Program Analysis with Local Policy Iteration

George Karpenkov

VERIMAG

May 6, 2015

George Karpenkov

Outline

Introduction Motivation Finding Inductive Invariants

Background

Template Constraints Domain Policy Iteration Algorithm Path Focusing

LPI

Motivation Algorithm Example Contribution

Results

²/₄₁

George Karpenkov

Motivation

• Program verification

George Karpenkov

Motivation

- Program verification
- Finding inductive invariants

George Karpenkov

Motivation

- Program verification
- Finding inductive invariants
- LPI
 - Scalable algorithm for policy iteration
 - Sent to FMCAD'15

• Control Flow Automaton (CFA)

int i=0;
while (i<10) {
 i++;
}</pre>

 $\begin{matrix} \mathbf{i'} = 0 \\ \mathbf{A} \\ \mathbf{O} \\ i < 10 \land i' = i + 1 \end{matrix}$

George Karpenkov

Inductive Invariant

Motivation

- Task: verify program properties
- Prove: by induction
- Aim: find inductive invariant
 - Includes initial state
 - Closed under transition

Inductive Invariant

Abstract Interpretation Limitations

- Usual tool: abstract interpretation
- Relies on widenings/narrowings to enforce convergence
- Can be very brittle

Historical Perspective

- Game-theoretique technique
- Solving markov processes

George Karpenkov

Historical Perspective

- Game-theoretique technique
- Solving markov processes
- Used for poker AI

George Karpenkov

- Finds least inductive invariant in the given abstract domain
- Considers the program as a set of equations
- Game-theoretic algorithm adapted to find inductive invariant
- Requires abstract semantics to be monotone & concave

- Finds least inductive invariant in the given abstract domain
- Considers the program as a set of equations
- Game-theoretic algorithm adapted to find inductive invariant
- Requires abstract semantics to be monotone & concave

Guarantees

Least inductive invariant, not least invariant in general!

Outline

Introduction Motivation Finding Inductive Invariants

Background

Template Constraints Domain Policy Iteration Algorithm Path Focusing

LPI

Motivation Algorithm Example Contributior

Results

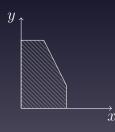
9/41

George Karpenkov

Template Constraints Domain

Domain used in our work

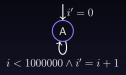
- Choose linear inequalities to be tracked before the analysis
- E.g. x, y, x + y (templates)
- We want to find inductive invariant $x \le d_1 \land y \le d_2 \land x + y \le d_3$ for all control states
- An element of the domain above is a vector (3,2,4) which corresponds to $x\leq 3\wedge y\leq 2\wedge x+y\leq 4$



Template Constraints Domain

Abstract Semantics

- Abstract Semantics: transition relation in the abstract domain
- Convex optimization:
 - $\,\circ\,$ Template x, transition x'=x+1, previous element $x\leq 5$
 - $~\circ~$ New element given by $\max x'$ s. t. $x'=x+1 \wedge x \leq 5$



- Template constraints domain $\{i\}$
- Aim: find smallest d, s.t. $i \leq d$ is an inductive invariant
- Use semantical equations for d

- Template constraints domain $\{i\}$
- Aim: find smallest d, s.t. $i \leq d$ is an inductive invariant
- Use semantical equations for d
- Necessary and sufficient condition:

•
$$d = \sup i'$$
 s.t.
 $i' = i + 1 \land i < 1000000 \land i \le d \lor i' = 0 \lor \bot$

• Disjunctions come from multiple edges

- Template constraints domain $\{i\}$
- Aim: find smallest d, s.t. $i \leq d$ is an inductive invariant
- Use semantical equations for d
- Necessary and sufficient condition:

•
$$d = \sup i'$$
 s.t.
 $i' = i + 1 \land i < 1000000 \land i \le d \lor i' = 0 \lor \bot$

- Disjunctions come from multiple edges
- $\circ \perp$ represents unreachable state
- $^\circ$ We take supremum as the answer can be ∞ (unbounded) or $-\infty$ (unreachable)

Policy Iteration Explanation By Example

We have a min-max equation:

 $d = \min\left(\sup{i'} \text{ s.t. } i' = i+1 \land i < 1000000 \land i \le d \lor i' = 0 \lor \bot\right)$

Policy Iteration Explanation By Example

• We have a min-max equation:

 $d = \min (\sup i' \text{ s.t. } i' = i + 1 \land i < 1000000 \land i \le d \lor i' = 0 \lor \bot)$

