Bit-Vectors: Complexity and Decision Procedures

Andreas Fröhlich Johannes Kepler University, Linz

... joined work with: Gergely Kovásznai, Armin Biere, Helmut Veith, Christoph Wintersteiger, Youssef Hamadi

10th Alpine Verification Meeting (AVM'15)

Monday, May 4, 2015 Attersee, Austria

- QF_BV e.g. $(x^{[8]} + y^{[8]} = x^{[8]} \ll 2^{[8]}) \land (y^{[8]} * z^{[8]} = x^{[8]} | z^{[8]})$
 - Common solving approach:
 - Bit-blasting (encoding the bit-vector formula as a circuit)
 - and then using a SAT-solver
 - Often assumed to be NP-complete
 - Complexity actually depends on the encoding of bit-widths
- In practice: **logarithmic encoding**, e.g. SMT-LIB format

```
(set-logic QF_BV)
(declare-fun a () (_ BitVec 1024))
(declare-fun b () (_ BitVec 1024))
(assert (distinct (bvadd a b) (bvadd b a)))
```

QF_BV with logarithmic encoding (QF_BV₂) is **NEXP-complete**

[KFB-SMT'12]

Propositional domain $\{0,1\}$:

• SAT
$$[\exists x_1, x_2, x_3.]$$
 $(x_1 \lor \neg x_2) \land (\neg x_1 \lor x_3) \land (x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2)$

NP-complete

■ QBF
$$\forall u_1 \exists e_1 \forall u_2 \exists e_2$$
. $(u_2 \lor \neg e_1) \land (\neg u_1 \lor e_1) \land (u_1 \lor \neg e_2) \land (\neg u_2 \lor e_2)$
PSPACE-complete

■ DQBF
$$\forall u_1, u_2 \exists e_1(u_1), e_2(u_2).$$
 $(u_2 \lor \neg e_1) \land (\neg u_1 \lor e_1) \land (u_1 \lor \neg e_2) \land (\neg u_2 \lor e_2)$
NEXP-complete

First-order but no functions:

• EPR
$$\exists a, b \forall x, y. \quad (p(a, x, y) \lor \neg q(y, x, b)) \land (q(x, b, y) \lor \neg p(y, a, x))$$

NEXP-complete

- QF_BV₂ is NEXP-complete
 - Bit-blasting replaces logarithmic bit-widths by its unary encoding
 - Hardness by giving a reduction from DQBF to QF_BV₂
 - Use the so-called **binary magic numbers** to represent universal variables

$$u_{0}, u_{1}, u_{2} \rightarrow U_{0}^{[8]} := \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}, U_{1}^{[8]} := \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}, U_{2}^{[8]} := \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

Eliminate dependencies by introducing constraints on shifted indices

$$e_0(u_0, u_1), e_1(u_1, u_2) \longrightarrow E_0^{[8]} = E_0^{[8]} \ll 4^{[8]}, E_1^{[8]} = E_1^{[8]} \ll 1^{[8]}$$

- Can be extended to quantification and uninterpreted functions [KFB-SMT'12]
 - QF_BV (quantifier-free bit-vectors)

```
QF_BV_1 is NP-complete, QF_BV_2 is NEXP-complete
```

BV+UF (quantified bit-vectors with uninterpreted functions)

BV₁+UF is NEXP-complete, BV₂+UF is 2-NEXP-complete

- Generalizations for arbitrary complete problems and multi-logarithmic succinct encodings are possible
 [KVFB-MFCS'14]
 - Implication: Word-Level Model Checking and Reachability for bit-vectors with binary encoded bit-widths are EXPSPACE-complete

- Logarithmic case: Restrictions on the set of operators are possible [FKB-CSR'13]
 - QF_BV_{bw} (only bitwise operations and equality)

```
QF_BV<sub>bw</sub> is NP-complete
```

• $QF_BV_{\ll 1}$ (only bitwise operations, equality, and left shift by one)

 $QF_BV_{\ll 1}$ is PSPACE-complete

• $QF_BV_{\ll c}$ (only bitwise operations, equality, and left shift by constant)

 $QF_BV_{\ll c}$ is NEXP-complete

Certain operators can be added or shown to be equally expressive [KFB-TOCS'15]

- State-of-the-art solvers for QF_BV rely on bit-blasting and SAT solvers
 - Bit-blasting can be exponential
 - Is it possible to solve QF_BV without bit-blasting?
 - Can we profit from knowing the complexity of certain bit-vector classes?
- Some alternative approaches (and optimizations) exist

	Translation to EPR	[KFB-CADE'13]
	Translation to SMV	[FKB-SMT'13]
-	Bit-width reduction	[Johannsen]
	SLS for SMT	[FBWH-AAAI'15]

