
Program Analysis with Local Policy Iteration

George Karpenkov

VERIMAG

May 6, 2015

George Karpenkov Program Analysis with Local Policy Iteration 1/41
1/41



Outline
Introduction

Motivation
Finding Inductive Invariants

Background
Template Constraints Domain
Policy Iteration Algorithm
Path Focusing

LPI
Motivation
Algorithm
Example
Contribution

Results

George Karpenkov Program Analysis with Local Policy Iteration 2/41
2/41



Motivation

• Program verification

• Finding inductive invariants
• LPI
◦ Scalable algorithm for policy iteration
◦ Sent to FMCAD’15

George Karpenkov Program Analysis with Local Policy Iteration 3/41
3/41



Motivation

• Program verification
• Finding inductive invariants

• LPI
◦ Scalable algorithm for policy iteration
◦ Sent to FMCAD’15

George Karpenkov Program Analysis with Local Policy Iteration 3/41
3/41



Motivation

• Program verification
• Finding inductive invariants
• LPI
◦ Scalable algorithm for policy iteration
◦ Sent to FMCAD’15

George Karpenkov Program Analysis with Local Policy Iteration 3/41
3/41



Program Modeling

• Control Flow Automaton (CFA)

int i=0;
while (i<10) {

i++;
}

A

i < 10 ∧ i′ = i + 1

i′ = 0

George Karpenkov Program Analysis with Local Policy Iteration 4/41
4/41



Inductive Invariant
Motivation

• Task: verify program properties

• Prove: by induction
• Aim: find inductive invariant
◦ Includes initial state
◦ Closed under transition Inductive Invariant

I

τ

George Karpenkov Program Analysis with Local Policy Iteration 5/41
5/41



Abstract Interpretation Limitations

• Usual tool: abstract interpretation
• Relies on widenings/narrowings to

enforce convergence
• Can be very brittle

George Karpenkov Program Analysis with Local Policy Iteration 6/41
6/41



Policy Iteration
Historical Perspective

• Game-theoretique technique
• Solving markov processes

• Used for poker AI

George Karpenkov Program Analysis with Local Policy Iteration 7/41
7/41



Policy Iteration
Historical Perspective

• Game-theoretique technique
• Solving markov processes
• Used for poker AI

George Karpenkov Program Analysis with Local Policy Iteration 7/41
7/41



Policy Iteration
Introduction - 2

• Finds least inductive invariant in the given abstract domain
• Considers the program as a set of equations
• Game-theoretic algorithm adapted to find inductive invariant
• Requires abstract semantics to be monotone & concave

Guarantees
Least inductive invariant, not least invariant in general!

George Karpenkov Program Analysis with Local Policy Iteration 8/41
8/41



Policy Iteration
Introduction - 2

• Finds least inductive invariant in the given abstract domain
• Considers the program as a set of equations
• Game-theoretic algorithm adapted to find inductive invariant
• Requires abstract semantics to be monotone & concave

Guarantees
Least inductive invariant, not least invariant in general!

George Karpenkov Program Analysis with Local Policy Iteration 8/41
8/41



Outline
Introduction

Motivation
Finding Inductive Invariants

Background
Template Constraints Domain
Policy Iteration Algorithm
Path Focusing

LPI
Motivation
Algorithm
Example
Contribution

Results

George Karpenkov Program Analysis with Local Policy Iteration 9/41
9/41



Template Constraints Domain
Domain used in our work

• Choose linear inequalities to be tracked before the analysis
• E.g. x, y, x + y (templates)
• We want to find inductive invariant

x ≤ d1 ∧ y ≤ d2 ∧ x + y ≤ d3 for all control states
• An element of the domain above is a vector (3, 2, 4) which

corresponds to x ≤ 3 ∧ y ≤ 2 ∧ x + y ≤ 4

x

y

George Karpenkov Program Analysis with Local Policy Iteration 10/41
10/41



Template Constraints Domain
Abstract Semantics

• Abstract Semantics: transition relation in the abstract domain
• Convex optimization:
◦ Template x, transition x′ = x + 1, previous element x ≤ 5
◦ New element given by max x′ s. t. x′ = x + 1 ∧ x ≤ 5

George Karpenkov Program Analysis with Local Policy Iteration 11/41
11/41



Policy Iteration
Simple Example

A

i < 1000000 ∧ i′ = i + 1

i′ = 0 • Template constraints domain {i}
• Aim: find smallest d, s.t. i ≤ d is an

inductive invariant
• Use semantical equations for d

• Necessary and sufficient condition:
• d = sup i′ s.t.

i′ = i + 1∧ i < 1000000∧ i ≤ d
∨

i′ =
0 ∨⊥
◦ Disjunctions come from multiple edges
◦ ⊥ represents unreachable state
◦ We take supremum as the answer can be ∞

(unbounded) or −∞ (unreachable)

George Karpenkov Program Analysis with Local Policy Iteration 12/41
12/41



Policy Iteration
Simple Example

A

i < 1000000 ∧ i′ = i + 1

i′ = 0 • Template constraints domain {i}
• Aim: find smallest d, s.t. i ≤ d is an

inductive invariant
• Use semantical equations for d

• Necessary and sufficient condition:
• d = sup i′ s.t.

i′ = i + 1∧ i < 1000000∧ i ≤ d
∨

i′ =
0 ∨⊥
◦ Disjunctions come from multiple edges

◦ ⊥ represents unreachable state
◦ We take supremum as the answer can be ∞

(unbounded) or −∞ (unreachable)

