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Abstract Interpretation
Cousot & Cousot 79

I Static derivation of information about the execution state at various
points in a program

I Comes in various flavors
I type inference
I dataflow analysis
I set constraints

I Applications
I code optimization
I verification
I generating proof artifacts for PCC



Standard Approach

I Start with the control flow graph of the program to be analyzed

I Propagate known information forward – possible values of variables
or types

I Compute a join at confluence points

I Standard method is called the worklist algorithm

I The process is a bit like running the program on abstract values,
hence the name abstract interpretation



Types or Abstract Values

I Represent sets of values
I statically derivable
I conservative approximation

I Form a partial semilattice
I higher = less specific
I join does not exist = type error

I Often, abstract values are associated with invariants



This Talk

I A general mechanism for abstract interpretation and dataflow
analysis based on Kleene algebra

I May improve performance over standard worklist algorithm when the
semilattice of types is small

I Illustration of the method in the context of Java bytecode
verification



Kleene Algebra (KA)

Stephen Cole Kleene
(1909–1994)

(0 + 1(01∗0)∗1)∗

{multiples of 3 in binary}
1

0

1

0

0

1

(ab)∗a = a(ba)∗

{a, aba, ababa, . . .}
a

b

(a + b)∗ = a∗(ba∗)∗

{all strings over {a, b}}
a + b



Foundations of the Algebraic Theory

John Horton Conway
(1937–)

J. H. Conway. Regular Algebra
and Finite Machines. Chapman
and Hall, London, 1971.



Axioms of KA

Idempotent Semiring Axioms

p + (q + r) = (p + q) + r p(qr) = (pq)r

p + q = q + p 1p = p1 = p

p + 0 = p p0 = 0p = 0

p + p = p

p(q + r) = pq + pr a ≤ b
def⇐⇒ a + b = b

(p + q)r = pr + qr

Axioms for ∗

1 + pp∗ ≤ p∗ q + px ≤ x ⇒ p∗q ≤ x

1 + p∗p ≤ p∗ q + xp ≤ x ⇒ qp∗ ≤ x



Significance of the ∗ Axioms

1 + pp∗ ≤ p∗ ⇒ q + pp∗q ≤ p∗q

q + px ≤ x ⇒ p∗q ≤ x

p∗q is the least x such that q + px ≤ x



Standard Model

Regular sets of strings over Σ

A + B = A ∪ B

AB = {xy | x ∈ A, y ∈ B}
A∗ =

⋃
n≥0

An = A0 ∪ A1 ∪ A2 ∪ · · ·

1 = {ε}
0 = ∅

This is the free KA on generators Σ



Relational Models

Binary relations on a set X

For R,S ⊆ X × X ,

R + S = R ∪ S

RS = R ◦ S = {(u, v) | ∃w (u,w) ∈ R, (w , v) ∈ S}
R∗ = reflexive transitive closure of R

=
⋃
n≥0

Rn = R0 ∪ R1 ∪ R2 ∪ · · ·

1 = identity relation = {(u, u) | u ∈ X}
0 = ∅

KA is complete for the equational theory of relational models



Other Models

I Trace models used in semantics

I (min,+) algebra used in shortest path algorithms

I (max, ·) algebra used in coding

I Convex sets used in computational geometry [Iwano & Steiglitz 90]



Matrices over a KA form a KA

[
a b
c d

]
+

[
e f
g h

]
=

[
a + e b + f
c + g d + h

]
[

a b
c d

]
·
[

e f
g h

]
=

[
ae + bg af + bh
ce + dg cf + dh

]
0 =

[
0 0
0 0

]
1 =

[
1 0
0 1

]
[

a b
c d

]∗
=

[
(a + bd∗c)∗ (a + bd∗c)∗bd∗

(d + ca∗b)∗ca∗ (d + ca∗b)∗

]
b

a

c
d



Systems of Affine Linear Inequalities

Theorem

Any system of n linear inequalities in n unknowns has a unique least solution

q1 + p11x1 + p12x2 + · · · p1nxn ≤ x1

...

