
SMT and POR beat Counter Abstraction
Parameterized Model Checking of

Threshold-Based Distributed Algorithms

Igor Konnov Helmut Veith Josef Widder

Alpine Verification Meeting

May 4-6, 2015

Why fault-tolerant (FT) distributed algorithms

faults not in the control of system designer

bit-flips in memory

power outage

disconnection from the network

intruders take control over some computers

distributed algorithms to make systems more
reliable even in the presence of faults

replicate processes

exchange messages

do coordinated computation

goal: keep replicated processes in “good state”

1
1
4

7
.1

A
ss
es
si
n
g
a
n
d
va
li
d
a
ti
n
g
th
e
st
a
n
d
a
rd

n
od
e
H
IT

S
d
es
ig
n

F
ig
u
re

7.
1:

D
A
R
T
S
p
ro
to
ty
p
e
b
oa
rd
,
co
m
p
ri
si
n
g
8
in
te
rc
on

n
ec
te
d
H
IT

S
ch
ip
s

Igor Konnov 2/64

Why fault-tolerant (FT) distributed algorithms

faults not in the control of system designer

bit-flips in memory

power outage

disconnection from the network

intruders take control over some computers

distributed algorithms to make systems more
reliable even in the presence of faults

replicate processes

exchange messages

do coordinated computation

goal: keep replicated processes in “good state”
1
1
4

7
.1

A
ss
es
si
n
g
a
n
d
va
li
d
a
ti
n
g
th
e
st
a
n
d
a
rd

n
od
e
H
IT

S
d
es
ig
n

F
ig
u
re

7.
1:

D
A
R
T
S
p
ro
to
ty
p
e
b
oa
rd
,
co
m
p
ri
si
n
g
8
in
te
rc
on

n
ec
te
d
H
IT

S
ch
ip
s

Igor Konnov 3/64

Fault-tolerant distributed algorithms

n

?
?

?
t f

n processes communicate by messages

all processes know that at most t of them might be faulty

f are actually faulty, e.g., Byzantine

resilience condition, e.g., n > 3t ∧ t ≥ f ≥ 0

no masquerading: the processes know the origin of incoming messages

Igor Konnov 4/64

Fault-tolerant distributed algorithms

n

?
?

?
t

f

n processes communicate by messages

all processes know that at most t of them might be faulty

f are actually faulty, e.g., Byzantine

resilience condition, e.g., n > 3t ∧ t ≥ f ≥ 0

no masquerading: the processes know the origin of incoming messages

Igor Konnov 5/64

Fault-tolerant distributed algorithms

n

?
?

?
t f

n processes communicate by messages

all processes know that at most t of them might be faulty

f are actually faulty, e.g., Byzantine

resilience condition, e.g., n > 3t ∧ t ≥ f ≥ 0

no masquerading: the processes know the origin of incoming messages

Igor Konnov 6/64

Distributed algorithms: computational model and faults

The classic model by [Fischer, Lynch, Paterson’85]

Environment:

Asynchronous processes (no rounds, non-deterministic fair scheduler)

Reliable asynchronous message passing (non-blocking send and receive)

Faults:

crashes and clean crashes,

omission faults,

symmetric faults,

Byzantine faults

Igor Konnov 7/64

Reliable Broadcast by Srikanth & Toueg 85

i f initiator then send INIT to all;

w h i l e true do
i f r e c e i v e d INIT from at l e a s t 1 d i s t i n c t proc .
then send ECHO to all;

i f r e c e i v e d ECHO from at l e a s t t + 1 d i s t i n c t proc .
and not sent ECHO before

then send ECHO to all;

i f r e c e i v e d ECHO from at l e a s t n - t d i s t i n c t proc .
then accept;

od

Igor Konnov 8/64

Reliable Broadcast: Sample Execution

init

init

≥ t + 1

≥ n − t
accept

≥ n − t
accept

≥ n − t
accept

Igor Konnov 9/64

Reliable Broadcast: Sample Execution

init

init

≥ t + 1

≥ n − t
accept

≥ n − t
accept

≥ n − t
accept

Igor Konnov 10/64

Reliable Broadcast: Sample Execution

init

init

≥ t + 1

≥ n − t
accept

≥ n − t
accept

≥ n − t
accept

Igor Konnov 11/64

Reliable Broadcast: Sample Execution

init

init

≥ t + 1

≥ n − t
accept

≥ n − t
accept

≥ n − t
accept

Igor Konnov 12/64

Reliable Broadcast: Sample Execution

init

init

≥ t + 1

≥ n − t
accept

≥ n − t
accept

≥ n − t
accept

Igor Konnov 13/64

Reliable Broadcast: Sample Execution 2

Unforgeability: If no correct process sends <INIT> (broadcasts),
then no correct process ever accepts.