George Karpenkov Program Analysis with Local Policy Iteration 12/41
12/41



Policy Iteration
Simple Example

A

i < 1000000 ∧ i′ = i + 1

i′ = 0 • Template constraints domain {i}
• Aim: find smallest d, s.t. i ≤ d is an

inductive invariant
• Use semantical equations for d

• Necessary and sufficient condition:
• d = sup i′ s.t.

i′ = i + 1∧ i < 1000000∧ i ≤ d
∨

i′ =
0 ∨⊥
◦ Disjunctions come from multiple edges
◦ ⊥ represents unreachable state
◦ We take supremum as the answer can be ∞

(unbounded) or −∞ (unreachable)

George Karpenkov Program Analysis with Local Policy Iteration 12/41
12/41



Policy Iteration
Explanation By Example

• We have a min-max equation:
d = min (sup i′ s.t. i′ = i + 1 ∧ i < 1000000 ∧ i ≤ d

∨
i′ =

0 ∨⊥)

• We consider separate cases for disjunctions
• Replacing each disjunction with one argument
◦ d = sup i′ s.t. i′ = 0
◦ Referred to as a policy

George Karpenkov Program Analysis with Local Policy Iteration 13/41
13/41



Policy Iteration
Explanation By Example

• We have a min-max equation:
d = min (sup i′ s.t. i′ = i + 1 ∧ i < 1000000 ∧ i ≤ d

∨
i′ =

0 ∨⊥)
• We consider separate cases for disjunctions
• Replacing each disjunction with one argument
◦ d = sup i′ s.t. i′ = 0
◦ Referred to as a policy

George Karpenkov Program Analysis with Local Policy Iteration 13/41
13/41



Policy Iteration
Explanation By Example - 2

• d = sup i′ s.t. i′ = 0

• Simplified system (with no disjunctions):
◦ Monotone and concave
◦ ≤ 2 fixpoints
◦ Can be solved using LP

George Karpenkov Program Analysis with Local Policy Iteration 14/41
14/41



Policy Iteration Example
Algorithm Run

• d = sup i′ s.t.
i′ = i + 1 ∧ i < 1000000 ∧ i ≤ d

∨
i′ = 0 ∨⊥

1. Equation d = sup i′ s.t. ⊥ evaluates to d = −∞
2. Substitute the value, does not hold:
−∞ = sup i′ s.t. i′ = i + 1 ∧ i < 1000000 ∧ i ≤ d

∨
i′ = 0

∨
⊥

3. Increase the value to 0 using policy d = sup i′ s.t. i′ = 0
4. Substituting, does not hold:

0 = sup i′ s.t. i′ = i + 1 ∧ i < 1000000
∨

i′ = 0
∨
⊥

5. Increase to 1000000 using
d = sup i′ s.t. i′ = i + 1 ∧ i < 1000000 ∧ i ≤ d

6. Substitute, holds!
1000000 = sup i′ s.t. i′ = i+1∧i < 1000000∧i ≤ d

∨
i′ = 0

∨
⊥

George Karpenkov Program Analysis with Local Policy Iteration 15/41
15/41



Policy Iteration Example
Algorithm Run

• d = sup i′ s.t.
i′ = i + 1 ∧ i < 1000000 ∧ i ≤ d

∨
i′ = 0 ∨⊥

1. Equation d = sup i′ s.t. ⊥ evaluates to d = −∞

2. Substitute the value, does not hold:
−∞ = sup i′ s.t. i′ = i + 1 ∧ i < 1000000 ∧ i ≤ d

∨
i′ = 0

∨
⊥

3. Increase the value to 0 using policy d = sup i′ s.t. i′ = 0
4. Substituting, does not hold:

0 = sup i′ s.t. i′ = i + 1 ∧ i < 1000000
∨

i′ = 0
∨
⊥

5. Increase to 1000000 using
d = sup i′ s.t. i′ = i + 1 ∧ i < 1000000 ∧ i ≤ d

6. Substitute, holds!
1000000 = sup i′ s.t. i′ = i+1∧i < 1000000∧i ≤ d

∨
i′ = 0

∨
⊥

George Karpenkov Program Analysis with Local Policy Iteration 15/41
15/41



Policy Iteration Example
Algorithm Run

• d = sup i′ s.t.
i′ = i + 1 ∧ i < 1000000 ∧ i ≤ d

∨
i′ = 0 ∨⊥

1. Equation d = sup i′ s.t. ⊥ evaluates to d = −∞
2. Substitute the value, does not hold:
−∞ = sup i′ s.t. i′ = i + 1 ∧ i < 1000000 ∧ i ≤ d

∨
i′ = 0

∨
⊥

3. Increase the value to 0 using policy d = sup i′ s.t. i′ = 0
4. Substituting, does not hold:

0 = sup i′ s.t. i′ = i + 1 ∧ i < 1000000
∨

i′ = 0
∨
⊥

5. Increase to 1000000 using
d = sup i′ s.t. i′ = i + 1 ∧ i < 1000000 ∧ i ≤ d

6. Substitute, holds!
1000000 = sup i′ s.t. i′ = i+1∧i < 1000000∧i ≤ d

∨
i′ = 0

∨
⊥

George Karpenkov Program Analysis with Local Policy Iteration 15/41
15/41



Policy Iteration Example
Algorithm Run

• d = sup i′ s.t.
i′ = i + 1 ∧ i < 1000000 ∧ i ≤ d

∨
i′ = 0 ∨⊥

1. Equation d = sup i′ s.t. ⊥ evaluates to d = −∞
2. Substitute the value, does not hold:
−∞ = sup i′ s.t. i′ = i + 1 ∧ i < 1000000 ∧ i ≤ d

