
Bit-Vectors: Complexity and Decision Procedures

Andreas Fröhlich
Johannes Kepler University, Linz

. . . joined work with: Gergely Kovásznai, Armin Biere,
Helmut Veith, Christoph Wintersteiger, Youssef Hamadi

10th Alpine Verification Meeting (AVM’15)

Monday, May 4, 2015
Attersee, Austria



Motivation 1/13

QF BV e.g. (x[8]+ y[8] = x[8]� 2[8]) ∧ (y[8] ∗ z[8] = x[8]|z[8])

Common solving approach:

Bit-blasting (encoding the bit-vector formula as a circuit)

. . . and then using a SAT-solver

Often assumed to be NP-complete

Complexity actually depends on the encoding of bit-widths

In practice: logarithmic encoding, e.g. SMT-LIB format

(set-logic QF_BV)
(declare-fun a () (_ BitVec 1024))
(declare-fun b () (_ BitVec 1024))
(assert (distinct (bvadd a b) (bvadd b a)))

QF BV with logarithmic encoding (QF BV2) is NEXP-complete [KFB-SMT’12]

Andreas Fröhlich @ AVM’15



Related Problems 2/13

Propositional domain {0,1}:

SAT [∃x1,x2,x3 .] (x1∨¬x2)∧ (¬x1∨ x3)∧ (x2∨¬x3)∧ (¬x1∨ x2)

NP-complete

QBF ∀u1∃e1∀u2∃e2 . (u2∨¬e1)∧ (¬u1∨ e1)∧ (u1∨¬e2)∧ (¬u2∨ e2)

PSPACE-complete

DQBF ∀u1,u2∃e1(u1),e2(u2) . (u2∨¬e1)∧ (¬u1∨ e1)∧ (u1∨¬e2)∧ (¬u2∨ e2)

NEXP-complete

First-order but no functions:

EPR ∃a,b∀x,y . (p(a,x,y)∨¬q(y,x,b))∧ (q(x,b,y)∨¬p(y,a,x))

NEXP-complete

Andreas Fröhlich @ AVM’15



Quantifier-Free Bit-Vector Formulas 3/13

QF BV2 is NEXP-complete [KFB-SMT’12]

Bit-blasting replaces logarithmic bit-widths by its unary encoding

Hardness by giving a reduction from DQBF to QF BV2

Use the so-called binary magic numbers to represent universal variables

u0,u1,u2 → U [8]
0 :=



0
1
0
1
0
1
0
1


,U [8]

1 :=



0
0
1
1
0
0
1
1


,U [8]

2 :=



0
0
0
0
1
1
1
1


Eliminate dependencies by introducing constraints on shifted indices

e0(u0,u1),e1(u1,u2) → E [8]
0 = E [8]

0 � 4[8], E [8]
1 = E [8]

1 � 1[8]

Andreas Fröhlich @ AVM’15



Extensions and Generalizations 4/13

Can be extended to quantification and uninterpreted functions [KFB-SMT’12]

QF BV (quantifier-free bit-vectors)

QF BV1 is NP-complete, QF BV2 is NEXP-complete

BV+UF (quantified bit-vectors with uninterpreted functions)

BV1+UF is NEXP-complete, BV2+UF is 2-NEXP-complete

Generalizations for arbitrary complete problems and multi-logarithmic succinct
encodings are possible [KVFB-MFCS’14]

Implication: Word-Level Model Checking and Reachability for bit-vectors
with binary encoded bit-widths are EXPSPACE-complete

Andreas Fröhlich @ AVM’15



Restricted Operator Sets 5/13

Logarithmic case: Restrictions on the set of operators are possible [FKB-CSR’13]

QF BVbw (only bitwise operations and equality)

QF BVbw is NP-complete

QF BV�1 (only bitwise operations, equality, and left shift by one)

QF BV�1 is PSPACE-complete

QF BV�c (only bitwise operations, equality, and left shift by constant)

QF BV�c is NEXP-complete

Certain operators can be added or shown to be equally expressive [KFB-TOCS’15]

Andreas Fröhlich @ AVM’15



Decision Procedures for QF BV 6/13

State-of-the-art solvers for QF BV rely on bit-blasting and SAT solvers

Bit-blasting can be exponential

Is it possible to solve QF BV without bit-blasting?

Can we profit from knowing the complexity of certain bit-vector classes?

Some alternative approaches (and optimizations) exist

Translation to EPR [KFB-CADE’13]

Translation to SMV [FKB-SMT’13]

Bit-width reduction [Johannsen]

SLS for SMT [FBWH-AAAI’15]

Andreas Fröhlich @ AVM’15



BV2EPR 7/13

BV2EPR: Polynomial translation from QF BV to EPR [KFB-CADE’13]

EPR formulas can be solved with iProver (by [Korovin])

CEGAR approach

Performance worse than bit-blasting for most instances

Beneficial on some instances (0.1s instead of T/O)

Less memory used (can be several orders of magnitude)

Andreas Fröhlich @ AVM’15



BV2SMV 8/13

BV2SMV: Polynomial translation from QF BV�1 to SMV [FKB-SMT’13]