Verification perspective: check, whether a bad state is reachable.

Igor Konnov 14/64

Reliable Broadcast: Sample Execution 2

Unforgeability: If no correct process sends <INIT> (broadcasts),
then no correct process ever accepts.

Verification perspective: check, whether a bad state is reachable.

Igor Konnov 15/64

Threshold-based fault-tolerant distributed algorithms

The parameters (n, t, f) are fixed in each run

Main loop with the body executed atomically

Processes are anonymous (no identifiers)

Receiving messages, counting them and comparing to thresholds, e.g.,
if received <ECHO> from t + 1 distinct processes

then ...

Sending messages to all processes, e.g.,

send <ECHO> to all

Igor Konnov 16/64

Outline

1 Threshold automata (TA):
formalization of process code using shared variables

2 Counter systems with acceleration:
computational model for parameterized systems of TA

3 Parameterized reachability:
safety properties stated formally

4 Counter abstraction and acceleration:
other approaches

5 Representatives and schemas:
parameterized bounded model checking with SMT

Igor Konnov 17/64

Preliminaries

Igor Konnov 18/64

Threshold automata (TA)

Every correct process follows the control flow graph (L,E):

`1

`2 `3

`4x ≥ (t + 1)− f 7→ x++

true 7→ x++

x ≥ (n − t)− f 7→ x++

x ≥ (n − t)− f

Processes move from one location to another along the edges labeled with:

Threshold guards, e.g., x ≥ (t + 1)− f
compare a shared variable to a linear combination of parameters.

Updates, e.g., x++

increment shared variables (or do nothing).

(multiple guards and increments are allowed)

Igor Konnov 19/64

Threshold automata (TA)

Every correct process follows the control flow graph (L,E):

`1

`2 `3

`4x ≥ (t + 1)− f 7→ x++

true 7→ x++

x ≥ (n − t)− f 7→ x++

x ≥ (n − t)− f

Processes move from one location to another along the edges labeled with:

Threshold guards, e.g., x ≥ (t + 1)− f
compare a shared variable to a linear combination of parameters.

Updates, e.g., x++

increment shared variables (or do nothing).

(multiple guards and increments are allowed)

Igor Konnov 20/64

Intuition: threshold automata and threshold-based DAs?

`1

`2 `3

`4x ≥ (t + 1)− f 7→ x++

true 7→ x++

x ≥ (n − t)− f 7→ x++

x ≥ (n − t)− f

send <x> to all

if received <x> from

at least t + 1 distinct

correct processes

Crash faults:

run n processes,

. . . `i `c crashed here
nfaulty < f , nfaulty++

Byzantine faults:

run n − f processes,
count messages modulo Byzantine processes, e.g., x + f ≥ (t + 1)

Warning:

This requires preliminary abstraction of message counters [FMCAD’13]
Igor Konnov 21/64

Intuition: threshold automata and threshold-based DAs?

`1

`2 `3

`4x ≥ (t + 1)− f 7→ x++

true 7→ x++

x ≥ (n − t)− f 7→ x++

x ≥ (n − t)− f

send <x> to all

if received <x> from

at least t + 1 distinct

correct processes

Crash faults:

run n processes,

. . . `i `c crashed here
nfaulty < f , nfaulty++

Byzantine faults:

run n − f processes,
count messages modulo Byzantine processes, e.g., x + f ≥ (t + 1)

Warning:

This requires preliminary abstraction of message counters [FMCAD’13]
Igor Konnov 22/64

Intuition: threshold automata and threshold-based DAs?