∨
i′ = 0

∨
⊥

3. Increase the value to 0 using policy d = sup i′ s.t. i′ = 0

4. Substituting, does not hold:
0 = sup i′ s.t. i′ = i + 1 ∧ i < 1000000

∨
i′ = 0

∨
⊥

5. Increase to 1000000 using
d = sup i′ s.t. i′ = i + 1 ∧ i < 1000000 ∧ i ≤ d

6. Substitute, holds!
1000000 = sup i′ s.t. i′ = i+1∧i < 1000000∧i ≤ d

∨
i′ = 0

∨
⊥

George Karpenkov Program Analysis with Local Policy Iteration 15/41
15/41



Policy Iteration Example
Algorithm Run

• d = sup i′ s.t.
i′ = i + 1 ∧ i < 1000000 ∧ i ≤ d

∨
i′ = 0 ∨⊥

1. Equation d = sup i′ s.t. ⊥ evaluates to d = −∞
2. Substitute the value, does not hold:
−∞ = sup i′ s.t. i′ = i + 1 ∧ i < 1000000 ∧ i ≤ d

∨
i′ = 0

∨
⊥

3. Increase the value to 0 using policy d = sup i′ s.t. i′ = 0
4. Substituting, does not hold:

0 = sup i′ s.t. i′ = i + 1 ∧ i < 1000000
∨

i′ = 0
∨
⊥

5. Increase to 1000000 using
d = sup i′ s.t. i′ = i + 1 ∧ i < 1000000 ∧ i ≤ d

6. Substitute, holds!
1000000 = sup i′ s.t. i′ = i+1∧i < 1000000∧i ≤ d

∨
i′ = 0

∨
⊥

George Karpenkov Program Analysis with Local Policy Iteration 15/41
15/41



Policy Iteration Example
Algorithm Run

• d = sup i′ s.t.
i′ = i + 1 ∧ i < 1000000 ∧ i ≤ d

∨
i′ = 0 ∨⊥

1. Equation d = sup i′ s.t. ⊥ evaluates to d = −∞
2. Substitute the value, does not hold:
−∞ = sup i′ s.t. i′ = i + 1 ∧ i < 1000000 ∧ i ≤ d

∨
i′ = 0

∨
⊥

3. Increase the value to 0 using policy d = sup i′ s.t. i′ = 0
4. Substituting, does not hold:

0 = sup i′ s.t. i′ = i + 1 ∧ i < 1000000
∨

i′ = 0
∨
⊥

5. Increase to 1000000 using
d = sup i′ s.t. i′ = i + 1 ∧ i < 1000000 ∧ i ≤ d

6. Substitute, holds!
1000000 = sup i′ s.t. i′ = i+1∧i < 1000000∧i ≤ d

∨
i′ = 0

∨
⊥

George Karpenkov Program Analysis with Local Policy Iteration 15/41
15/41



Policy Iteration Example
Algorithm Run

• d = sup i′ s.t.
i′ = i + 1 ∧ i < 1000000 ∧ i ≤ d

∨
i′ = 0 ∨⊥

1. Equation d = sup i′ s.t. ⊥ evaluates to d = −∞
2. Substitute the value, does not hold:
−∞ = sup i′ s.t. i′ = i + 1 ∧ i < 1000000 ∧ i ≤ d

∨
i′ = 0

∨
⊥

3. Increase the value to 0 using policy d = sup i′ s.t. i′ = 0
4. Substituting, does not hold:

0 = sup i′ s.t. i′ = i + 1 ∧ i < 1000000
∨

i′ = 0
∨
⊥

5. Increase to 1000000 using
d = sup i′ s.t. i′ = i + 1 ∧ i < 1000000 ∧ i ≤ d

6. Substitute, holds!
1000000 = sup i′ s.t. i′ = i+1∧i < 1000000∧i ≤ d

∨
i′ = 0

∨
⊥

George Karpenkov Program Analysis with Local Policy Iteration 15/41
15/41



Policy Iteration
Algorithm Overview

Policy improvement

Value determination

Exit

p0

pv

v converged

Policy p← p0
repeat

v ← value determination based on p
p← policy based on v

until v converges

George Karpenkov Program Analysis with Local Policy Iteration 16/41
16/41



Policy Iteration
Algorithm Continued

• Policy Improvement: SMT call
◦ Policy which can improve current value?

• Value Determination: LP call
◦ Maximum value for current policy?

George Karpenkov Program Analysis with Local Policy Iteration 17/41
17/41



Path Focusing
Similar to Large Block Encoding

• Unknown per node per template

• Over-approximates invariant in the abstract domain
• Loss of precision

if (unknown()) {
x = -1;

} else {
x = 1;

}
assert(x != 0);

A

B

x′ = 1 x′ = −1

x ∈ [−1, 1]

C

x = 0

George Karpenkov Program Analysis with Local Policy Iteration 18/41
18/41



Path Focusing
Similar to Large Block Encoding

• Unknown per node per template
• Over-approximates invariant in the abstract domain
• Loss of precision

if (unknown()) {
x = -1;

} else {
x = 1;

}
assert(x != 0);

A

B

x′ = 1 x′ = −1

x ∈ [−1, 1]

C

x = 0

George Karpenkov Program Analysis with Local Policy Iteration 18/41
18/41



Path Focusing
Similar to Large Block Encoding

• Unknown per node per template
• Over-approximates invariant in the abstract domain
• Loss of precision

if (unknown()) {
x = -1;

} else {
x = 1;

}
assert(x != 0);