- We consider separate cases for disjunctions
- Replacing each disjunction with one argument
 - $\circ d = \sup i' \text{ s.t. } i' = 0$
 - Referred to as a policy

Policy Iteration Explanation By Example - 2

- $d = \sup i'$ s.t. i' = 0
- Simplified system (with no disjunctions):
 - Monotone and concave
 - $\circ \ \leq 2 \ {\rm fixpoints}$
 - Can be solved using LP

•
$$d = \sup i'$$
 s.t.
 $i' = i + 1 \land i < 1000000 \land i \le d \lor i' = 0 \lor \bot$

George Karpenkov

• $d = \sup i'$ s.t. $i' = i + 1 \land i < 1000000 \land i \le d \lor i' = 0 \lor \bot$

- 1. Equation $d = \sup i'$ s.t. \perp evaluates to $d = -\infty$
- 2. Substitute the value, does not hold:

 $-\infty = \sup i'$ s.t. $i' = i + 1 \land i < 1000000 \land i \le d \lor i' = 0 \lor \bot$

• $d = \sup i'$ s.t. $i' = i + 1 \land i < 1000000 \land i \le d \lor i' = 0 \lor \bot$

- 1. Equation $d = \sup i'$ s.t. \perp evaluates to $d = -\infty$
- 2. Substitute the value, does not hold:

 $-\infty = \sup i'$ s.t. $i' = i + 1 \land i < 1000000 \land i \le d \lor i' = 0 \lor \bot$

3. Increase the value to 0 using policy $d = \sup i'$ s.t. i' = 0

• $d = \sup i'$ s.t. $i' = i + 1 \land i < 1000000 \land i \le d \lor i' = 0 \lor \bot$

- 1. Equation $d = \sup i'$ s.t. \perp evaluates to $d = -\infty$
- 2. Substitute the value, does not hold: $-\infty = \sup i'$ s.t. $i' = i + 1 \land i < 1000000 \land i \le d \lor i' = 0 \lor \bot$
- 3. Increase the value to 0 using policy $d = \sup i'$ s.t. i' = 0
- 4. Substituting, does not hold: $0 = \sup i'$ s.t. $i' = i + 1 \land i < 1000000 \lor i' = 0 \lor \bot$

- $d = \sup i'$ s.t. $i' = i + 1 \land i < 1000000 \land i \le d \lor i' = 0 \lor \bot$
 - 1. Equation $d = \sup i'$ s.t. \perp evaluates to $d = -\infty$
 - 2. Substitute the value, does not hold:

 $-\infty = \sup i' \text{ s.t. } i' = i + 1 \land i < 1000000 \land i \leq d \lor i' = 0 \lor \bot$

- 3. Increase the value to 0 using policy $d = \sup i'$ s.t. i' = 0
- 4. Substituting, does not hold:

 $0 = \sup i' \text{ s.t. } i' = i + 1 \land i < 1000000 \lor i' = 0 \lor \bot$

5. Increase to 1000000 using

 $d = \sup i'$ s.t. $i' = i + 1 \wedge i < 1000000 \wedge i \leq d$

- $d = \sup i'$ s.t. $i' = i + 1 \land i < 1000000 \land i \le d \lor i' = 0 \lor \bot$
 - 1. Equation $d = \sup i'$ s.t. \perp evaluates to $d = -\infty$
 - 2. Substitute the value, does not hold:

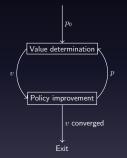
 $-\infty = \sup i'$ s.t. $i' = i + 1 \land i < 1000000 \land i \le d \lor i' = 0 \lor \bot$

- 3. Increase the value to 0 using policy $d = \sup i'$ s.t. i' = 0
- 4. Substituting, does not hold: $0 = \sup i'$ s.t. $i' = i + 1 \land i < 1000000 \lor i' = 0 \lor \bot$
- 5. Increase to 1000000 using

 $d = \sup i'$ s.t. $i' = i + 1 \wedge i < 1000000 \wedge i \leq d$

6. Substitute, holds! 1000000 = $\sup i'$ s.t. $i' = i + 1 \land i < 1000000 \land i \le d \lor i' = 0 \lor \bot$

Algorithm Overview



P

Policy
$$p \leftarrow p_0$$

epeat
 $v \leftarrow$ value determination based on p
 $p \leftarrow$ policy based on v
intil v converges

¹⁶/41

George Karpenkov

Policy Improvement: SMT call
 Policy which can improve current value?