`1

`2 `3

`4x ≥ (t + 1)− f 7→ x++

true 7→ x++

x ≥ (n − t)− f 7→ x++

x ≥ (n − t)− f

send <x> to all

if received <x> from

at least t + 1 distinct

correct processes

Crash faults:

run n processes,

. . . `i `c crashed here
nfaulty < f , nfaulty++

Byzantine faults:

run n − f processes,
count messages modulo Byzantine processes, e.g., x + f ≥ (t + 1)

Warning:

This requires preliminary abstraction of message counters [FMCAD’13]
Igor Konnov 23/64

Natural Restrictions of TA

Recall how processes count messages:

if received <ECHO> from t + 1 distinct processes

The case studies lead us to the natural restrictions on threshold automata:

Restriction 1: Every process changes a shared variable at most once

Restriction 2: The edges in cycles do not change the shared variables

Igor Konnov 24/64

Counter system with acceleration!

Counter system is a transition system simulating every system P(p)N(p).

Configuration σ = (κ, g,p):

κi counts processes at location `i with κ1 + · · ·+ κ|L| = N(p),
gj is the value of the shared variable xj ,
p are the values of the parameters.

`1

`2 `3

`4x ≥ (t + 1)− f 7→ x++

true 7→ x++

x ≥ (n − t)− f 7→ x++

x ≥ (n − t)− f

one transition r1 (interleaving):

σ1 σ2

x ≥ (n − t)− f
κ1 ≥ 1

κ1--, κ4++, x++

accelerated transition r3:
σ1 σ2 σ3 σ4

σ1 σ4

×3

Igor Konnov 25/64

Reachability and parameterized reachability

Reachability (fixed parameters):

Fix the parameters, e.g., n = 4, t = 1, f = 1, N = n − f = 3.

Fix configurations σ and σ′ of PN .

Question: is σ′ reachable from σ in PN?

Parameterized reachability:

Fix properties S and S ′ on configurations,
e.g., S : κ1 = N(p) = n − f and S ′ : κ4 6= 0.

Question: are there parameter values p and configurations σ, σ′ of PN(p):

parameters p satisfy the resilience condition RC (p),

σ |= S and σ′ |= S ′,

σ′ is reachable from σ in PN(p).

Igor Konnov 26/64

Reachability and parameterized reachability

Reachability (fixed parameters):

Fix the parameters, e.g., n = 4, t = 1, f = 1, N = n − f = 3.

Fix configurations σ and σ′ of PN .

Question: is σ′ reachable from σ in PN?

Parameterized reachability:

Fix properties S and S ′ on configurations,
e.g., S : κ1 = N(p) = n − f and S ′ : κ4 6= 0.

Question: are there parameter values p and configurations σ, σ′ of PN(p):

parameters p satisfy the resilience condition RC (p),

σ |= S and σ′ |= S ′,

σ′ is reachable from σ in PN(p).

Igor Konnov 27/64

Parameterized reachability: Example 1

`1

`2 `3

`4x ≥ (t + 1)− f 7→ x++

true 7→ x++

x ≥ (n − t)− f 7→ x++

x ≥ (n − t)− f

Resilience condition 1: n > 3t and t ≥ f ≥ 0.

Can the faulty processes forge the broadcast by a correct process?

that is, can correct processes reach `4, if they start at `1? NO

(t + 1)− f > 0 = x

(n − t)− f ≥ n − t − t > t ≥ 0 = x

Igor Konnov 28/64

Parameterized reachability: Example 1

`1

`2 `3

`4x ≥ (t + 1)− f 7→ x++

true 7→ x++

x ≥ (n − t)− f 7→ x++

x ≥ (n − t)− f

Resilience condition 1: n > 3t and t ≥ f ≥ 0.

Can the faulty processes forge the broadcast by a correct process?

that is, can correct processes reach `4, if they start at `1? NO

(t + 1)− f > 0 = x

(n − t)− f ≥ n − t − t > t ≥ 0 = x

Igor Konnov 29/64

Parameterized reachability: Example 2

`1

`2 `3

`4x ≥ (t + 1)− f 7→ x++

true 7→ x++

x ≥ (n − t)− f 7→ x++

x ≥ (n − t)− f

Resilience condition 2: n > 3t and t + 1 ≥ f ≥ 0.

Can the faulty processes forge the broadcast by a correct process?

that is, can correct processes reach `4, if they start at `1? YES

κ1 = 3
κ2 = 0
κ3 = 0
κ4 = 0
x = 0

κ1 = 0
κ2 = 0
κ3 = 3
κ4 = 0
x = 3

κ1 = 0
κ2 = 0
κ3 = 0
κ4 = 3
x = 3

Igor Konnov 30/64

Parameterized reachability: Example 2

`1

`2 `3

`4x ≥ (t + 1)− f 7→ x++

true 7→ x++

x ≥ (n − t)− f 7→ x++

x ≥ (n − t)− f

Resilience condition 2: n > 3t and t + 1 ≥ f ≥ 0.