qn + pn1x1 + pn2x2 + · · · pnnxn ≤ xn

≤+ P = pij

x1
x2
...

xn

x1
x2
...

xn

q1
q2

...

qn

Least solution is P∗q



Proof Artifacts

An independently verifiable representation of the proof

x ≤ y ⇒ x* ≤ y*

λx,y.λP0.(trans< [y=x*;1 x=x* z=y*] (=< [x=x* y=x*;1]

(sym [x=x*;1 y=x*] (id.R [x=x*])),*R [x=x y=1 z=y*]

(trans< [y=1 + y;y* x=x;y* + 1 z=y*]

(trans< [y=y;y* + 1 x=x;y* + 1 z=1 + y;y*]

(mono+R [x=x;y* y=y;y* z=1] (mono.R [x=x y=y z=y*] P0),

=< [x=y;y* + 1 y=1 + y;y*] (commut+ [x=y;y* y=1])),

=< [x=1 + y;y* y=y*] (unwindL [x=y])))))



Example: Java Bytecode Verification

Useless

ContinuationsInteger

int,short,byte,

boolean,char

Object

Interface

Array[ ] Array[ ][ ]

Null

implements

Java class
hierarchy

· · ·



Example: Java Bytecode Verification

Typical bytecode instructions:

iload 3 load an int from local 3, push on the operand stack
istore 3 pop an int from the operand stack, store in local 3
iadd add the two ints on top of the stack, leave result on stack
aload 4 load a ref from local 4, push on the operand stack
astore 4 pop a ref from the operand stack, store in local 4
swap swap the two values on top of the stack (polymorphic)



Example: Java Bytecode Verification

String
Hash-

table
Object

this p0 p1 p2

parameters other locals

m
axL

o
cals

local variable array

String-

Buffer

User-

Class
int[ ]

m
axS

tack

operand stack

reference integer continuation useless



A Directed Graph

I Vertices are instruction instances

I Edges to successor instructions, statically determined
I fallthrough
I jump targets
I exception handlers

I Edges labeled with transfer functions
I partial functions types → types
I models abstract effect of instruction
I domain of definition gives precondition for safe execution
I different successors may have different transfer functions



Example of a Transfer Function

0 1 2 3 4 5 6 7

lo
ca

ls
st

ac
k

0 1 2 3 4 5 6 7

lo
ca

ls
st

ac
k

iload 3

I Preconditions for safe
execution

I local 3 is an
integer

I stack is not full

I Effect

I push integer in
local 3 on stack



Different exiting edges ⇒ different transfer functions

getfield

fallthrough
instruction

exception
handler

pop object;
pop field reference;
push value

object 6= null

dump stack;
push NullPointerException

object = null



Abstract Interpretation

I Annotate each vertex with a type
I reflects best knowledge of the state immediately prior to execution of

the instruction
I must satisfy preconditions of exiting transfer functions

I Annotation of the entry instruction is determined by the declared
type of the method

I Annotation of other instructions = join of values of transfer
functions applied to predecessors annotations

I Want least fixpoint = best conservative approximation

stack

locals



Example

stack

locals

iload 3

stack

locals

iload 4

stack

locals

iadd

stack

locals
istore 3 stack

locals

goto

stack

locals



Example

stack

locals

iload 3

stack

locals

iload 4

stack

locals

iadd

stack

locals
istore 3 stack

locals

goto

stack

locals

reference

uselessinteger



Example

stack

locals

iload 3

stack

locals

iload 4

stack

locals

iadd

stack

locals
istore 3 stack

locals

goto

stack

locals

StringBuffer

ObjectString



Basic Worklist Algorithm

I Annotate entry instruction according to declared type of the
method, put on worklist

I first n + 1 locals contain this, method parameters
I stack is empty

I Repeat until worklist is empty:
I remove next instruction from worklist
I for each exiting edge:

I apply transfer function on that edge to current annotation
I update successor annotation – join of transfer function value and

current successor annotation
I join does not exist ⇒ type error
I if successor changed, put on worklist



An Application of Kleene Algebra

I Idea: avoid retracing of long cycles by symbolic composition of
transfer functions

I Elements of the Kleene algebra are (typed) transfer functions
I multiplication = typed composition
I addition = join in the type semilattice

I Least fixpoint calculation involves computing the * of an m ×m
matrix, where m is the size of a cutset (set of vertices breaking all
cycles)



Semilattices and the ACC

I Let (L,+,⊥) be a semilattice satisfying the ascending chain
condition (ACC)

x + (y + z) = (x + y) + z x +⊥ = x

x + y = y + x x + x = x

I ACC = no infinite ascending chains in L

I Implies that L contains a maximum element >
I Elements of L represent dataflow information

I lower = more information
I higher = less information
I > = no information



A Partial Order

I There is a natural partial order

x ≤ y
def⇐⇒ x + y = y

I x + y is the least upper bound of x and y with respect to ≤



Transfer Functions

I Transfer functions are modeled as strict, monotone functions
f : L→ L

I monotone: x ≤ y ⇒ f (x) ≤ f (y)
I strict: f (⊥) = ⊥

I Examples: 0 = λx .⊥, 1 = λx .x

I The domain of f is

dom f = {x ∈ L | f (x) 6= >}

I monotonicity implies dom(f ) closed downward under ≤



Join

I Define a join operation on transfer functions:

(f + g)(x) = f (x) + g(x)

I 0 = λx .⊥ is a two-sided identity for +

((λx .⊥) + g)(x) = ⊥+ g(x) = g(x)

I idempotent f + f = f , thus we have a natural partial order

f ≤ g
def⇐⇒ f + g = g

I upper semilattice with least element 0 = λx .⊥



Composition

Write f ; g for the ordinary functional composition g ◦ f = λx .g(f (x))

I x ∈ dom(f ; g) iff x ∈ dom f and f (x) ∈ dom g , and

(f ; g)(x) = g(f (x))

I λx .x is a two-sided identity for composition

f ; (λx .x) = (λx .x); f = f

I composition is monotone

f ≤ g ⇒ f ; h ≤ g ; h f ≤ g ⇒ h; f ≤ h; g

I 0 = λx .⊥ is a two-sided annihilator

(λx .⊥); f = f ; (λx .⊥) = λx .⊥



Distbutive Laws

Composition distributes over + on the left

f ; (g + h) = f ; g + f ; h

but not on the right; however

f ; h + g ; h ≤ (f + g); h

due to monotonicity



Star

f ∗ : L→ L is the function

f ∗(x) = the least y such that x + f (y) ≤ y

This exists, since f is monotone and the ACC holds, so the monotone
sequence

x , x + f (x), x + f (x + f (x)), . . .

converges after a finite number of steps

The convergence is not necessarily uniformly bounded in x

Counterexample: take L = N ∪ {∞}, join = min, f (x) =∞ if x =∞,
x − 1 if x ≥ 1, and 0 if x = 0



Modeling Transfer Functions

We define a left-handed Kleene algebra to be a structure that satisfies all
the axioms of Kleene algebra, except

I we only require the left-handed * axioms and

I only right subdistributivity

Let K be the set of monotone strict functions L→ L.

Theorem
The structure (K , +, ·, ∗, 0, 1) is a left-handed Kleene algebra.

Theorem
The set of n × n matrices over a left-handed Kleene algebra with the
usual matrix operations is again a left-handed Kleene algebra.



Dataflow as Matrix ∗

I Let S = {vertices of the dataflow graph}
I Let E = the S × S matrix whose (s, t)th entry is the transfer

function labeling edge (s, t)

I Let s0 be the entry point of the method, θ0 ∈ L its initial label

I E∗(s, t) is the join of all labels on paths from s to t

Theorem
E∗(s0, t)(θ0) is the least fixpoint dataflow annotation of t. It is the same
labeling as that produced by the worklist algorithm.