- Value Determination: LP call
 - Maximum value for current policy?

George Karpenkov

Similar to Large Block Encoding

• Unknown per node per template

George Karpenkov

Similar to Large Block Encoding

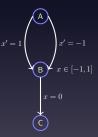
- Unknown per node per template
- Over-approximates invariant in the abstract domain
- Loss of precision

George Karpenkov

Similar to Large Block Encoding

- Unknown per node per template
- Over-approximates invariant in the abstract domain
- Loss of precision

```
if (unknown()) {
    x = -1;
} else {
    x = 1;
}
assert(x != 0);
```



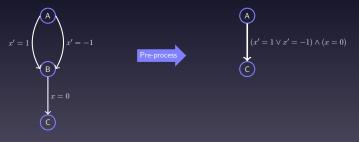
Adding disjunctions

- Solution: remove nodes!
- CFG Compaction:
 - $\circ~$ Edges (A,τ_1,B) , (B,τ_2,C) , with no other incoming to B
 - Converted to $(A,\tau_1\wedge\tau_2,C)\text{, }B$ removed
 - $\circ~$ Edges (A, au_1,B) , (A, au_2,B) , no other incoming to B
 - Converted to $(A, \tau_1 \lor \tau_2, B)$

Adding disjunctions

- Solution: remove nodes!
- CFG Compaction:
 - Edges (A, τ_1, B) , (B, τ_2, C) , with no other incoming to B
 - Converted to $(A, au_1 \wedge au_2, C)$, \overline{B} removed
 - $\circ~$ Edges (A,τ_1,B) , (A,τ_2,B) , no other incoming to B

• Converted to $(A, \tau_1 \lor \tau_2, B)$



Properties

• For a well-structured graph: only loop-heads remain

George Karpenkov

Path Focusing

Properties

- For a well-structured graph: only loop-heads remain
- Disjunctions create new policies

Path Focusing

Properties

- For a well-structured graph: only loop-heads remain
- Disjunctions create new policies
- Possible improvement: cut-set
 - $\circ~$ Set of nodes which cut all the cycles in the graph
- Disadvantage: requires pre-processing

Outline

ntroduction Motivation Finding Inductive Invariants

Background

Template Constraints Domain Policy Iteration Algorithm Path Focusing

LPI

Motivation Algorithm Example Contribution

Results

²¹/₄₁

George Karpenkov

Program Analysis with Local Policy Iteration

Problems of Policy Iteration

Motivation for our work

- Problems with the approach above:
 - Scalability: at each step, we update each policy, and at each step, we solve the global equation system (of the size of the entire program)
 - Cooperability: policy iterations don't fit into any existing framework, pre-processing makes it worse

Problems of Policy Iteration

Our Contribution

- Our work: LPI (Local Policy Iteration)
 - Exploits the locality to avoid redundant computation
 - Avoids solving the global equation at each point
 - Unifies policy iteration with other approaches using CPA (Configurable Program Analysis Framework)
 - No pre-processing is involved

LPI as a Configurable Program Analysis

$$x \le 4 \xrightarrow{x' = x + 1} ?$$

- Transfer Relation:
 - Similar to abstract interpretation
 - Record the bound along with the policy

George Karpenkov

Program Analysis with Local Policy Iteration

LPI as a Configurable Program Analysis

$$x \le 4 \xrightarrow{x' = x + 1} ?$$

- Transfer Relation:
 - Similar to abstract interpretation
 - $\circ\,$ Record the bound along with the policy
- Global map M : location \rightarrow abstract state

LPI as a Configurable Program Analysis

$$x \le 4 \xrightarrow{x' = x + 1} ?$$

- Transfer Relation:
 - Similar to abstract interpretation
 - $\circ~$ Record the bound along with the policy
- Global map M : location \rightarrow abstract state
- When two states for the same node, merge
 - When merge closes the loop, perform value determination
 - Follow backpointers to re-create global problem

Abstract Domain

- Two lattices:
 - Abstracted State (element of template constraints domain)
 - Intermediate State (formula)
- Idea: avoid pre-processing

Abstract Domain

- Two lattices:
 - Abstracted State (element of template constraints domain)
 - Intermediate State (formula)
- Idea: avoid pre-processing
- Propagate intermediate states, convert to abstracted at loop-heads

Abstracted States

Abstracted State

Set of tuples (bound, policy, backpointer) for each template. Current bound, policy and the previous value used to derive that bound.