A

B

x′ = 1 x′ = −1

x ∈ [−1, 1]

C

x = 0

George Karpenkov Program Analysis with Local Policy Iteration 18/41
18/41



Path Focusing
Adding disjunctions

• Solution: remove nodes!
• CFG Compaction:
◦ Edges (A, τ1, B), (B, τ2, C), with no other incoming to B

• Converted to (A, τ1 ∧ τ2, C), B removed
◦ Edges (A, τ1, B), (A, τ2, B), no other incoming to B

• Converted to (A, τ1 ∨ τ2, B)

A

B

x′ = 1 x′ = −1

C

x = 0

Pre-process

A

C

(x′ = 1 ∨ x′ = −1) ∧ (x = 0)

George Karpenkov Program Analysis with Local Policy Iteration 19/41
19/41



Path Focusing
Adding disjunctions

• Solution: remove nodes!
• CFG Compaction:
◦ Edges (A, τ1, B), (B, τ2, C), with no other incoming to B

• Converted to (A, τ1 ∧ τ2, C), B removed
◦ Edges (A, τ1, B), (A, τ2, B), no other incoming to B

• Converted to (A, τ1 ∨ τ2, B)

A

B

x′ = 1 x′ = −1

C

x = 0

Pre-process

A

C

(x′ = 1 ∨ x′ = −1) ∧ (x = 0)

George Karpenkov Program Analysis with Local Policy Iteration 19/41
19/41



Path Focusing
Properties

• For a well-structured graph: only loop-heads remain

• Disjunctions create new policies
• Possible improvement: cut-set
◦ Set of nodes which cut all the cycles in the graph

• Disadvantage: requires pre-processing

George Karpenkov Program Analysis with Local Policy Iteration 20/41
20/41



Path Focusing
Properties

• For a well-structured graph: only loop-heads remain
• Disjunctions create new policies

• Possible improvement: cut-set
◦ Set of nodes which cut all the cycles in the graph

• Disadvantage: requires pre-processing

George Karpenkov Program Analysis with Local Policy Iteration 20/41
20/41



Path Focusing
Properties

• For a well-structured graph: only loop-heads remain
• Disjunctions create new policies
• Possible improvement: cut-set
◦ Set of nodes which cut all the cycles in the graph

• Disadvantage: requires pre-processing

George Karpenkov Program Analysis with Local Policy Iteration 20/41
20/41



Outline
Introduction

Motivation
Finding Inductive Invariants

Background
Template Constraints Domain
Policy Iteration Algorithm
Path Focusing

LPI
Motivation
Algorithm
Example
Contribution

Results

George Karpenkov Program Analysis with Local Policy Iteration 21/41
21/41



Problems of Policy Iteration
Motivation for our work

• Problems with the approach above:
◦ Scalability: at each step, we update each policy, and at each

step, we solve the global equation system (of the size of the
entire program)

◦ Cooperability: policy iterations don’t fit into any existing
framework, pre-processing makes it worse

George Karpenkov Program Analysis with Local Policy Iteration 22/41
22/41



Problems of Policy Iteration
Our Contribution

• Our work: LPI (Local Policy Iteration)
◦ Exploits the locality to avoid redundant computation
◦ Avoids solving the global equation at each point
◦ Unifies policy iteration with other approaches using CPA

(Configurable Program Analysis Framework)
◦ No pre-processing is involved

George Karpenkov Program Analysis with Local Policy Iteration 23/41
23/41



LPI as a Configurable Program Analysis

x ≤ 4 ?
x′ = x + 1

• Transfer Relation:
◦ Similar to abstract interpretation
◦ Record the bound along with the policy

• Global map M : location→ abstract state

• When two states for the same node, merge
◦ When merge closes the loop, perform value determination
◦ Follow backpointers to re-create global problem

George Karpenkov Program Analysis with Local Policy Iteration 24/41
24/41



LPI as a Configurable Program Analysis

x ≤ 4 ?
x′ = x + 1

• Transfer Relation:
◦ Similar to abstract interpretation
◦ Record the bound along with the policy

• Global map M : location→ abstract state

• When two states for the same node, merge
◦ When merge closes the loop, perform value determination
◦ Follow backpointers to re-create global problem

George Karpenkov Program Analysis with Local Policy Iteration 24/41
24/41



LPI as a Configurable Program Analysis

x ≤ 4 ?
x′ = x + 1

• Transfer Relation:
◦ Similar to abstract interpretation
◦ Record the bound along with the policy

• Global map M : location→ abstract state

• When two states for the same node, merge
◦ When merge closes the loop, perform value determination
◦ Follow backpointers to re-create global problem

George Karpenkov Program Analysis with Local Policy Iteration 24/41
24/41



Abstract Domain

• Two lattices:
◦ Abstracted State (element of template constraints domain)
◦ Intermediate State (formula)

• Idea: avoid pre-processing

• Propagate intermediate states, convert to abstracted at
loop-heads

George Karpenkov Program Analysis with Local Policy Iteration 25/41
25/41



Abstract Domain

• Two lattices:
◦ Abstracted State (element of template constraints domain)
◦ Intermediate State (formula)

• Idea: avoid pre-processing

• Propagate intermediate states, convert to abstracted at
loop-heads

George Karpenkov Program Analysis with Local Policy Iteration 25/41
25/41



LPI Abstract Domain
Abstracted States

Abstracted State
Set of tuples (bound, policy, backpointer) for each template.
Current bound, policy and the previous value used to derive that
bound.