Can the faulty processes forge the broadcast by a correct process?

that is, can correct processes reach `4, if they start at `1? YES

κ1 = 3
κ2 = 0
κ3 = 0
κ4 = 0
x = 0

κ1 = 0
κ2 = 0
κ3 = 3
κ4 = 0
x = 3

κ1 = 0
κ2 = 0
κ3 = 0
κ4 = 3
x = 3

Igor Konnov 31/64

Parameterized reachability:

counter abstraction and acceleration

Igor Konnov 32/64

Way 1: Counter abstraction

Use counter abstraction to get a finite system A.

Counters κi are mapped to a finite domain D̂, e.g.,

{0, 1,∞} by [Pnueli, Xu, Zuck’02].

Domain of parametric intervals extracted from thresholds,
e.g., {[0, 1), [1, t + 1), [t + 1, n − t), [n − t,∞)}, see [FMCAD’13].

0 1 t + 1 n − t above
· · ·

κi++
κi++

κi++ κi++
κi++ κi++

Use a finite-state model checker, e.g., NuSMV or Spin

Warning:

Sometimes, abstraction refinement is needed [FMCAD’13]
Igor Konnov 33/64

Way 1: Counter abstraction

Use counter abstraction to get a finite system A.

Counters κi are mapped to a finite domain D̂, e.g.,

{0, 1,∞} by [Pnueli, Xu, Zuck’02].

Domain of parametric intervals extracted from thresholds,
e.g., {[0, 1), [1, t + 1), [t + 1, n − t), [n − t,∞)}, see [FMCAD’13].

0 1 t + 1 n − t above
· · ·

κi++
κi++

κi++ κi++
κi++ κi++

Use a finite-state model checker, e.g., NuSMV or Spin

Warning:

Sometimes, abstraction refinement is needed [FMCAD’13]
Igor Konnov 34/64

Bounded diameter

Fix a threshold automaton TA and a size function N.

Theorem [CONCUR’14]

For each p with RC (p), the diameter of an accelerated counter system is
independent of parameters and is less than or equal to |E | · (|C|+ 1) + |C|:

|E | is the number of edges in TA (self-loops excluded).

|C| is the number of edge conditions in TA that can be unlocked
(locked) by an edge appearing later (resp. earlier) in the control flow,
or by a parallel edge.

In our example:

|E | = 4, |C| = 1.

Thus, d ≤ 9.

`1 `2 `3 `4

true

x ≥ n − f , y++

x++ y ≥ t

unlocks

unlocks (but appears earlier)
Igor Konnov 35/64

Bounded diameter

Fix a threshold automaton TA and a size function N.

Theorem [CONCUR’14]

For each p with RC (p), the diameter of an accelerated counter system is
independent of parameters and is less than or equal to |E | · (|C|+ 1) + |C|:

|E | is the number of edges in TA (self-loops excluded).

|C| is the number of edge conditions in TA that can be unlocked
(locked) by an edge appearing later (resp. earlier) in the control flow,
or by a parallel edge.

In our example:

|E | = 4, |C| = 1.

Thus, d ≤ 9.

`1 `2 `3 `4

true

x ≥ n − f , y++

x++ y ≥ t

unlocks

unlocks (but appears earlier)
Igor Konnov 36/64

Way 2: Complete parameterized bounded model checking

Use counter abstraction to get a finite system A.

Counters κi are mapped to a finite domain D̂, e.g.,

{0, 1,∞} by [Pnueli, Xu, Zuck’02].

Domain of parametric intervals extracted from thresholds,
e.g., {[0, 1), [1, t + 1), [t + 1, n − t), [n − t,∞)}, see [FMCAD’13].

0 1 t + 1 n − t above
· · ·

κi++
κi++

κi++ κi++
κi++ κi++

Once we know the diameter d of the accelerated counter system,

we know the diameter of the abstract system:

diam(A) ≤ d · (|D̂| − 1)
Igor Konnov 37/64

Way 3: Acceleration Techniques of Counter Systems

Threshold automata are a special case of counter automata.

Apply symbolic acceleration techniques for counter automata,
e.g., FAST [Bardin, Finkel, Leroux et al.’08].