• Abstracted state example: $\{i : (0, i' = 0, A)\}$

George Karpenkov

Program Analysis with Local Policy Iteration

Abstracted States

Abstracted State

Set of tuples (bound, policy, backpointer) for each template. Current bound, policy and the previous value used to derive that bound.

- Abstracted state example: $\{i : (0, i' = 0, A)\}$
- Partial order given by component-wise comparison on bounds

Abstracted States

Abstracted State

Set of tuples (bound, policy, backpointer) for each template. Current bound, policy and the previous value used to derive that bound.

- Abstracted state example: $\{i : (0, i' = 0, A)\}$
- Partial order given by component-wise comparison on bounds
- On merge:
 - Pick the upper bound for each template
 - Keep the corresponding policy and backpointer

Intermediate States

Intermediate State

Formula $\phi(X')$ representing set of reachable states Ω meta-variables instead of backpointers

- Intermediate State example:
 - $\circ \ x' = 1 \land \Omega = A \lor x' = 0 \land \Omega = B$

Intermediate States

Intermediate State

Formula $\phi(X')$ representing set of reachable states

 Ω meta-variables instead of backpointers

- Intermediate State example:
 - $\circ \ x' = 1 \land \Omega = A \lor x' = 0 \land \Omega = B$
- Propagation: symbolic execution
- Can be converted to abstracted state using abstraction
 - Maximizing for every template
 - Recording policy and backpointer

• Start with abstracted state at node A: $\{x : (0, x' = 0, I)\}$

George Karpenkov

Program Analysis with Local Policy Iteration

- Start with abstracted state at node A: $\{x : (0, x' = 0, I)\}$
- Successor under edge x' = x + 5

- Start with abstracted state at node A: $\{x : (0, x' = 0, I)\}$
- Successor under edge x' = x + 5
- Intermediate state: $x' = x + 5 \land x \leq 0 \land \Omega = A$

- Start with abstracted state at node A: $\{x : (0, x' = 0, I)\}$
- Successor under edge x' = x + 5
- Intermediate state: $x' = x + 5 \land x \le 0 \land \Omega = A$
- If we need to perform abstraction, we get $\{x: (5, x' = x + 5, A)\}$

Local Value Determination

- On closing the loop (at abstracted state):
 - Follow backpointers, keep adding constraints
 - Create value determination problem
 - Potentially size of the largest loop

Algorithm Example

1. Start with abstracted state
$$\top$$

A $i < 10 \land i' = i + 1$
 $\neg(i < 10)$
B $j < 10 \land j' = j + 1$

George Karpenkov

Program Analysis with Local Policy Iteration

Algorithm Example

$$\begin{array}{c} i' = 0 \land j' = 0 \\ (A) & i < 10 \land i' = i + 1 \\ \neg (i < 10) \\ (B) & j < 10 \land j' = j + 1 \end{array}$$

1. Start with abstracted state \top

2. Intermediate state $i' = 0 \land j' = 0 \land \Omega = I$

Algorithm Example

- $\begin{array}{c} i' = 0 \land j' = 0 \\ & & \\ \bigcirc i < 10 \land i' = i + 1 \\ & \neg (i < 10) \\ & \\ & \\ \bigcirc j < 10 \land j' = j + 1 \end{array}$
 - 1. Start with abstracted state \top
 - 2. Intermediate state $i' = 0 \land j' = 0 \land \Omega = I$
 - 3. Abstracted to $\{i : (0, I), j : (0, I)\}$

Algorithm Example

 $\begin{array}{c} \downarrow_{i'=0 \land j'=0} \\ \textcircled{A}_{i<10 \land i'=i+1} \end{array} \begin{array}{c} 1. \text{ Start with abstracted state } \top \\ 2. \text{ Intermediate state } i'=0 \land j'=0 \land \Omega=I \\ \hline 0 & \downarrow_{i'=0} \end{array} \end{array}$

($\neg_{(i < 10)}$ 3. Abstracted to $\{i : (0, I), j : (0, I)\}$

(*) $j < 10 \land j' = j + 1$ 4. Intermediate state $i \leq 0 \land j \leq 0 \land \Omega = A$

Algorithm Example

 $\int \neg (i < 10)$

- 1. Start with abstracted state \top $\begin{array}{c} 1. \text{ Start with abstracted state} \\ (A) \\ (A) \\ (i < 10) \\ (i < 10) \end{array} \begin{array}{c} 1. \text{ Start with abstracted state} \end{array} \\ 2. \text{ Intermediate state } i' = 0 \land j' = 0$ 2. Intermediate state $i' = 0 \land j' = 0 \land \Omega = I$
- B $j < 10 \land j' = j + 1$ 4. Intermediate state $i \le 0 \land j \le 0 \land \Omega = A$
 - 5. Abstracted to $\{i : (1, A), j : (0, A)\}$

