

...

5 and keep alternating between computing final and non-final states
until Fm as follows:

I Fi+1 =↓ {νZ .Ni ∩ cpre0(Z)}
I Ni+1 =↑ {µZ .Fi ∪ pre0(Z)}

T. Fiedor Nested Antichains for WS1S AVM’15 12 / 17

Computing predecessors of the state

Can we compute cpre0/pre0 of symbolic states?

Yes!

Lemma. 1
cpre0(↑ {Q}) =↑

∐
{pre0(Q)}

∐
breaks the predecessors into new generators that cover the Q

note that we define the dual lemma for downward closed sets

T. Fiedor Nested Antichains for WS1S AVM’15 13 / 17

Computing predecessors of the state

Can we compute cpre0/pre0 of symbolic states? Yes!

Lemma. 1
cpre0(↑ {Q}) =↑

∐
{pre0(Q)}

∐
breaks the predecessors into new generators that cover the Q

note that we define the dual lemma for downward closed sets

T. Fiedor Nested Antichains for WS1S AVM’15 13 / 17

Computing predecessors of the state

Can we compute cpre0/pre0 of symbolic states? Yes!

Lemma. 1
cpre0(↑ {Q}) =↑

∐
{pre0(Q)}

CPRE

pre

∐
breaks the predecessors into new generators that cover the Q

note that we define the dual lemma for downward closed sets

T. Fiedor Nested Antichains for WS1S AVM’15 13 / 17

Computing predecessors of the state

Can we compute cpre0/pre0 of symbolic states? Yes!

Lemma. 1
cpre0(↑ {Q}) =↑

∐
{pre0(Q)}

CPRE

pre

∐
breaks the predecessors into new generators that cover the Q

note that we define the dual lemma for downward closed sets

T. Fiedor Nested Antichains for WS1S AVM’15 13 / 17

Computing predecessors of the state

Can we compute cpre0/pre0 of symbolic states? Yes!

Lemma. 1
cpre0(↑ {Q}) =↑

∐
{pre0(Q)}

CPRE

∐
breaks the predecessors into new generators that cover the Q

note that we define the dual lemma for downward closed sets

T. Fiedor Nested Antichains for WS1S AVM’15 13 / 17

Computing predecessors of the state

Can we compute cpre0/pre0 of symbolic states? Yes!

Lemma. 1
cpre0(↑ {Q}) =↑

∐
{pre0(Q)}

CPRE

∐
breaks the predecessors into new generators that cover the Q

note that we define the dual lemma for downward closed sets

T. Fiedor Nested Antichains for WS1S AVM’15 13 / 17

Computing predecessors of the state

Can we compute cpre0/pre0 of symbolic states? Yes!

Lemma. 1
cpre0(↑ {Q}) =↑

∐
{pre0(Q)}

CPRE

∐
breaks the predecessors into new generators that cover the Q

note that we define the dual lemma for downward closed sets

T. Fiedor Nested Antichains for WS1S AVM’15 13 / 17

Computing predecessors of the state

Can we compute cpre0/pre0 of symbolic states? Yes!

Lemma. 1
cpre0(↑ {Q}) =↑

∐
{pre0(Q)}

U

CPRE

∐
breaks the predecessors into new generators that cover the Q

note that we define the dual lemma for downward closed sets

T. Fiedor Nested Antichains for WS1S AVM’15 13 / 17

Computing predecessors of the state

Can we compute cpre0/pre0 of symbolic states? Yes!

Lemma. 1
cpre0(↑ {Q}) =↑

∐
{pre0(Q)}

U
U U

CPRE

∐
breaks the predecessors into new generators that cover the Q

note that we define the dual lemma for downward closed sets

T. Fiedor Nested Antichains for WS1S AVM’15 13 / 17

How to achieve state space reduction

We showed the nested structure of Fm is very complex,

I but we only work with the symbolic representation of the generators
(with antichains)

I . . . and the generators of the generators and . . .
I this itself is the first source of space reduction

further we prune the generators subsumed by other generators
I the subsumption relation is computed on nested structure of

symbolic representation of lower levels

T. Fiedor Nested Antichains for WS1S AVM’15 14 / 17

How to achieve state space reduction

We showed the nested structure of Fm is very complex,
I but we only work with the symbolic representation of the generators

(with antichains)
I . . . and the generators of the generators and . . .
I this itself is the first source of space reduction

further we prune the generators subsumed by other generators
I the subsumption relation is computed on nested structure of

symbolic representation of lower levels

T. Fiedor Nested Antichains for WS1S AVM’15 14 / 17

How to achieve state space reduction

We showed the nested structure of Fm is very complex,
I but we only work with the symbolic representation of the generators

(with antichains)
I . . . and the generators of the generators and . . .
I this itself is the first source of space reduction

further we prune the generators subsumed by other generators
I the subsumption relation is computed on nested structure of

symbolic representation of lower levels

T. Fiedor Nested Antichains for WS1S AVM’15 14 / 17

Experimental results

implemented in dWiNA
compared with MONA:

I on generated and real formulae
I in generic and ∃PNF form

MONA dWiNA
Time [s] Space [states] Time [s] Space [states]

real normal ∃PNF normal ∃PNF Prefix Prefix
list-reverse-after-loop 0.01 0.01 179 1 326 0.01 100
list-reverse-in-loop 0.02 0.47 1 311 70 278 0.02 260
bubblesort-else 0.01 0.45 1 285 12 071 0.01 14
bubblesort-if-else 0.02 2.17 4 260 116 760 0.23 234
bubblesort-if-if 0.12 5.29 8 390 233 372 1.14 28
generated
3 alternations - 0.57 - 60 924 0.01 50
4 alternations - 1.79 - 145 765 0.02 58
5 alternations - 4.98 - 349 314 0.02 70
6 alternations - TO - TO 0.47 90

T. Fiedor Nested Antichains for WS1S AVM’15 15 / 17

Conclusion and Future Work

Future work
I extension to WS2S

• opens whole new world of tree structures
I generalization of symbolic tree representation

• to process logical connectives
• to handle general (non-∃PNF) formulae

Conclusion
I WS1S = Great expressivity, yet decidable!
I Novel approach based on antichains
I Encouraging results in terms of space reduction

T. Fiedor Nested Antichains for WS1S AVM’15 16 / 17

Thank you for your attention!

Any questions?

T. Fiedor Nested Antichains for WS1S AVM’15 17 / 17

