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Motivation

= QF BV e.g. (x[g] +y[8} — 8 « 2[8]) A (y[g] x718] :x[8]|z[8])

= Common solving approach:

Bit-blasting (encoding the bit-vector formula as a circuit)

...and then using a SAT-solver

= Often assumed to be NP-complete

= Complexity actually depends on the encoding of bit-widths

= |n practice: logarithmic encoding, e.g. SMT-LIB format

(set-logic QF_BV)

(declare-fun a () (_ BitVec 1024))
(declare-fun b () (_ BitVec 1024))

(assert (distinct (bvadd a b) (bvadd b a)))

= QF_BV with logarithmic encoding (QF _BV,) is NEXP-complete
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[KFB-SMT’12]



Related Problems 2/13

Propositional domain {0,1}:
= SAT [Fx1,x0,x3.] (X1 V=) A (=g Vaz) A(xp V—x3) A (—xp Vo)
NP-complete
= QBF VuideiVuydey. (upV—ey) A(—upVey) A(upV—er)A(—-upVes)
PSPACE-complete
= DQBF Vup,updey(uy),ea(up). (upV—-ey) AN(—upVer)A(upV-oey)A(—upVep)
NEXP-complete
First-order but no functions:
= EPR  3Ja,bVxy. (p(a,x,y)V—q(y,x,b)) A(q(x,b,y)V—p(y,a,x))

NEXP-complete



Quantifier-Free Bit-Vector Formulas 313

= QF_BV, is NEXP-complete [KFB-SMT’12]
= Bit-blasting replaces logarithmic bit-widths by its unary encoding

= Hardness by giving a reduction from DQBF to QF BV,

Use the so-called binary magic numbers to represent universal variables
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Eliminate dependencies by introducing constraints on shifted indices
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Extensions and Generalizations 4/13

= Can be extended to quantification and uninterpreted functions [KFB-SMT'12]
= QF_BV (quantifier-free bit-vectors)
QF BV, is NP-complete, QF BV, is NEXP-complete
= BV+UF (quantified bit-vectors with uninterpreted functions)
BV +UF is NEXP-complete, BV,+UF is 2-NEXP-complete
® (Generalizations for arbitrary complete problems and multi-logarithmic succinct
encodings are possible [KVFB-MFCS’14]

= Implication: Word-Level Model Checking and Reachability for bit-vectors
with binary encoded bit-widths are EXPSPACE-complete



Restricted Operator Sets 5/13

® [ ogarithmic case: Restrictions on the set of operators are possible [FKB-CSR’'13]
= QF_BV,,, (only bitwise operations and equality)
QF_BV,,, is NP-complete
= QF BV (only bitwise operations, equality, and left shift by one)
QF BV is PSPACE-complete
= QF_BV.. (only bitwise operations, equality, and left shift by constant)

QF BV is NEXP-complete

m  Certain operators can be added or shown to be equally expressive [KFB-TOCS15]



Decision Procedures for QF BV 6/13

m State-of-the-art solvers for QF_BV rely on bit-blasting and SAT solvers

= Bit-blasting can be exponential
= |s it possible to solve QF BV without bit-blasting?

= Can we profit from knowing the complexity of certain bit-vector classes?

= Some alternative approaches (and optimizations) exist

= Translation to EPR [KFB-CADE’13]
= Translation to SMV [FKB-SMT’13]
= Bit-width reduction [Johannsen]

SLS for SMT [FBWH-AAAI'15]



BV2EPR 713

= BV2EPR: Polynomial translation from QF_BV to EPR [KFB-CADE’13]

= EPR formulas can be solved with iProver (by [Korovin])

= CEGAR approach

® Performance worse than bit-blasting for most instances
= Beneficial on some instances (0.1s instead of T/O)

= | ess memory used (can be several orders of magnitude)



BV2SMV 8/13

= BV2SMV: Polynomial translation from QF BV . to SMV [FKB-SMT’13]

m SMV formulas can be solved with model checkers

= BDD based model checkers are most efficient

Time needed to solve instances of shift1add with different bit-widths Space needed to solve instances of shiftiadd with different bit-widths
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= Practical benchmarks actually do exist



Bit-Width Reduction 9/13

= For QF_BV,,,, bit-width reduction can be applied

= There is a solution iff there is a solution with smaller bit-width, e.g.
(X[32] £ y132] |3[32]) A (Y[32] £ 7132] &X[sz])
N (Xm - Y[2]|3[2]) A (Y[2] £ 2[2]&)([2])

= (Can be extended to allow certain cases of other operators

® Existing work for RTL Property Checking [Johannsen]
= Reduces size of design model to up to 30%

= Reduces runtimes to up to 5%



SLS for SMT (1) 10113

® BV-SLS: Stochastic Local Search for bit-vectors [FBWH-AAAI'15]
= No bit-blasting

= Works on the theory representation of the formula

® |dea: Combine techniques from SAT-SLS with theory information
= Many techniques from SAT can successfully be lifted

= Theory information allows to deal with structure efficiently

= Promising results (see next slide)

= Shows that SLS solvers can actually profit from structure



SLS for SMT (2)
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Conclusion 12113

= Complexity of bit-vector formulas depends ...
= ... on the encoding of the bit-widths
= .. onthe operators we use
® Bit-blasting ...
= .. is not polynomial in general
= .. can profit from bit-width reduction
= Alternative approaches
= CEGAR approach using iProver
= Model checkers for PSPACE fragments

= Stochastic local search on the theory level
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v-Logarithmic Succinct Encodings 14/13

= Upgrading Theorem: If a problem is complete for a complexity class C, it
Is complete for a v-exponentially harder complexity class than C when repre-
sented by bit-vectors with v-logarithmic encoded scalars. [KVFB-MFCS'14]

= |mplication: Word-Level Model Checking and Reachability for bit-vectors
with binary encoded bit-widths are EXPSPACE-complete.

®m v-Succinct SAT: Satisfiability for quantifier-free bit-vector formulas with

v-logarithmic encoded scalars is (v — 1)-NEXP-complete (with 0-NEXP := NP).
(not published yet)

= Proof: Reduction from Turing machines or domino tiling problems.



