Second-Order Abstract Interpretation via Kleene Algebra

Dexter Kozen Cornell University

AVM 2015 Attersee, Austria 4 May 2015

Joint work with Łucja Kot CS Department Cornell University

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Abstract Interpretation

Cousot & Cousot 79

 Static derivation of information about the execution state at various points in a program

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Comes in various flavors
 - type inference
 - dataflow analysis
 - set constraints
- Applications
 - code optimization
 - verification
 - generating proof artifacts for PCC

Standard Approach

- Start with the control flow graph of the program to be analyzed
- Propagate known information forward possible values of variables or types
- Compute a join at confluence points
- Standard method is called the worklist algorithm
- The process is a bit like running the program on abstract values, hence the name abstract interpretation

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Types or Abstract Values

- Represent sets of values
 - statically derivable
 - conservative approximation
- Form a partial semilattice
 - higher = less specific
 - join does not exist = type error
- Often, abstract values are associated with invariants

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

This Talk

- A general mechanism for abstract interpretation and dataflow analysis based on Kleene algebra
- May improve performance over standard worklist algorithm when the semilattice of types is small

Illustration of the method in the context of Java bytecode verification

Kleene Algebra (KA)

Stephen Cole Kleene (1909–1994)

$(0 + 1(01^*0)^*1)^*$ {multiples of 3 in binary}

 $(ab)^* a = a(ba)^*$ $\{a, aba, ababa, \ldots\}$ $\rightarrow \bigcirc \bigcirc \overset{a}{\longrightarrow} \bigcirc \bigcirc \overset{b}{\longrightarrow} \bigcirc$

 $(a+b)^* = a^*(ba^*)^*$ {all strings over $\{a, b\}$ }

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Foundations of the Algebraic Theory

John Horton Conway (1937–) J. H. Conway. *Regular Algebra and Finite Machines*. Chapman and Hall, London, 1971.

Axioms of KA

Idempotent Semiring Axioms

$$p + (q + r) = (p + q) + r$$

$$p + q = q + p$$

$$p + 0 = p$$

$$p + 0 = p$$

$$p + p = p$$

$$p(q + r) = pq + pr$$

$$(p + q)r = pr + qr$$

$$p(qr) = (pq)r$$

$$p(qr) = (pq)r$$

$$p(qr) = p = p$$

$$p0 = 0p = 0$$

$$a \le b \stackrel{\text{def}}{\iff} a + b = b$$

Axioms for *

$$\begin{array}{ll} 1 + pp^* \leq p^* & q + px \leq x \implies p^*q \leq x \\ 1 + p^*p \leq p^* & q + xp \leq x \implies qp^* \leq x \end{array}$$

Significance of the * Axioms

$$1 + pp^* \le p^* \Rightarrow q + pp^*q \le p^*q$$
$$q + px \le x \Rightarrow p^*q \le x$$

 p^*q is the least x such that $q + px \le x$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Standard Model

Regular sets of strings over $\boldsymbol{\Sigma}$

$$A+B = A \cup B$$

$$AB = \{xy \mid x \in A, y \in B\}$$

$$A^* = \bigcup_{n \ge 0} A^n = A^0 \cup A^1 \cup A^2 \cup \cdots$$

$$1 = \{\varepsilon\}$$

$$0 = \emptyset$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

This is the free KA on generators $\boldsymbol{\Sigma}$

Relational Models

Binary relations on a set XFor $R, S \subseteq X \times X$. $R+S = R \cup S$ $RS = R \circ S = \{(u, v) \mid \exists w \ (u, w) \in R, \ (w, v) \in S\}$ R^* = reflexive transitive closure of R $= \left[\begin{array}{cc} R^n & = R^0 \cup R^1 \cup R^2 \cup \cdots \right]$ n > 01 = identity relation = $\{(u, u) \mid u \in X\}$ $0 = \emptyset$

KA is complete for the equational theory of relational models

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Other Models

- Trace models used in semantics
- $(\min, +)$ algebra used in shortest path algorithms
- (max, \cdot) algebra used in coding
- Convex sets used in computational geometry [Iwano & Steiglitz 90]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Matrices over a KA form a KA

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} a+e & b+f \\ c+g & d+h \end{bmatrix}$$
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} ae+bg & af+bh \\ ce+dg & cf+dh \end{bmatrix}$$
$$0 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \qquad 1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^* = \begin{bmatrix} (a+bd^*c)^* & (a+bd^*c)^*bd^* \\ (d+ca^*b)^*ca^* & (d+ca^*b)^* \end{bmatrix}$$