• Abstracted state example: {i : (0, i′ = 0, A)}

• Partial order given by component-wise comparison on bounds
• On merge:
◦ Pick the upper bound for each template
◦ Keep the corresponding policy and backpointer

George Karpenkov Program Analysis with Local Policy Iteration 26/41
26/41



LPI Abstract Domain
Abstracted States

Abstracted State
Set of tuples (bound, policy, backpointer) for each template.
Current bound, policy and the previous value used to derive that
bound.

• Abstracted state example: {i : (0, i′ = 0, A)}
• Partial order given by component-wise comparison on bounds

• On merge:
◦ Pick the upper bound for each template
◦ Keep the corresponding policy and backpointer

George Karpenkov Program Analysis with Local Policy Iteration 26/41
26/41



LPI Abstract Domain
Abstracted States

Abstracted State
Set of tuples (bound, policy, backpointer) for each template.
Current bound, policy and the previous value used to derive that
bound.

• Abstracted state example: {i : (0, i′ = 0, A)}
• Partial order given by component-wise comparison on bounds
• On merge:
◦ Pick the upper bound for each template
◦ Keep the corresponding policy and backpointer

George Karpenkov Program Analysis with Local Policy Iteration 26/41
26/41



LPI Abstract Domain
Intermediate States

Intermediate State
• Formula φ(X ′) representing set of reachable states
• Ω meta-variables instead of backpointers

• Intermediate State example:
◦ x′ = 1 ∧ Ω = A ∨ x′ = 0 ∧ Ω = B

• Propagation: symbolic execution
• Can be converted to abstracted state using abstraction
◦ Maximizing for every template
◦ Recording policy and backpointer

George Karpenkov Program Analysis with Local Policy Iteration 27/41
27/41



LPI Abstract Domain
Intermediate States

Intermediate State
• Formula φ(X ′) representing set of reachable states
• Ω meta-variables instead of backpointers

• Intermediate State example:
◦ x′ = 1 ∧ Ω = A ∨ x′ = 0 ∧ Ω = B

• Propagation: symbolic execution
• Can be converted to abstracted state using abstraction
◦ Maximizing for every template
◦ Recording policy and backpointer

George Karpenkov Program Analysis with Local Policy Iteration 27/41
27/41



LPI
Propagation Overview

• Start with abstracted state at node A: {x : (0, x′ = 0, I)}

• Successor under edge x′ = x + 5
• Intermediate state: x′ = x + 5 ∧ x ≤ 0 ∧ Ω = A

• If we need to perform abstraction, we get
{x : (5, x′ = x + 5, A)}

George Karpenkov Program Analysis with Local Policy Iteration 28/41
28/41



LPI
Propagation Overview

• Start with abstracted state at node A: {x : (0, x′ = 0, I)}
• Successor under edge x′ = x + 5

• Intermediate state: x′ = x + 5 ∧ x ≤ 0 ∧ Ω = A

• If we need to perform abstraction, we get
{x : (5, x′ = x + 5, A)}

George Karpenkov Program Analysis with Local Policy Iteration 28/41
28/41



LPI
Propagation Overview

• Start with abstracted state at node A: {x : (0, x′ = 0, I)}
• Successor under edge x′ = x + 5
• Intermediate state: x′ = x + 5 ∧ x ≤ 0 ∧ Ω = A

• If we need to perform abstraction, we get
{x : (5, x′ = x + 5, A)}

George Karpenkov Program Analysis with Local Policy Iteration 28/41
28/41



LPI
Propagation Overview

• Start with abstracted state at node A: {x : (0, x′ = 0, I)}
• Successor under edge x′ = x + 5
• Intermediate state: x′ = x + 5 ∧ x ≤ 0 ∧ Ω = A

• If we need to perform abstraction, we get
{x : (5, x′ = x + 5, A)}

George Karpenkov Program Analysis with Local Policy Iteration 28/41
28/41



Local Value Determination

• On closing the loop (at abstracted state):
◦ Follow backpointers, keep adding constraints
◦ Create value determination problem

• Potentially size of the largest loop

George Karpenkov Program Analysis with Local Policy Iteration 29/41
29/41



Local Policy Iteration
Algorithm Example

I

A

B

i′ = 0 ∧ j′ = 0

i < 10 ∧ i′ = i + 1

¬(i < 10)

j < 10 ∧ j′ = j + 1

1. Start with abstracted state >

2. Intermediate state i′ = 0 ∧ j′ = 0 ∧ Ω = I

3. Abstracted to {i : (0, I), j : (0, I)}
4. Intermediate state i ≤ 0 ∧ j ≤ 0 ∧ Ω = A

5. Abstracted to {i : (1, A), j : (0, A)}
6. Merge A, val. det.: {i : (10, A), j : (0, I)}
7. Intermediate i ≤ 10∧ j ≤ 0∧¬(i < 10)∧Ω = A

8. Abstracted: {i : (10, A), j : (0, A)}
9. Intermediate:

i = 10 ∧ j ≤ 0 ∧ j′ = j + 1 ∧ Ω = B

10. Abstracted: {i : (10, B), j : (1, B)}
11. Merge B, val. det.: {i : (10, B), j : (10, A)}

George Karpenkov Program Analysis with Local Policy Iteration 30/41
30/41



Local Policy Iteration
Algorithm Example

I

A

B

i′ = 0 ∧ j′ = 0

i < 10 ∧ i′ = i + 1

¬(i < 10)

j < 10 ∧ j′ = j + 1

1. Start with abstracted state >
2. Intermediate state i′ = 0 ∧ j′ = 0 ∧ Ω = I

3. Abstracted to {i : (0, I), j : (0, I)}
4. Intermediate state i ≤ 0 ∧ j ≤ 0 ∧ Ω = A

5. Abstracted to {i : (1, A), j : (0, A)}
6. Merge A, val. det.: {i : (10, A), j : (0, I)}
7. Intermediate i ≤ 10∧ j ≤ 0∧¬(i < 10)∧Ω = A

