Bit-Vectors: Complexity and Decision Procedures

Andreas Fröhlich
Johannes Kepler University, Linz
... joined work with: Gergely Kovásznai, Armin Biere, Helmut Veith, Christoph Wintersteiger, Youssef Hamadi

10th Alpine Verification Meeting (AVM'15)

Monday, May 4, 2015
Attersee, Austria

- QF_BV e.g. $\left(x^{[8]}+y^{[8]}=x^{[8]} \ll 2^{[8]}\right) \wedge\left(y^{[8]} * z^{[8]}=x^{[8]} \mid z^{[8]}\right)$
- Common solving approach:
- Bit-blasting (encoding the bit-vector formula as a circuit)
- . . . and then using a SAT-solver
- Often assumed to be NP-complete
- Complexity actually depends on the encoding of bit-widths
- In practice: logarithmic encoding, e.g. SMT-LIB format

```
(set-logic QF_BV)
(declare-fun a () (_ BitVec 1024))
(declare-fun b () (_ BitVec 1024))
(assert (distinct (bvadd a b) (bvadd b a)))
```

- QF_BV with logarithmic encoding $\left(\mathrm{QF}_{_} \mathrm{BV}_{2}\right)$ is NEXP-complete

Propositional domain $\{0,1\}$:

- SAT $\left[\exists x_{1}, x_{2}, x_{3}.\right] \quad\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{3}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2}\right)$
- QBF $\quad \forall u_{1} \exists e_{1} \forall u_{2} \exists e_{2} . \quad\left(u_{2} \vee \neg e_{1}\right) \wedge\left(\neg u_{1} \vee e_{1}\right) \wedge\left(u_{1} \vee \neg e_{2}\right) \wedge\left(\neg u_{2} \vee e_{2}\right)$

PSPACE-complete

- DQBF $\forall u_{1}, u_{2} \exists e_{1}\left(u_{1}\right), e_{2}\left(u_{2}\right) . \quad\left(u_{2} \vee \neg e_{1}\right) \wedge\left(\neg u_{1} \vee e_{1}\right) \wedge\left(u_{1} \vee \neg e_{2}\right) \wedge\left(\neg u_{2} \vee e_{2}\right)$

NEXP-complete
First-order but no functions:

- EPR $\exists a, b \forall x, y . \quad(p(a, x, y) \vee \neg q(y, x, b)) \wedge(q(x, b, y) \vee \neg p(y, a, x))$
- QF_BV ${ }_{2}$ is NEXP-complete
- Bit-blasting replaces logarithmic bit-widths by its unary encoding
- Hardness by giving a reduction from DQBF to $\mathrm{QF}_{-} \mathrm{BV}_{2}$
- Use the so-called binary magic numbers to represent universal variables

$$
u_{0}, u_{1}, u_{2} \quad \rightarrow \quad U_{0}^{[8]}:=\left[\begin{array}{c}
0 \\
1 \\
0 \\
1 \\
0 \\
1 \\
0 \\
1
\end{array}\right], U_{1}^{[8]}:=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1 \\
0 \\
0 \\
1 \\
1
\end{array}\right], U_{2}^{[8]}:=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

- Eliminate dependencies by introducing constraints on shifted indices

$$
e_{0}\left(u_{0}, u_{1}\right), e_{1}\left(u_{1}, u_{2}\right) \quad \rightarrow \quad E_{0}^{[8]}=E_{0}^{[8]} \ll 4^{[8]}, E_{1}^{[8]}=E_{1}^{[8]} \ll 1^{[8]}
$$

- Can be extended to quantification and uninterpreted functions
- QF_BV (quantifier-free bit-vectors)

$$
\text { QF_BV }{ }_{1} \text { is NP-complete, } \mathrm{QF}_{-} \mathrm{BV}_{2} \text { is NEXP-complete }
$$

- BV+UF (quantified bit-vectors with uninterpreted functions)

$$
\mathrm{BV}_{1}+\mathrm{UF} \text { is } \mathrm{NEXP} \text {-complete, } \mathrm{BV}_{2}+\mathrm{UF} \text { is } 2 \text {-NEXP-complete }
$$

- Generalizations for arbitrary complete problems and multi-logarithmic succinct encodings are possible
- Implication: Word-Level Model Checking and Reachability for bit-vectors with binary encoded bit-widths are EXPSPACE-complete
- Logarithmic case: Restrictions on the set of operators are possible
- QF_BV ${ }_{b w}$ (only bitwise operations and equality)

$$
\mathrm{QF}_{-} \mathrm{BV}_{b w} \text { is NP-complete }
$$

- QF_BV $\lll 1$ (only bitwise operations, equality, and left shift by one)

$$
\text { QF } \mathrm{BV}_{\ll 1} \text { is PSPACE-complete }
$$

- QF_BV ${ }_{\ll c}$ (only bitwise operations, equality, and left shift by constant)