Systems of Affine Linear Inequalities

Theorem

Any system of n linear inequalities in n unknowns has a unique least solution

$$q_{1} + p_{11}x_{1} + p_{12}x_{2} + \cdots + p_{1n}x_{n} \leq x_{1}$$

$$\vdots$$

$$q_{n} + p_{n1}x_{1} + p_{n2}x_{2} + \cdots + p_{nn}x_{n} \leq x_{n}$$

Least solution is P^*q

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Proof Artifacts

An independently verifiable representation of the proof

 $x \leq y \Rightarrow x* \leq y*$

\lambda x, y. \lambda PO.(trans< [y=x*;1 x=x* z=y*] (=< [x=x* y=x*;1]
(sym [x=x*;1 y=x*] (id.R [x=x*])),*R [x=x y=1 z=y*]
(trans< [y=1 + y;y* x=x;y* + 1 z=y*]
(trans< [y=y;y* + 1 x=x;y* + 1 z=1 + y;y*]
(mono+R [x=x;y* y=y;y* z=1] (mono.R [x=x y=y z=y*] PO),
=< [x=y;y* + 1 y=1 + y;y*] (commut+ [x=y;y* y=1])),
=< [x=1 + y;y* y=y*] (unwindL [x=y]))))</pre>

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example: Java Bytecode Verification

Example: Java Bytecode Verification

Typical bytecode instructions:

iload 3 load an int from local 3, push on the operand stack pop an int from the operand stack, store in local 3 add the two ints on top of the stack, leave result on stack load a ref from local 4, push on the operand stack astore 4 pop a ref from the operand stack, store in local 4 swap swap the two values on top of the stack (polymorphic)

Example: Java Bytecode Verification

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のくぐ

A Directed Graph

Vertices are instruction instances

Edges to successor instructions, statically determined

- fallthrough
- jump targets
- exception handlers
- Edges labeled with transfer functions
 - partial functions types \rightarrow types
 - models abstract effect of instruction
 - domain of definition gives precondition for safe execution
 - different successors may have different transfer functions

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example of a Transfer Function

- Preconditions for safe execution
 - local 3 is an integer
 - stack is not full
- Effect
 - push integer in local 3 on stack

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Different exiting edges \Rightarrow different transfer functions

Abstract Interpretation

Annotate each vertex with a type

- reflects best knowledge of the state immediately prior to execution of the instruction
- must satisfy preconditions of exiting transfer functions
- Annotation of the entry instruction is determined by the declared type of the method
- Annotation of other instructions = join of values of transfer functions applied to predecessors annotations
- Want least fixpoint = best conservative approximation

Example

Example

◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ○ < ○

Example

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Basic Worklist Algorithm

 Annotate entry instruction according to declared type of the method, put on worklist

- ▶ first *n* + 1 locals contain this, method parameters
- stack is empty
- Repeat until worklist is empty:
 - remove next instruction from worklist
 - for each exiting edge:
 - apply transfer function on that edge to current annotation
 - update successor annotation join of transfer function value and current successor annotation

- join does not exist \Rightarrow type error
- if successor changed, put on worklist

An Application of Kleene Algebra

- Idea: avoid retracing of long cycles by symbolic composition of transfer functions
- ► Elements of the Kleene algebra are (typed) transfer functions
 - multiplication = typed composition
 - addition = join in the type semilattice
- Least fixpoint calculation involves computing the * of an m × m matrix, where m is the size of a cutset (set of vertices breaking all cycles)

Semilattices and the ACC

Let (L, +, ⊥) be a semilattice satisfying the ascending chain condition (ACC)

$$x + (y + z) = (x + y) + z \qquad x + \bot = x$$
$$x + y = y + x \qquad x + x = x$$

- ACC = no infinite ascending chains in L
- Implies that *L* contains a maximum element \top
- Elements of L represent dataflow information
 - Iower = more information
 - higher = less information
 - \top = no information

There is a natural partial order

$$x \leq y \iff x+y=y$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

• x + y is the least upper bound of x and y with respect to \leq

Transfer Functions

- ► Transfer functions are modeled as strict, monotone functions f : L → L
 - monotone: x ≤ y ⇒ f(x) ≤ f(y)
 strict: f(⊥) = ⊥
- Examples: $0 = \lambda x \perp$, $1 = \lambda x \cdot x$
- ▶ The domain of *f* is

dom
$$f = \{x \in L \mid f(x) \neq \top\}$$

▶ monotonicity implies dom(f) closed downward under ≤

Join

Define a join operation on transfer functions:

(f+g)(x) = f(x) + g(x)

• $0 = \lambda x \perp$ is a two-sided identity for +

 $((\lambda x.\bot) + g)(x) = \bot + g(x) = g(x)$

• idempotent f + f = f, thus we have a natural partial order

$$f \leq g \stackrel{\text{def}}{\iff} f + g = g$$

• upper semilattice with least element $0 = \lambda x \perp$

Composition

Write f; g for the ordinary functional composition $g \circ f = \lambda x.g(f(x))$

• $x \in \text{dom}(f; g)$ iff $x \in \text{dom } f$ and $f(x) \in \text{dom } g$, and