8. Abstracted: {i : (10, A), j : (0, A)}
9. Intermediate:

i = 10 ∧ j ≤ 0 ∧ j′ = j + 1 ∧ Ω = B

10. Abstracted: {i : (10, B), j : (1, B)}
11. Merge B, val. det.: {i : (10, B), j : (10, A)}

George Karpenkov Program Analysis with Local Policy Iteration 30/41
30/41



Local Policy Iteration
Algorithm Example

I

A

B

i′ = 0 ∧ j′ = 0

i < 10 ∧ i′ = i + 1

¬(i < 10)

j < 10 ∧ j′ = j + 1

1. Start with abstracted state >
2. Intermediate state i′ = 0 ∧ j′ = 0 ∧ Ω = I

3. Abstracted to {i : (0, I), j : (0, I)}

4. Intermediate state i ≤ 0 ∧ j ≤ 0 ∧ Ω = A

5. Abstracted to {i : (1, A), j : (0, A)}
6. Merge A, val. det.: {i : (10, A), j : (0, I)}
7. Intermediate i ≤ 10∧ j ≤ 0∧¬(i < 10)∧Ω = A

8. Abstracted: {i : (10, A), j : (0, A)}
9. Intermediate:

i = 10 ∧ j ≤ 0 ∧ j′ = j + 1 ∧ Ω = B

10. Abstracted: {i : (10, B), j : (1, B)}
11. Merge B, val. det.: {i : (10, B), j : (10, A)}

George Karpenkov Program Analysis with Local Policy Iteration 30/41
30/41



Local Policy Iteration
Algorithm Example

I

A

B

i′ = 0 ∧ j′ = 0

i < 10 ∧ i′ = i + 1

¬(i < 10)

j < 10 ∧ j′ = j + 1

1. Start with abstracted state >
2. Intermediate state i′ = 0 ∧ j′ = 0 ∧ Ω = I

3. Abstracted to {i : (0, I), j : (0, I)}
4. Intermediate state i ≤ 0 ∧ j ≤ 0 ∧ Ω = A

5. Abstracted to {i : (1, A), j : (0, A)}
6. Merge A, val. det.: {i : (10, A), j : (0, I)}
7. Intermediate i ≤ 10∧ j ≤ 0∧¬(i < 10)∧Ω = A

8. Abstracted: {i : (10, A), j : (0, A)}
9. Intermediate:

i = 10 ∧ j ≤ 0 ∧ j′ = j + 1 ∧ Ω = B

10. Abstracted: {i : (10, B), j : (1, B)}
11. Merge B, val. det.: {i : (10, B), j : (10, A)}

George Karpenkov Program Analysis with Local Policy Iteration 30/41
30/41



Local Policy Iteration
Algorithm Example

I

A

B

i′ = 0 ∧ j′ = 0

i < 10 ∧ i′ = i + 1

¬(i < 10)

j < 10 ∧ j′ = j + 1

1. Start with abstracted state >
2. Intermediate state i′ = 0 ∧ j′ = 0 ∧ Ω = I

3. Abstracted to {i : (0, I), j : (0, I)}
4. Intermediate state i ≤ 0 ∧ j ≤ 0 ∧ Ω = A

5. Abstracted to {i : (1, A), j : (0, A)}

6. Merge A, val. det.: {i : (10, A), j : (0, I)}
7. Intermediate i ≤ 10∧ j ≤ 0∧¬(i < 10)∧Ω = A

8. Abstracted: {i : (10, A), j : (0, A)}
9. Intermediate:

i = 10 ∧ j ≤ 0 ∧ j′ = j + 1 ∧ Ω = B

10. Abstracted: {i : (10, B), j : (1, B)}
11. Merge B, val. det.: {i : (10, B), j : (10, A)}

George Karpenkov Program Analysis with Local Policy Iteration 30/41
30/41



Local Policy Iteration
Algorithm Example

I

A

B

i′ = 0 ∧ j′ = 0

i < 10 ∧ i′ = i + 1

¬(i < 10)

j < 10 ∧ j′ = j + 1

1. Start with abstracted state >
2. Intermediate state i′ = 0 ∧ j′ = 0 ∧ Ω = I

3. Abstracted to {i : (0, I), j : (0, I)}
4. Intermediate state i ≤ 0 ∧ j ≤ 0 ∧ Ω = A

5. Abstracted to {i : (1, A), j : (0, A)}
6. Merge A, val. det.: {i : (10, A), j : (0, I)}

7. Intermediate i ≤ 10∧ j ≤ 0∧¬(i < 10)∧Ω = A

8. Abstracted: {i : (10, A), j : (0, A)}
9. Intermediate:

i = 10 ∧ j ≤ 0 ∧ j′ = j + 1 ∧ Ω = B

10. Abstracted: {i : (10, B), j : (1, B)}
11. Merge B, val. det.: {i : (10, B), j : (10, A)}

George Karpenkov Program Analysis with Local Policy Iteration 30/41
30/41



Local Policy Iteration
Algorithm Example

I

A

B

i′ = 0 ∧ j′ = 0

i < 10 ∧ i′ = i + 1

¬(i < 10)

j < 10 ∧ j′ = j + 1

1. Start with abstracted state >
2. Intermediate state i′ = 0 ∧ j′ = 0 ∧ Ω = I

3. Abstracted to {i : (0, I), j : (0, I)}
4. Intermediate state i ≤ 0 ∧ j ≤ 0 ∧ Ω = A

5. Abstracted to {i : (1, A), j : (0, A)}
6. Merge A, val. det.: {i : (10, A), j : (0, I)}
7. Intermediate i ≤ 10∧ j ≤ 0∧¬(i < 10)∧Ω = A