The diameter bound implies that the threshold automata are flattable

Thus, FAST always terminates on threshold automata (in theory)

Igor Konnov 38/64

Accelerated systems:

partial order reduction and SMT

Igor Konnov 39/64

Partial orders and SMT beat counter abstraction

10^0

10^1

10^2

10^3

10^4

10^5

 0 5 10 15 20 25

Number of checked benchmarks

Time to verify an instance, sec. (logscale)

SMT
SAT
BDD

FAST

Igor Konnov 40/64

Partial orders and SMT beat counter abstraction (2)

10^2

10^3

10^4

10^5

 0 5 10 15 20 25

Number of checked benchmarks

Memory to verify an instance, MB (logscale)

SMT
SAT
BDD

FAST

Igor Konnov 41/64

Our new solution

Our new solution consists of the key ingredients:

Contexts: In every execution, evaluation of a guard changes at most once

e.g., x ≥ t + 1− f is initially false and later turns to true.

A context keeps track of all unlocked guards.

Representatives: As before, transform every execution to a representative
by reordering and accelerating the rules with the same context.

the schedule r11 r
1
2 r

1
1 r

1
2 r

1
2 becomes r21 r

3
2 .

Schemas: Representatives are generated by schemas.

e.g., r1r2 generates schedule r21 r
3
2 by picking acceleration factors 2 and 3.

offline partial order reduction

Igor Konnov 42/64

Our new solution

Our new solution consists of the key ingredients:

Contexts: In every execution, evaluation of a guard changes at most once

e.g., x ≥ t + 1− f is initially false and later turns to true.

A context keeps track of all unlocked guards.

Representatives: As before, transform every execution to a representative
by reordering and accelerating the rules with the same context.

the schedule r11 r
1
2 r

1
1 r

1
2 r

1
2 becomes r21 r

3
2 .

Schemas: Representatives are generated by schemas.

e.g., r1r2 generates schedule r21 r
3
2 by picking acceleration factors 2 and 3.

offline partial order reduction

Igor Konnov 43/64

Our new solution

Our new solution consists of the key ingredients:

Contexts: In every execution, evaluation of a guard changes at most once

e.g., x ≥ t + 1− f is initially false and later turns to true.

A context keeps track of all unlocked guards.

Representatives: As before, transform every execution to a representative
by reordering and accelerating the rules with the same context.

the schedule r11 r
1
2 r

1
1 r

1
2 r

1
2 becomes r21 r

3
2 .

Schemas: Representatives are generated by schemas.

e.g., r1r2 generates schedule r21 r
3
2 by picking acceleration factors 2 and 3.

offline partial order reduction

Igor Konnov 44/64

Our new solution

Our new solution consists of the key ingredients:

Contexts: In every execution, evaluation of a guard changes at most once

e.g., x ≥ t + 1− f is initially false and later turns to true.

A context keeps track of all unlocked guards.

Representatives: As before, transform every execution to a representative
by reordering and accelerating the rules with the same context.

the schedule r11 r
1
2 r

1
1 r

1
2 r

1
2 becomes r21 r

3
2 .

Schemas: Representatives are generated by schemas.

e.g., r1r2 generates schedule r21 r
3
2 by picking acceleration factors 2 and 3.

offline partial order reduction

Igor Konnov 45/64

Contexts and representatives

Igor Konnov 46/64

Contexts

`1

`2 `3

`4r2 : ϕ1 7→ x++

r1 : tt 7→ x++

r3 : ϕ2 7→ x++

r4 : ϕ2

Φ is the set of all threshold guards of TA,
e.g., Φ = {ϕ1, ϕ2}

A subset Ω ⊆ Φ is a context,
e.g., ∅, {ϕ1}, and {ϕ1, ϕ2} are contexts

Igor Konnov 47/64

Contexts and executions

`1

`2 `3

`4r2 : ϕ1 7→ x++

r1 : tt 7→ x++

r3 : ϕ2 7→ x++

r4 : ϕ2

Every execution defines a monotonically increasing sequence of contexts:

e.g., for a configuration σ with n = 5, t = 1, f = 1 and κ1 = 1, κ2 = 3

Transitions r11 , r
1
1 , r

1
2 , r

1
1 , r

1
4 applied to σ define the sequence of contexts

∅ ⊂ {ϕ1} ⊂ {ϕ1, ϕ2}.