(f;g)(x) = g(f(x))

• $\lambda x.x$ is a two-sided identity for composition

$$f;(\lambda x.x) = (\lambda x.x); f = f$$

composition is monotone

 $f \leq g \Rightarrow f; h \leq g; h$ $f \leq g \Rightarrow h; f \leq h; g$

• $0 = \lambda x \perp$ is a two-sided annihilator

$$(\lambda x. \bot); f = f; (\lambda x. \bot) = \lambda x. \bot$$

Distbutive Laws

Composition distributes over $+ \mbox{ on the left}$

f;(g+h)=f;g+f;h

but not on the right; however

 $f; h + g; h \le (f + g); h$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

due to monotonicity

Star

 $f^*: L \to L$ is the function

$$f^*(x) =$$
 the least y such that $x + f(y) \le y$

This exists, since f is monotone and the ACC holds, so the monotone sequence

$$x, x + f(x), x + f(x + f(x)), \ldots$$

converges after a finite number of steps

The convergence is not necessarily uniformly bounded in x

Counterexample: take $L = \mathbb{N} \cup \{\infty\}$, join = min, $f(x) = \infty$ if $x = \infty$, x - 1 if $x \ge 1$, and 0 if x = 0

Modeling Transfer Functions

We define a left-handed Kleene algebra to be a structure that satisfies all the axioms of Kleene algebra, except

- we only require the left-handed * axioms and
- only right subdistributivity

Let K be the set of monotone strict functions $L \rightarrow L$.

Theorem

The structure $(K, +, \cdot, *, 0, 1)$ is a left-handed Kleene algebra.

Theorem

The set of $n \times n$ matrices over a left-handed Kleene algebra with the usual matrix operations is again a left-handed Kleene algebra.

- ▶ Let *S* = {vertices of the dataflow graph}
- Let E = the S × S matrix whose (s, t)th entry is the transfer function labeling edge (s, t)
- ▶ Let s_0 be the entry point of the method, $\theta_0 \in L$ its initial label
- $E^*(s, t)$ is the join of all labels on paths from s to t

Theorem

 $E^*(s_0, t)(\theta_0)$ is the least fixpoint dataflow annotation of t. It is the same labeling as that produced by the worklist algorithm.

if (b) x = y + 1;else x = z;(if b then α) iload 5 //load z istore 3 //save x goto β //save x α : iload 4 //load y iconst 1 //load 1
iadd
istore 3 //save x angle then β : ...

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

if (b) x = y + 1;else x = z;(if b then α) iload 5 //load z) (iload 5; \rangle else istore 3) istore 3 //save x + (iload 4; goto β α : iload 4 //load y iconst 1 //load 1 iconst 1; > then iadd; istore 3) iadd istore 3 //save x β: . . .

▲□ > ▲□ > ▲ 三 > ▲ 三 > ● ④ < ④

x = z;	precondition	effect
iload 5	5:int depth < maxStack-1	stack = int::···, $\partial = 1$
istore 3	int::stack	$\partial = -1$ 3:int

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

x = z;	precondition	effect
iload 5	5:int depth < maxStack-1	$stack=int{::}\cdots,\partial=1$
istore 3	int::stack	$\partial = -1$ 3:int

compose

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

x = y+1;	precondition	effect
iload 4	4:int depth < maxStack-1	stack = int::···, $\partial = 1$
iconst 1	depth < maxStack-1	$stack=int{::}\cdots,\partial=1$
iadd	int::int::stack	$\partial = -1$
istore 3	int::stack	$\partial = -1$ 3:int

x = y+1;	precondition	effect
iload 4	4:int depth $<$ maxStack-1	stack = int::···, $\partial = 1$
iconst 1	depth < maxStack-1	$stack = int :: \cdots, \ \partial = 1$
iadd	int::int::stack	$\partial = -1$
istore 3	int::stack	$\partial = -1$ 3:int

compose

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

iload 4 4:int $\partial = 0$ iconst 1 depth < maxStack-2 3:int iadd istore 3

	precondition	effect
iload 5 istore 3	5:int depth $<$ maxStack–1	$\partial = 0$ 3:int
iload 4 iconst 1 iadd istore 3	$\begin{array}{l} \mbox{4:int} \\ \mbox{depth} < \mbox{maxStack-2} \end{array}$	$\partial = 0$ 3:int

	precondition	effect
iload 5 istore 3	5:int depth $<$ maxStack–1	$\partial = 0$ 3:int
iload 4 iconst 1 iadd istore 3	4:int depth < maxStack–2	$\partial = 0$ 3:int

join iload 5 istore 3 + 4:int, 5:int $\partial = 0$ iload 4 depth < maxStack-2 3:int iconst 1 iadd istore 3