$$
\mathrm{QF}_{-} \mathrm{BV}_{\ll c} \text { is NEXP-complete }
$$

- Certain operators can be added or shown to be equally expressive
- State-of-the-art solvers for QF_BV rely on bit-blasting and SAT solvers
- Bit-blasting can be exponential
- Is it possible to solve QF_BV without bit-blasting?
- Can we profit from knowing the complexity of certain bit-vector classes?
- Some alternative approaches (and optimizations) exist
- Translation to EPR
- Translation to SMV
[KFB-CADE'13]
- Bit-width reduction [FKB-SMT'13]
[Johannsen]
- SLS for SMT
[FBWH-AAAI'15]
- BV2EPR: Polynomial translation from QF BV to EPR
- EPR formulas can be solved with iProver (by [Korovin])
- CEGAR approach
- Performance worse than bit-blasting for most instances
- Beneficial on some instances (0.1 s instead of T/O)
- Less memory used (can be several orders of magnitude)
- BV2SMV: Polynomial translation from QF $\mathrm{BV}_{\ll 1}$ to SMV
- SMV formulas can be solved with model checkers
- BDD based model checkers are most efficient

- Practical benchmarks actually do exist
- For QF $_{-} \mathrm{BV}_{b w}$, bit-width reduction can be applied
- There is a solution iff there is a solution with smaller bit-width, e.g.

$$
\begin{aligned}
& \left(X^{[32]} \neq Y^{[32]} \mid 3^{[32]}\right) \wedge\left(Y^{[32]} \neq Z^{[32]} \& X^{[32]}\right) \\
& \rightarrow \quad\left(X^{[2]} \neq Y^{[2]} \mid 3^{[2]}\right) \wedge\left(Y^{[2]} \neq Z^{[2]} \& X^{[2]}\right)
\end{aligned}
$$

- Can be extended to allow certain cases of other operators
- Existing work for RTL Property Checking
- Reduces size of design model to up to 30%
- Reduces runtimes to up to 5%
- BV-SLS: Stochastic Local Search for bit-vectors
- No bit-blasting
- Works on the theory representation of the formula
- Idea: Combine techniques from SAT-SLS with theory information
- Many techniques from SAT can successfully be lifted
- Theory information allows to deal with structure efficiently
- Promising results (see next slide)
- Shows that SLS solvers can actually profit from structure

	QF_BV	Sage2
CCAnr	5409	64
CCASat	4461	8
probSAT	3816	10
Sparrow	3806	12
VW2	2954	4
PAWS	3331	$\mathbf{1 4 3}$
YalSAT	3756	142
Z3 (Default)	7173	5821
BV-SLS	$\mathbf{6 1 7 2}$	$\mathbf{3 7 1 9}$

- Complexity of bit-vector formulas depends ...
- ... on the encoding of the bit-widths
- ... on the operators we use
- Bit-blasting ...
- ... is not polynomial in general
- ... can profit from bit-width reduction
- Alternative approaches
- CEGAR approach using iProver
- Model checkers for PSPACE fragments
- Stochastic local search on the theory level
- Gergely Kovásznai, Andreas Fröhlich, Armin Biere. On the Complexity of Fixed-Size Bit-Vector Logics with Binary Encoded Bit-Width.
- Gergely Kovásznai, Andreas Fröhlich, Armin Biere. BV2EPR: A Tool for Polynomially Translating Quantifier-free Bit-Vector Formulas into EPR.
[KFB-CADE'13]
- Andreas Fröhlich, Gergely Kovásznai, Armin Biere. More on the Complexity of Quan-tifier-Free Fixed-Size Bit-Vector Logics with Binary Encoding.
[FKB-CSR'13]
- Andreas Fröhlich, Gergely Kovásznai, Armin Biere. Efficiently Solving Bit-Vector Problems Using Model Checkers.
[FKB-SMT'13]
- Gergely Kovásznai, Helmut Veith, Andreas Fröhlich, Armin Biere. On the Complexity of Symbolic Verification and Decision Problems in Bit-Vector Logic. [KVFB-MFCS'14]
- Gergely Kovásznai, Andreas Fröhlich, Armin Biere. Complexity of Fixed-Size BitVector Logics.
- Andreas Fröhlich, Armin Biere, Christoph M. Wintersteiger, Youssef Hamadi. Stochastic Local Search for Satisfiability Modulo Theories.
[FBWH-AAAl'15]
- Upgrading Theorem: If a problem is complete for a complexity class C, it is complete for a v-exponentially harder complexity class than C when represented by bit-vectors with v-logarithmic encoded scalars. [KVFB-MFCS'14]
- Implication: Word-Level Model Checking and Reachability for bit-vectors with binary encoded bit-widths are EXPSPACE-complete.
- v-Succinct SAT: Satisfiability for quantifier-free bit-vector formulas with v-logarithmic encoded scalars is $(v-1)$-NEXP-complete (with 0-NEXP $:=$ NP).
(not published yet)
- Proof: Reduction from Turing machines or domino tiling problems.