8. Abstracted: {i : (10, A), j : (0, A)}
9. Intermediate:

i = 10 ∧ j ≤ 0 ∧ j′ = j + 1 ∧ Ω = B

10. Abstracted: {i : (10, B), j : (1, B)}
11. Merge B, val. det.: {i : (10, B), j : (10, A)}

George Karpenkov Program Analysis with Local Policy Iteration 30/41
30/41



Local Policy Iteration
Algorithm Example

I

A

B

i′ = 0 ∧ j′ = 0

i < 10 ∧ i′ = i + 1

¬(i < 10)

j < 10 ∧ j′ = j + 1

1. Start with abstracted state >
2. Intermediate state i′ = 0 ∧ j′ = 0 ∧ Ω = I

3. Abstracted to {i : (0, I), j : (0, I)}
4. Intermediate state i ≤ 0 ∧ j ≤ 0 ∧ Ω = A

5. Abstracted to {i : (1, A), j : (0, A)}
6. Merge A, val. det.: {i : (10, A), j : (0, I)}
7. Intermediate i ≤ 10∧ j ≤ 0∧¬(i < 10)∧Ω = A

8. Abstracted: {i : (10, A), j : (0, A)}

9. Intermediate:
i = 10 ∧ j ≤ 0 ∧ j′ = j + 1 ∧ Ω = B

10. Abstracted: {i : (10, B), j : (1, B)}
11. Merge B, val. det.: {i : (10, B), j : (10, A)}

George Karpenkov Program Analysis with Local Policy Iteration 30/41
30/41



Local Policy Iteration
Algorithm Example

I

A

B

i′ = 0 ∧ j′ = 0

i < 10 ∧ i′ = i + 1

¬(i < 10)

j < 10 ∧ j′ = j + 1

1. Start with abstracted state >
2. Intermediate state i′ = 0 ∧ j′ = 0 ∧ Ω = I

3. Abstracted to {i : (0, I), j : (0, I)}
4. Intermediate state i ≤ 0 ∧ j ≤ 0 ∧ Ω = A

5. Abstracted to {i : (1, A), j : (0, A)}
6. Merge A, val. det.: {i : (10, A), j : (0, I)}
7. Intermediate i ≤ 10∧ j ≤ 0∧¬(i < 10)∧Ω = A

8. Abstracted: {i : (10, A), j : (0, A)}
9. Intermediate:

i = 10 ∧ j ≤ 0 ∧ j′ = j + 1 ∧ Ω = B

10. Abstracted: {i : (10, B), j : (1, B)}
11. Merge B, val. det.: {i : (10, B), j : (10, A)}

George Karpenkov Program Analysis with Local Policy Iteration 30/41
30/41



Local Policy Iteration
Algorithm Example

I

A

B

i′ = 0 ∧ j′ = 0

i < 10 ∧ i′ = i + 1

¬(i < 10)

j < 10 ∧ j′ = j + 1

1. Start with abstracted state >
2. Intermediate state i′ = 0 ∧ j′ = 0 ∧ Ω = I

3. Abstracted to {i : (0, I), j : (0, I)}
4. Intermediate state i ≤ 0 ∧ j ≤ 0 ∧ Ω = A

5. Abstracted to {i : (1, A), j : (0, A)}
6. Merge A, val. det.: {i : (10, A), j : (0, I)}
7. Intermediate i ≤ 10∧ j ≤ 0∧¬(i < 10)∧Ω = A

8. Abstracted: {i : (10, A), j : (0, A)}
9. Intermediate:

i = 10 ∧ j ≤ 0 ∧ j′ = j + 1 ∧ Ω = B

10. Abstracted: {i : (10, B), j : (1, B)}

11. Merge B, val. det.: {i : (10, B), j : (10, A)}

George Karpenkov Program Analysis with Local Policy Iteration 30/41
30/41



Local Policy Iteration
Algorithm Example

I

A

B

i′ = 0 ∧ j′ = 0

i < 10 ∧ i′ = i + 1

¬(i < 10)

j < 10 ∧ j′ = j + 1

1. Start with abstracted state >
2. Intermediate state i′ = 0 ∧ j′ = 0 ∧ Ω = I

3. Abstracted to {i : (0, I), j : (0, I)}
4. Intermediate state i ≤ 0 ∧ j ≤ 0 ∧ Ω = A

5. Abstracted to {i : (1, A), j : (0, A)}
6. Merge A, val. det.: {i : (10, A), j : (0, I)}
7. Intermediate i ≤ 10∧ j ≤ 0∧¬(i < 10)∧Ω = A

8. Abstracted: {i : (10, A), j : (0, A)}
9. Intermediate:

i = 10 ∧ j ≤ 0 ∧ j′ = j + 1 ∧ Ω = B

10. Abstracted: {i : (10, B), j : (1, B)}
11. Merge B, val. det.: {i : (10, B), j : (10, A)}

George Karpenkov Program Analysis with Local Policy Iteration 30/41
30/41



Reachability of Bad States

• Whether we are safe:
◦ φ ∧ E is unsat
◦ Example: (x ≤ 10) ∧ (x = 11)