SMV formulas can be solved with model checkers

BDD based model checkers are most efficient

 1

 10

 100

 1000

 100  1000  10000  100000  1e+06

ti
m

e

bit-width

Time needed to solve instances of shift1add with different bit-widths

Boolector
STP
IImc

IImc-BDD-bw
NuSMV

NuSMV-bw
Tip-BMC

 1

 10

 100

 1000

 100  1000  10000  100000  1e+06

s
p
a
c
e

bit-width

Space needed to solve instances of shift1add with different bit-widths

Boolector
STP
IImc

IImc-BDD-bw
NuSMV

NuSMV-bw
Tip-BMC

Practical benchmarks actually do exist

Andreas Fröhlich @ AVM’15



Bit-Width Reduction 9/13

For QF BVbw, bit-width reduction can be applied

There is a solution iff there is a solution with smaller bit-width, e.g.(
X [32] 6= Y [32]|3[32]

)
∧
(

Y [32] 6= Z[32]&X [32]
)

→
(

X [2] 6= Y [2]|3[2]
)
∧
(

Y [2] 6= Z[2]&X [2]
)

Can be extended to allow certain cases of other operators

Existing work for RTL Property Checking [Johannsen]

Reduces size of design model to up to 30%

Reduces runtimes to up to 5%

Andreas Fröhlich @ AVM’15



SLS for SMT (1) 10/13

BV-SLS: Stochastic Local Search for bit-vectors [FBWH-AAAI’15]

No bit-blasting

Works on the theory representation of the formula

Idea: Combine techniques from SAT-SLS with theory information

Many techniques from SAT can successfully be lifted

Theory information allows to deal with structure efficiently

Promising results (see next slide)

Shows that SLS solvers can actually profit from structure

Andreas Fröhlich @ AVM’15



SLS for SMT (2) 11/13

QF BV Sage2
CCAnr 5409 64
CCASat 4461 8
probSAT 3816 10
Sparrow 3806 12
VW2 2954 4
PAWS 3331 143
YalSAT 3756 142
Z3 (Default) 7173 5821
BV-SLS 6172 3719

QF BV QF BV Sage2

0

1

10

100

T/O

0 1 10 100 T/O

Z3
 B

V-
SL

S 
[s

ec
]

CCAnr [sec]

0

1

10

100

T/O

0 1 10 100 T/O
Z3 (Default) [sec]

0

1

10

100

T/O

0 1 10 100 T/O
Z3 (Default) [sec]

10

10²

10³

10⁴

Andreas Fröhlich @ AVM’15



Conclusion 12/13

Complexity of bit-vector formulas depends ...

... on the encoding of the bit-widths

... on the operators we use

Bit-blasting ...

... is not polynomial in general

... can profit from bit-width reduction

Alternative approaches

CEGAR approach using iProver

Model checkers for PSPACE fragments

Stochastic local search on the theory level

Andreas Fröhlich @ AVM’15



References 13/13

Gergely Kovásznai, Andreas Fröhlich, Armin Biere. On the Complexity of Fixed-Size
Bit-Vector Logics with Binary Encoded Bit-Width. [KFB-SMT’12]

Gergely Kovásznai, Andreas Fröhlich, Armin Biere. BV2EPR: A Tool for Polynomially
Translating Quantifier-free Bit-Vector Formulas into EPR. [KFB-CADE’13]

Andreas Fröhlich, Gergely Kovásznai, Armin Biere. More on the Complexity of Quan-
tifier-Free Fixed-Size Bit-Vector Logics with Binary Encoding. [FKB-CSR’13]

Andreas Fröhlich, Gergely Kovásznai, Armin Biere. Efficiently Solving Bit-Vector Prob-
lems Using Model Checkers. [FKB-SMT’13]

Gergely Kovásznai, Helmut Veith, Andreas Fröhlich, Armin Biere. On the Complexity
of Symbolic Verification and Decision Problems in Bit-Vector Logic. [KVFB-MFCS’14]

Gergely Kovásznai, Andreas Fröhlich, Armin Biere. Complexity of Fixed-Size Bit-
Vector Logics. [KFB-TOCS’15]

Andreas Fröhlich, Armin Biere, Christoph M. Wintersteiger, Youssef Hamadi. Stochas-
tic Local Search for Satisfiability Modulo Theories. [FBWH-AAAI’15]

Andreas Fröhlich @ AVM’15



ν-Logarithmic Succinct Encodings 14/13

Upgrading Theorem: If a problem is complete for a complexity class C, it
is complete for a ν-exponentially harder complexity class than C when repre-
sented by bit-vectors with ν-logarithmic encoded scalars. [KVFB-MFCS’14]

Implication: Word-Level Model Checking and Reachability for bit-vectors
with binary encoded bit-widths are EXPSPACE-complete.

ν-Succinct SAT: Satisfiability for quantifier-free bit-vector formulas with
ν-logarithmic encoded scalars is (ν−1)-NEXP-complete (with 0-NEXP := NP).

(not published yet)

Proof: Reduction from Turing machines or domino tiling problems.

Andreas Fröhlich @ AVM’15