Algorithm Example

 $\begin{array}{c} i' = 0 \land j' = 0 \\ (\land) & i < 10 \land i' = i + 1 \\ (i < 10) \\ (B) & j < 10 \land j' = j + 1 \end{array}$

1. Start with abstracted state op

2. Intermediate state $i'=0 \wedge j'=0 \wedge \Omega = I$

3. Abstracted to $\{i: (0, I), j: (0, I)\}$

B) $j < 10 \land j' = j + 1$ 4. Intermediate state $i \le 0 \land \overline{j} \le 0 \land \Omega = A$

5. Abstracted to $\{i : (1, A), j : (0, A)\}$

6. Merge A, val. det.: $\{i : (10, A), j : (0, I)\}$

Algorithm Example

Algorithm Example

 $\begin{array}{c} \mathbf{A} \\ \mathbf$

Start with abstracted state ⊤
 Intermediate state i' = 0 ∧ j' = 0 ∧ Ω = I
 Abstracted to {i : (0, I), j : (0, I)}

 $j < 10 \land j' = j+1$ 4. Intermediate state $i \le 0 \land j \le 0 \land \Omega = A$

- 5. Abstracted to $\{i : (1, A), j : (0, A)\}$
- 6. Merge A, val. det.: $\{i : (10, A), j : (0, I)\}$
- 7. Intermediate $i \leq 10 \land j \leq 0 \land \neg (i < 10) \land \Omega = A$
- 8. Abstracted: $\{i : (10, A), j : (0, A)\}$

Algorithm Example

$$\begin{array}{c} \mathbf{A} \\ \mathbf{A} \\ \mathbf{P} \\ i < 10 \land i' = i + 1 \\ \neg (i < 10) \\ \mathbf{B} \\ \mathbf{P} \\ j < 10 \land j' = j + 1 \end{array}$$

1. Start with abstracted state op

2. Intermediate state $i' = 0 \land j' = 0 \land \Omega = I$

3. Abstracted to $\{i : (0, I), j : (0, I)\}$

4. Intermediate state $i \leq 0 \land j \leq 0 \land \Omega = A$

- 5. Abstracted to $\{i : (1, A), j : (0, A)\}$
- 6. Merge A, val. det.: $\{i : (10, A), j : (0, I)\}$
- 7. Intermediate $i \leq 10 \land j \leq 0 \land \neg (i < 10) \land \Omega = A$
- 8. Abstracted: $\{i : (10, A), j : (0, A)\}$
- 9. Intermediate:

 $i = 10 \land j \le 0 \land j' = j + 1 \land \Omega = B$

Algorithm Example

$$\begin{array}{c} \mathbf{A} \\ \mathbf$$

Start with abstracted state ⊤
 Intermediate state i' = 0 ∧ j' = 0 ∧ Ω = I

3. Abstracted to $\{i : (0, I), j : (0, I)\}$

4. Intermediate state $i \leq 0 \land j \leq 0 \land \Omega = A$

- 5. Abstracted to $\{i : (1, A), j : (0, A)\}$
- 6. Merge A, val. det.: $\{i : (10, A), j : (0, I)\}$
- 7. Intermediate $i \leq 10 \land j \leq 0 \land \neg (i < 10) \land \Omega = A$
- 8. Abstracted: $\{i : (10, A), j : (0, A)\}$
- 9. Intermediate:

 $i = 10 \land j \le 0 \land j' = j + 1 \land \Omega = B$

10. Abstracted: $\{i : (10, B), j : (1, B)\}$

Algorithm Example

 $\begin{array}{c} \mathbf{A} \\ \mathbf$

1. Start with abstracted state \top 2. Intermediate state $i' = 0 \land j' = 0 \land \Omega = I$

3. Abstracted to $\{i: (0, I), j: (0, I)\}$

) $j < 10 \land j' = j + 1$ 4. Intermediate state $i \le 0 \land j \le 0 \land \Omega = A$

- 5. Abstracted to $\{i : (1, A), j : (0, A)\}$
- 6. Merge A, val. det.: $\{i : (10, A), j : (0, I)\}$
- 7. Intermediate $i \leq 10 \land j \leq 0 \land \neg (i < 10) \land \Omega = A$
- 8. Abstracted: $\{i : (10, A), j : (0, A)\}$
- 9. Intermediate:

 $i = 10 \land j \le 0 \land j' = j + 1 \land \Omega = B$

10. Abstracted: $\{i : (10, B), j : (1, B)\}$

11. Merge B, well det : $\{i: (10, B), j: (10, A)\}$

Reachability of Bad States

- Whether we are safe:
 - $\circ \ \phi \wedge E \text{ is unsat}$
 - Example: $(x \le 10) \land (x = 11)$

Reachability of Bad States

- Whether we are safe:
 - $\circ \ \phi \wedge E \text{ is unsat}$
 - Example: $(x \le 10) \land (x = 11)$
- Whether we are unsafe:
 - $\circ \phi \wedge \neg E$ is unsat
 - Example: $(x = 0) \land (x = 0)$

Algorithm Properties

- Soundness
 - Only terminate when inductive

George Karpenkov

Program Analysis with Local Policy Iteration

Algorithm Properties

- Soundness
 - Only terminate when inductive
- Termination
 - Bounds can only grow
 - Each bound corresponds to some policy
 - Finite number of policies

Algorithm Properties

- Soundness
 - Only terminate when inductive
- Termination
 - Bounds can only grow
 - Each bound corresponds to some policy
 - Finite number of policies
- Least invariant property
 - Only select feasible policies

LPI Configurations

Configurations

- \circ Intervals ($\pm x$)
- $\circ~$ Octagons (above and $\pm x, \pm x \pm y)$
- $\circ~$ Rich Templates (above and $\pm 2x\pm y,\pm x\pm y\pm z,\pm 2x\pm y\pm z)$
- Unrolling
- Simple Congruence Analysis

LPI Configurations

Configurations

- \circ Intervals ($\pm x$)
- $\circ~$ Octagons (above and $\pm x, \pm x \pm y)$
- Rich Templates (above and $\pm 2x \pm y, \pm x \pm y \pm z, \pm 2x \pm y \pm z$)
- Unrolling
- Simple Congruence Analysis
- Refinement: progressively switch to more expensive config

Contrast with Classical Policy Iteration

- Only update policies which need updating
- Run value determination on a reduced program section
- Stated in CPA framework
- (Unguided) refinement of template precision
- Local value determination optimizations Not in the presentation

George Karpenkov

Outline

Introduction Motivation Finding Inductive Invariants

Background

Template Constraints Domain Policy Iteration Algorithm Path Focusing

LPI

Motivation Algorithm Example Contribution

Results

35/41

George Karpenkov

Local Policy Iteration

Code analysis tool

Tool

Included in CPACHECKER trunk. https://github.com/dbeyer/cpachecker

- Configurations:
 - -policy-intervals
 - -policy
 - -policy-ensemble
 - -policy-counterexample-checking

- Evaluated on SV-Comp "Loops" category
- Compared with
 - BLAST(2014)
 - CPACHECKER-SVCOMP15
 - PAGAI
- Across true benchmarks

George Karpenkov

Results

Comparison of Approaches

	vs. LPI	PAGAI	BLAST	CPAchecker	Unique	Verified	Incorrect
LPI		13	21	22	8	60	1
PAGAI	5		14	15	0	52	1
BLAST	4	5		7	0	43	1
CPAchecker	19	20	21		12	57	2

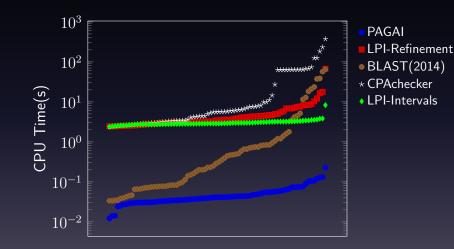
Difference between approaches

• Reads: A vs. B

George Karpenkov

Results

Timing Results



George Karpenkov

Contributions

Re-iterating

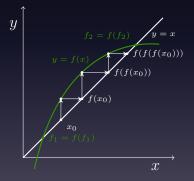
- New scalable algorithm for policy iteration
- Tool for program analysis (using CPAchecker framework)
 The only policy-iteration based tool capable of dealing with C

Questions?

George Karpenkov

Policy Iteration Fixpoints and Concavity

- Concavity and monotonicity limits the number of fixpoints
- Can solve for x = f(x)



George Karpenkov

Policy Iteration

Concavity of Abstract Semantics

- Linear Semantics: $x' = T x \wedge G(x)$
- Let t' = t(Tx)d

41/41

George Karpenkov