Or, annotated, {} r11 {ϕ1} r11 , r12 , r11 {ϕ1, ϕ2} r14 {ϕ1, ϕ2}

Igor Konnov 48/64

Constructing short representatives

`1

`2 `3

`4r2 : ϕ1 7→ x++

r1 : tt 7→ x++

r3 : ϕ2 7→ x++

r4 : ϕ2

ϕ1 ≡ x ≥ t + 1, ϕ2 ≡ x ≥ n − t

{} r11 {ϕ1} r11 , r12 , r11 {ϕ1, ϕ2} r14 {ϕ1, ϕ2}

the transitions with the same context are sorted, e.g., if r1 �lin r2 �lin r4:

{} r11 {ϕ1} r11 , r11 , r12 {ϕ1, ϕ2} r14 {ϕ1, ϕ2}

and the instances of the same rule are accelerated:

{} r11 {ϕ1} r21 , r12 {ϕ1, ϕ2} r14 {ϕ1, ϕ2}
Igor Konnov 49/64

Formal result on representatives

By applying sorting and acceleration, we prove:

Proposition 9 [CAV’15]

Given a threshold automaton, a configuration σ, and schedule τ applicable
to σ, there exists a schedule rep[σ, τ] with the following properties:

1 rep[σ, τ] is applicable to σ, and rep[σ, τ](σ) = τ(σ),

2 |rep[σ, τ]| ≤ 2 · |R| · (|Φ|+ 1) + |Φ|.

where

R is the set of rules (edges of TA),

Φ is the set of all threshold guards used in R.

Igor Konnov 50/64

Schemas

(the new ingredient)

Igor Konnov 51/64

What can we do with the representatives?

`1

`2 `3

`4r2 : ϕ1 7→ x++

r1 : tt 7→ x++

r3 : ϕ2 7→ x++

r4 : ϕ2

To check reachability, we have to explore all the representatives.

For a monotonically increasing sequence of contexts,

e.g., ∅, {ϕ1}, {ϕ1, ϕ2}

all representatives follow the same pattern:

{} r1 {ϕ1} r1, r2 {ϕ1, ϕ2} r1, r2, r3, r4 {ϕ1, ϕ2}

Igor Konnov 52/64

Schemas

A schema is a sequence of contexts and rule sequences:

S = {Ω0}ρ1{Ω1} . . . {Ωm−1}ρm{Ωm}

A schema generates paths (including the representatives):

e.g., {} r1 {ϕ1} r1, r3, r4 {ϕ1, ϕ2}

generates

{} r21 {ϕ1} r11 , r33 , r34 {ϕ1, ϕ2}

{} r21 {ϕ1} r01 , r03 , r24 {ϕ1, ϕ2}

How to find a feasible path that reaches a bad state?

Igor Konnov 53/64

Schemas

A schema is a sequence of contexts and rule sequences:

S = {Ω0}ρ1{Ω1} . . . {Ωm−1}ρm{Ωm}

A schema generates paths (including the representatives):

e.g., {} r1 {ϕ1} r1, r3, r4 {ϕ1, ϕ2}

generates

{} r21 {ϕ1} r11 , r33 , r34 {ϕ1, ϕ2}

{} r21 {ϕ1} r01 , r03 , r24 {ϕ1, ϕ2}

How to find a feasible path that reaches a bad state?

Igor Konnov 54/64

Schemas

A schema is a sequence of contexts and rule sequences:

S = {Ω0}ρ1{Ω1} . . . {Ωm−1}ρm{Ωm}

A schema generates paths (including the representatives):

e.g., {} r1 {ϕ1} r1, r3, r4 {ϕ1, ϕ2}

generates

{} r21 {ϕ1} r11 , r33 , r34 {ϕ1, ϕ2}

{} r21 {ϕ1} r01 , r03 , r24 {ϕ1, ϕ2}

How to find a feasible path that reaches a bad state?