An Example

if (b) x = y + 1;

else x = z;

(if b then α)
iload 5 //load z (iload 5;

istore 3 //save x istore 3)

goto β +

α: iload 4 //load y (iload 4;

iconst 1 //load 1 iconst 1;

iadd iadd;

istore 3 //save x istore 3)

β: . . .

else

then



An Example

if (b) x = y + 1;

else x = z;

(if b then α)
iload 5 //load z (iload 5;

istore 3 //save x istore 3)

goto β +

α: iload 4 //load y (iload 4;

iconst 1 //load 1 iconst 1;

iadd iadd;

istore 3 //save x istore 3)

β: . . .

else

then



An Example

x = z; precondition effect

iload 5 5:int stack = int::· · · , ∂ = 1
depth < maxStack-1

istore 3 int::stack ∂ = −1
3:int

iload 5 5:int ∂ = 0
istore 3 depth < maxStack-1 3:int



An Example

x = z; precondition effect

iload 5 5:int stack = int::· · · , ∂ = 1
depth < maxStack-1

istore 3 int::stack ∂ = −1
3:int

iload 5 5:int ∂ = 0
istore 3 depth < maxStack-1 3:int

compose



An Example

x = y+1; precondition effect

iload 4 4:int stack = int::· · · , ∂ = 1
depth < maxStack-1

iconst 1 depth < maxStack-1 stack = int::· · · , ∂ = 1

iadd int::int::stack ∂ = −1

istore 3 int::stack ∂ = −1
3:int

iload 4 4:int ∂ = 0
iconst 1 depth < maxStack-2 3:int
iadd

istore 3



An Example

x = y+1; precondition effect

iload 4 4:int stack = int::· · · , ∂ = 1
depth < maxStack-1

iconst 1 depth < maxStack-1 stack = int::· · · , ∂ = 1

iadd int::int::stack ∂ = −1

istore 3 int::stack ∂ = −1
3:int

iload 4 4:int ∂ = 0
iconst 1 depth < maxStack-2 3:int
iadd

istore 3

compose



An Example

precondition effect

iload 5 5:int ∂ = 0
istore 3 depth < maxStack–1 3:int

iload 4 4:int ∂ = 0
iconst 1 depth < maxStack–2 3:int
iadd

istore 3

iload 5

istore 3

+ 4:int, 5:int ∂ = 0
iload 4 depth < maxStack–2 3:int
iconst 1

iadd

istore 3



An Example

precondition effect

iload 5 5:int ∂ = 0
istore 3 depth < maxStack–1 3:int

iload 4 4:int ∂ = 0
iconst 1 depth < maxStack–2 3:int
iadd

istore 3

iload 5

istore 3

+ 4:int, 5:int ∂ = 0
iload 4 depth < maxStack–2 3:int
iconst 1

iadd

istore 3

join



Dataflow as Matrix ∗

Theorem
E∗(s0, t)(θ0) is the least fixpoint dataflow annotation of t. It is the same
labeling as that produced by the worklist algorithm.

I Problem: E is huge (but sparse)

I Solution: find a small cutset



Cutsets

I A cutset (a.k.a. feedback vertex set) is a set M of
vertices breaking all directed cycles

I To compute the least fixpoint labeling efficiently,
need to identify a small cutset

I Finding a minimal cutset is NP-complete, but
polynomial time for reducible graphs

I In practice, take M = {targets of back edges}

•

•

•

•

•

•

•

•



Dataflow as Matrix ∗

I Partition E into submatrices indexed by M and S −M, where M is
the cutset

A B

C D

M S −M

M

S −M

I That M is a cutset is reflected algebraically by the property Dn = 0,
where n = |S −M|