- BV2EPR: Polynomial translation from QF_BV to EPR
- EPR formulas can be solved with iProver (by [Korovin])
 - CEGAR approach
- Performance worse than bit-blasting for most instances
 - Beneficial on some instances (0.1s instead of T/O)
 - Less memory used (can be several orders of magnitude)

[KFB-CADE'13]

7/13

BV2SMV

- BV2SMV: Polynomial translation from $QF_BV_{\ll 1}$ to SMV
- SMV formulas can be solved with model checkers
 - BDD based model checkers are most efficient

Practical benchmarks actually do exist

[FKB-SMT'13]

8/13

- For QF_BV_{bw} , bit-width reduction can be applied
 - There is a solution iff there is a solution with smaller bit-width, e.g.

$$\begin{pmatrix} X^{[32]} \neq Y^{[32]} | 3^{[32]} \end{pmatrix} \land \begin{pmatrix} Y^{[32]} \neq Z^{[32]} \& X^{[32]} \end{pmatrix}$$

$$\rightarrow \qquad \begin{pmatrix} X^{[2]} \neq Y^{[2]} | 3^{[2]} \end{pmatrix} \land \begin{pmatrix} Y^{[2]} \neq Z^{[2]} \& X^{[2]} \end{pmatrix}$$

- Can be extended to allow certain cases of other operators
- Existing work for RTL Property Checking

[Johannsen]

- Reduces size of design model to up to 30%
- Reduces runtimes to up to 5%

- BV-SLS: Stochastic Local Search for bit-vectors
 - No bit-blasting
 - Works on the theory representation of the formula
- Idea: Combine techniques from SAT-SLS with theory information
 - Many techniques from SAT can successfully be lifted
 - Theory information allows to deal with structure efficiently
- Promising results (see next slide)
 - Shows that SLS solvers can actually profit from structure

[FBWH-AAAI'15]

	QF_BV	Sage2
CCAnr	5409	64
CCASat	4461	8
probSAT	3816	10
Sparrow	3806	12
VW2	2954	4
PAWS	3331	143
YalSAT	3756	142
Z3 (Default)	7173	5821
BV-SLS	6172	3719

100

Andreas Fröhlich @ AVM'15

Conclusion

- Complexity of bit-vector formulas depends ...
 - ... on the encoding of the bit-widths
 - In on the operators we use
- Bit-blasting ...
 - ... is not polynomial in general
 - ... can profit from bit-width reduction
- Alternative approaches
 - CEGAR approach using iProver
 - Model checkers for PSPACE fragments
 - Stochastic local search on the theory level

- Gergely Kovásznai, Andreas Fröhlich, Armin Biere. On the Complexity of Fixed-Size Bit-Vector Logics with Binary Encoded Bit-Width. [KFB-SMT'12]
- Gergely Kovásznai, Andreas Fröhlich, Armin Biere. BV2EPR: A Tool for Polynomially Translating Quantifier-free Bit-Vector Formulas into EPR. [KFB-CADE'13]
- Andreas Fröhlich, Gergely Kovásznai, Armin Biere. More on the Complexity of Quantifier-Free Fixed-Size Bit-Vector Logics with Binary Encoding. [FKB-CSR'13]
- Andreas Fröhlich, Gergely Kovásznai, Armin Biere. Efficiently Solving Bit-Vector Problems Using Model Checkers.
 [FKB-SMT'13]
- Gergely Kovásznai, Helmut Veith, Andreas Fröhlich, Armin Biere. On the Complexity of Symbolic Verification and Decision Problems in Bit-Vector Logic. [KVFB-MFCS'14]
- Gergely Kovásznai, Andreas Fröhlich, Armin Biere. Complexity of Fixed-Size Bit-Vector Logics.
 [KFB-TOCS'15]
- Andreas Fröhlich, Armin Biere, Christoph M. Wintersteiger, Youssef Hamadi. Stochastic Local Search for Satisfiability Modulo Theories. [FBWH-AAAI'15]

- **Upgrading Theorem**: If a problem is complete for a complexity class *C*, it is complete for a *v*-exponentially harder complexity class than *C* when represented by bit-vectors with *v*-logarithmic encoded scalars. [KVFB-MFCS'14]
 - Implication: Word-Level Model Checking and Reachability for bit-vectors with binary encoded bit-widths are EXPSPACE-complete.
- v-Succinct SAT: Satisfiability for quantifier-free bit-vector formulas with v-logarithmic encoded scalars is (v-1)-NEXP-complete (with 0-NEXP := NP). (not published yet)
 - Proof: Reduction from Turing machines or domino tiling problems.