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem

 $E^*(s_0, t)(\theta_0)$ is the least fixpoint dataflow annotation of t. It is the same labeling as that produced by the worklist algorithm.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Problem: E is huge (but sparse)
- Solution: find a small cutset

Cutsets

- A cutset (a.k.a. feedback vertex set) is a set M of vertices breaking all directed cycles
- To compute the least fixpoint labeling efficiently, need to identify a small cutset
- Finding a minimal cutset is NP-complete, but polynomial time for reducible graphs
- ▶ In practice, take *M* = {targets of back edges}

Partition E into submatrices indexed by M and S – M, where M is the cutset

► That *M* is a cutset is reflected algebraically by the property $D^n = 0$, where n = |S - M|

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

where

$$F = (A + BD^*C)^* \qquad G = FBD^*$$

$$H = D^*CF \qquad J = D^* + D^*CFBD^*$$

$$\blacktriangleright D^n = 0 \Rightarrow D^* = (I + D)^{n-1}$$

• The $M \times M$ submatrix of E^* is

$$(A + BD^*C)^* = (A + B(I + D)^{n-1}C)^*$$

- If s, t are cutpoints, the (s, t)th entry of B(I + D)ⁿ⁻¹C is the join of all paths s → t containing no other cutpoint
- Compute by repeated squaring or a variant of Dijkstra

A	В
с	D

- $F = (A + B(I + D)^{n-1}C)^*$ is much smaller than E
- The other submatrices of E* can be described in terms of this matrix

$$G = FBD^*$$
$$H = D^*CF$$
$$J = D^* + HG$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Finding Small Cutsets

Efficiency depends on finding a small $\ensuremath{\mathsf{cutset}}\xspace = \mathsf{set}$ of nodes intersecting every directed cycle

- finding a minimum cutset is NP-complete
- Ptime for reducible graphs [Garey & Johnson 79]
- bytecode programs compiled from Java source are typically reducible

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

in practice, take targets of back edges

How big are cutsets in practice?

Finding Small Cutsets

Efficiency depends on finding a small $\ensuremath{\mathsf{cutset}}\xspace = \mathsf{set}$ of nodes intersecting every directed cycle

- finding a minimum cutset is NP-complete
- Ptime for reducible graphs [Garey & Johnson 79]
- bytecode programs compiled from Java source are typically reducible
- in practice, take targets of back edges

How big are cutsets in practice?

- analyzed 537 Java programs
- median cutset size = 2.1% of total program size
- $\blacktriangleright\,$ all except 5 programs <5%
- \blacktriangleright largest program analyzed was 2668 instructions with 5 cutpoints = 0.2%

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A Pipe Dream

- Many instructions have preconditions for safe execution (e.g., array, pointer dereference). Compilers should either:
 - insert a runtime type check, or
 - optimize away the check, but provide a proof of correctness of the optimization
- Programmer should be able to specify such preconditions, and they should behave the same way as the built-in ones

```
if (h.containsKey(key)) {
   data = h.get(key);
} else {
   data = new Data();
  h.put(key,data);
}
data = h.get(key);
if (data == null) {
   data = new Data();
   h.put(key,data);
}
```

data = h.get(key);

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

```
if (h.containsKey(key)) {
   data = h.get(key);
} else {
   data = new Data();
   h.put(key,data);
}
data = h.get(key);
if (data == null) {
   data = new Data();
   h.put(key,data);
}
```

```
assert h.containsKey(key);
data = h.get(key);
```

Built-in Preconditions

x = obj.data;

x = a[i];

Compiler will either

- omit runtime check but supply a proof, or
- insert runtime check and throw exception on failure
 (NullPointerException or ArrayIndexOutOfBoundsException,
 resp.)

Built-in Preconditions

```
assert obj != null;
x = obj.data;
assert 0 <= i && i < a.length;
x = a[i];
```

Compiler will either

- omit runtime check but supply a proof, or
- insert runtime check and throw exception on failure (NullPointerException or ArrayIndexOutOfBoundsException, resp.)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Programmer-Defined

```
assert h.containsKey(key);
data = h.get(key);
```

Compiler will either

- omit runtime check but supply a proof, or
- insert runtime check and throw InvalidAssertionException on failure

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Conclusion

Summary

- A general mechanism for second-order abstract interpretation based on Kleene algebra
 - ► may improve performance over standard worklist algorithm when the semilattice of types is small O(m³ + nm) vs O(nd)
- Proved soundness and completeness of the method
- Illustrated the method in the context of Java bytecode verification

Possible next steps

- Implement and compare experimentally to the standard worklist algorithm as specified in the Java VM specification
- Second-order method is amenable to parallelization, whereas the standard worklist method is inherently sequential
 - application of a transfer function requires knowledge of its inputs
 - compositions can be computed without knowing their inputs

Thanks!

・ロ> < 回> < 回> < 回> < 回> < 回