Dataflow as Matrix ∗

A B

C D

∗

=

F G

H J

where

F = (A + BD∗C )∗ G = FBD∗

H = D∗CF J = D∗ + D∗CFBD∗



Dataflow as Matrix ∗

I Dn = 0⇒ D∗ = (I + D)n−1

I The M ×M submatrix of E∗ is

(A + BD∗C )∗ = (A + B(I + D)n−1C )∗

I If s, t are cutpoints, the (s, t)th

entry of B(I + D)n−1C is the join
of all paths s → t containing no
other cutpoint

I Compute by repeated squaring or a
variant of Dijkstra

A B

C D



Dataflow as Matrix ∗

I F = (A + B(I + D)n−1C )∗ is much
smaller than E

I The other submatrices of E∗ can be
described in terms of this matrix

G = FBD∗

H = D∗CF

J = D∗ + HG

F G

H J



Finding Small Cutsets

Efficiency depends on finding a small cutset = set of nodes intersecting
every directed cycle

I finding a minimum cutset is NP-complete

I Ptime for reducible graphs [Garey & Johnson 79]

I bytecode programs compiled from Java source are typically reducible

I in practice, take targets of back edges

How big are cutsets in practice?

I analyzed 537 Java programs

I median cutset size = 2.1% of total program size

I all except 5 programs < 5%

I largest program analyzed was 2668 instructions with 5 cutpoints =
0.2%



Finding Small Cutsets

Efficiency depends on finding a small cutset = set of nodes intersecting
every directed cycle

I finding a minimum cutset is NP-complete

I Ptime for reducible graphs [Garey & Johnson 79]

I bytecode programs compiled from Java source are typically reducible

I in practice, take targets of back edges

How big are cutsets in practice?

I analyzed 537 Java programs

I median cutset size = 2.1% of total program size

I all except 5 programs < 5%

I largest program analyzed was 2668 instructions with 5 cutpoints =
0.2%



A Pipe Dream

I Many instructions have preconditions for safe execution (e.g., array,
pointer dereference). Compilers should either:

I insert a runtime type check, or
I optimize away the check, but provide a proof of correctness of the

optimization

I Programmer should be able to specify such preconditions, and they
should behave the same way as the built-in ones



if (h.containsKey(key)) {
data = h.get(key);

} else {
data = new Data();

h.put(key,data);

}

data = h.get(key);

if (data == null) {
data = new Data();

h.put(key,data);

}

data = h.get(key);



if (h.containsKey(key)) {
data = h.get(key);

} else {
data = new Data();

h.put(key,data);

}

data = h.get(key);

if (data == null) {
data = new Data();

h.put(key,data);

}

assert h.containsKey(key);

data = h.get(key);



Built-in Preconditions

x = obj.data;

x = a[i];

Compiler will either

I omit runtime check but supply a proof, or

I insert runtime check and throw exception on failure
(NullPointerException or ArrayIndexOutOfBoundsException,
resp.)



Built-in Preconditions

assert obj != null;

x = obj.data;

assert 0 <= i && i < a.length;

x = a[i];

Compiler will either

I omit runtime check but supply a proof, or

I insert runtime check and throw exception on failure
(NullPointerException or ArrayIndexOutOfBoundsException,
resp.)



Programmer-Defined

assert h.containsKey(key);

data = h.get(key);

Compiler will either

I omit runtime check but supply a proof, or

I insert runtime check and throw InvalidAssertionException on
failure



Conclusion

Summary

I A general mechanism for second-order abstract interpretation based
on Kleene algebra

I may improve performance over standard worklist algorithm when the
semilattice of types is small - O(m3 + nm) vs O(nd)

I Proved soundness and completeness of the method

I Illustrated the method in the context of Java bytecode verification

Possible next steps

I Implement and compare experimentally to the standard worklist
algorithm as specified in the Java VM specification

I Second-order method is amenable to parallelization, whereas the
standard worklist method is inherently sequential

I application of a transfer function requires knowledge of its inputs
I compositions can be computed without knowing their inputs



Thanks!