• Whether we are unsafe:
◦ φ ∧ ¬E is unsat
◦ Example: (x = 0) ∧ (x = 0)

George Karpenkov Program Analysis with Local Policy Iteration 31/41
31/41



Reachability of Bad States

• Whether we are safe:
◦ φ ∧ E is unsat
◦ Example: (x ≤ 10) ∧ (x = 11)

• Whether we are unsafe:
◦ φ ∧ ¬E is unsat
◦ Example: (x = 0) ∧ (x = 0)

George Karpenkov Program Analysis with Local Policy Iteration 31/41
31/41



Algorithm Properties

• Soundness
◦ Only terminate when inductive

• Termination
◦ Bounds can only grow
◦ Each bound corresponds to some policy
◦ Finite number of policies

• Least invariant property
◦ Only select feasible policies

George Karpenkov Program Analysis with Local Policy Iteration 32/41
32/41



Algorithm Properties

• Soundness
◦ Only terminate when inductive

• Termination
◦ Bounds can only grow
◦ Each bound corresponds to some policy
◦ Finite number of policies

• Least invariant property
◦ Only select feasible policies

George Karpenkov Program Analysis with Local Policy Iteration 32/41
32/41



Algorithm Properties

• Soundness
◦ Only terminate when inductive

• Termination
◦ Bounds can only grow
◦ Each bound corresponds to some policy
◦ Finite number of policies

• Least invariant property
◦ Only select feasible policies

George Karpenkov Program Analysis with Local Policy Iteration 32/41
32/41



LPI Configurations

• Configurations
◦ Intervals (±x)
◦ Octagons (above and ±x,±x± y)
◦ Rich Templates (above and ±2x± y,±x± y ± z,±2x± y ± z)
◦ Unrolling
◦ Simple Congruence Analysis

• Refinement: progressively switch to more expensive config

George Karpenkov Program Analysis with Local Policy Iteration 33/41
33/41



LPI Configurations

• Configurations
◦ Intervals (±x)
◦ Octagons (above and ±x,±x± y)
◦ Rich Templates (above and ±2x± y,±x± y ± z,±2x± y ± z)
◦ Unrolling
◦ Simple Congruence Analysis

• Refinement: progressively switch to more expensive config

George Karpenkov Program Analysis with Local Policy Iteration 33/41
33/41



Contrast with Classical Policy Iteration

• Only update policies which need updating

• Run value determination on a reduced program section

• Stated in CPA framework

• (Unguided) refinement of template precision

• Local value determination optimizations
Not in the presentation

George Karpenkov Program Analysis with Local Policy Iteration 34/41
34/41



Outline
Introduction

Motivation
Finding Inductive Invariants

Background
Template Constraints Domain
Policy Iteration Algorithm
Path Focusing

LPI
Motivation
Algorithm
Example
Contribution

Results

George Karpenkov Program Analysis with Local Policy Iteration 35/41
35/41



Local Policy Iteration
Code analysis tool

Tool
Included in CPAchecker trunk.
• https://github.com/dbeyer/cpachecker

• Configurations:
◦ -policy-intervals
◦ -policy
◦ -policy-ensemble
◦ -policy-counterexample-checking

George Karpenkov Program Analysis with Local Policy Iteration 36/41
36/41



LPI Evaluation

• Evaluated on SV-Comp “Loops” category
• Compared with
◦ BLAST(2014)
◦ CPAchecker-SVcomp15
◦ PAGAI

• Across true benchmarks

George Karpenkov Program Analysis with Local Policy Iteration 37/41
37/41



Results
Comparison of Approaches

vs. LPI PAGAI BLAST CPAchecker Unique Verified Incorrect
LPI 13 21 22 8 60 1
PAGAI 5 14 15 0 52 1
BLAST 4 5 7 0 43 1
CPAchecker 19 20 21 12 57 2

• Difference between approaches
• Reads: A vs. B

George Karpenkov Program Analysis with Local Policy Iteration 38/41
38/41



Results
Timing Results

10−2

10−1

100

101

102

103

CP
U

Ti
m

e(
s)

PAGAI
LPI-Refinement
BLAST(2014)
CPAchecker
LPI-Intervals

George Karpenkov Program Analysis with Local Policy Iteration 39/41
39/41



Contributions
Re-iterating

• New scalable algorithm for policy iteration
• Tool for program analysis (using CPAchecker framework)
◦ The only policy-iteration based tool capable of dealing with C

George Karpenkov Program Analysis with Local Policy Iteration 40/41
40/41



Questions?

George Karpenkov Program Analysis with Local Policy Iteration 41/41
41/41



Policy Iteration
Fixpoints and Concavity

• Concavity and monotonicity limits the number of fixpoints
• Can solve for x = f(x)

y = x

x

y

y = f(x)

f1 = f(f1)

f2 = f(f2)

x0

f(x0)

f(f(x0))

f(f(f(x0)))

George Karpenkov Program Analysis with Local Policy Iteration 41/41
41/41



Policy Iteration
Concavity of Abstract Semantics

• Linear Semantics: x′ = Tx ∧G(x)
• Let t′ = t(Tx)

t

t′

G(x)

max t′x s.t. x ∈ G(x)

max t′x s. t. x ∈ G(x) ∧ tx ≤ d

tx ≤ d

d

George Karpenkov Program Analysis with Local Policy Iteration 41/41
41/41


	Introduction
	Motivation
	Finding Inductive Invariants

	Background
	Template Constraints Domain
	Policy Iteration Algorithm
	Path Focusing

	LPI
	Motivation
	Algorithm
	Example
	Contribution

	Results
	Appendix