Igor Konnov 55/64

Checking feasibility with SMT

It is easy to check with SMT, whether a schema generates a feasible path:

e.g., {} r1 {ϕ1} r2 {ϕ1, ϕ2} r4 {ϕ1, ϕ2}

κ1

κ2

κ3

κ4

x

κ01 = n − f

κ02 = 0

κ03 = 0

κ04 = 0

x0 = 0

κ13 = κ03 + δ1

κ12 = κ02 − δ1

x1 = x0 + δ1

x1 ≥ (t + 1)− f

κ21 = κ01 − δ2

κ23 = κ13 + δ2

x2 = x2 + δ2

x2 ≥ (n − t)− f

κ33 = κ23 − δ3

κ34 = κ04 + δ3

κ34 = n − f

Igor Konnov 56/64

Complete parameterized reachability checking

Sound and complete algorithm for parameterized reachability in TA:

For each monotonically increasing sequence Ω of contexts:
construct a schema S for Ω
if there is a path π generated by S that reaches a bad state,
then report π as a counterexample

Theorem 1 [CAV’15]

For a threshold automaton, there is a complete schema set of cardinality
at most |Φ|!, where the length of each schema does not exceed
(3 · |Φ|+ 2) · |R|.

Note:

This result also holds for the guards like nfaulty < f

Igor Konnov 57/64

Complete parameterized reachability checking

Sound and complete algorithm for parameterized reachability in TA:

For each monotonically increasing sequence Ω of contexts:
construct a schema S for Ω
if there is a path π generated by S that reaches a bad state,
then report π as a counterexample

Theorem 1 [CAV’15]

For a threshold automaton, there is a complete schema set of cardinality
at most |Φ|!, where the length of each schema does not exceed
(3 · |Φ|+ 2) · |R|.

Note:

This result also holds for the guards like nfaulty < f

Igor Konnov 58/64

Complete parameterized reachability checking

Sound and complete algorithm for parameterized reachability in TA:

For each monotonically increasing sequence Ω of contexts:
construct a schema S for Ω
if there is a path π generated by S that reaches a bad state,
then report π as a counterexample

Theorem 1 [CAV’15]

For a threshold automaton, there is a complete schema set of cardinality
at most |Φ|!, where the length of each schema does not exceed
(3 · |Φ|+ 2) · |R|.

Note:

This result also holds for the guards like nfaulty < f

Igor Konnov 59/64

Results

Now we can verify safety of the parameterized algorithms:

Reliable broadcast (FRB, STRB, ABA)

Non-blocking atomic commit with failure detectors (NBAC, NBACG)

Condition-based consensus (CBC)

One-step consensus (CF1S, C1CS, BOSCO)

85

ABA

87

STRB

96

FRB

97

NBAC

01

CBC, C1CS

02

NBACG

06

CF1S,FBC

08

BOSCO

Liveness?

“...when looking for errors, most of your effort should be devoted to
examining the safety part.” Leslie Lamport. Specifying Systems (2002)

“Liveness is whatever prevents an empty system from being correct.”

Orna Kupferman. Beyond Safety Workshop (2004)
Igor Konnov 60/64

Results

Now we can verify safety of the parameterized algorithms:

Reliable broadcast (FRB, STRB, ABA)

Non-blocking atomic commit with failure detectors (NBAC, NBACG)

Condition-based consensus (CBC)

One-step consensus (CF1S, C1CS, BOSCO)

85

ABA

87

STRB

96

FRB

97

NBAC

01

CBC, C1CS

02

NBACG

06

CF1S,FBC

08

BOSCO

Liveness?

“...when looking for errors, most of your effort should be devoted to
examining the safety part.” Leslie Lamport. Specifying Systems (2002)

“Liveness is whatever prevents an empty system from being correct.”

Orna Kupferman. Beyond Safety Workshop (2004)
Igor Konnov 61/64

Conclusions

Standard model checkers are not tuned to the computational models of
fault-tolerant distributed algorithms

Computational primitives in FTDAs are simpler than the standard ones

This and parameterization helped us to develop efficient techniques

check FTDAs used in the cloud:
variations of Paxos, RAFT, etc.?

Igor Konnov 62/64

Conclusions

Standard model checkers are not tuned to the computational models of
fault-tolerant distributed algorithms

Computational primitives in FTDAs are simpler than the standard ones

This and parameterization helped us to develop efficient techniques

check FTDAs used in the cloud:
variations of Paxos, RAFT, etc.?

Igor Konnov 63/64

Thank you![
http://forsyte.at/software/bymc

]

SMT and POR beat Counter Abstraction:
Parameterized Model Checking of Threshold-Based Distributed Algorithms.

To appear at CAV’15.

Igor Konnov 64/64

http://forsyte.at/software/bymc/

