Deterministic ω-Automata for LTL:
 A safraless, compositional, and mechanically verified construction

Javier Esparza ${ }^{1}$ Jan Křetínský ${ }^{2}$ Salomon Sickert ${ }^{1}$
${ }^{1}$ Fakultät für Informatik, Technische Universität München, Germany
${ }^{2}$ IST Austria
May 11, 2015

Deterministic ω-Automata for LTL:

A safraless, compositional, and mechanically verified construction

Deterministic ω-Automata for LTL:
A safraless, compositional, and mechanically verified construction

Deterministic ω-Automata for LTL:

A safraless, compositional, and mechanically verified construction

System with stochasticity and non-determinism
expressed as a

Markov decision process \mathcal{M}

Linear time property
expressed as an

LTL formula φ

Non-deterministic Büchi automaton \mathcal{B}

Deterministic
Rabin automaton \mathcal{R}

Deterministic ω-Automata for LTL:

A safraless, compositional, and mechanically verified construction

System with stochasticity and non-determinism
expressed as a

Markov decision process \mathcal{M}

Linear time property
expressed as an

LTL formula φ

Non-deterministic
Büchi automaton \mathcal{B}
Safra
Deterministic
Rabin automaton \mathcal{R}

Deterministic ω-Automata for LTL:
A safraless, compositional, and mechanically verified construction

System with stochasticity and non-determinism
expressed as a

Markov decision process \mathcal{M}

Linear time property
expressed as an

Deterministic ω-Automata for LTL:

A safraless, compositional, and mechanically verified construction

Deterministic ω-Automata for LTL:

A safraless, compositional, and mechanically verified construction

- Directly yields a deterministic system

Deterministic ω-Automata for LTL:

A safraless, compositional, and mechanically verified construction

- Directly yields a deterministic system
- Product of several automata

Deterministic ω-Automata for LTL:

A safraless, compositional, and mechanically verified construction

- Directly yields a deterministic system
- Product of several automata
- Logical structure of the input formula is preserved
- e.g.: "Which G-subformulae are eventually true?"

Deterministic ω-Automata for LTL:

A safraless, compositional, and mechanically verified construction

- Directly yields a deterministic system
- Product of several automata
- Logical structure of the input formula is preserved
- e.g.: "Which G-subformulae are eventually true?"
- Smaller Systems ${ }^{1}$
${ }^{1}$ In most cases according to our experimental data; compared to the standard approach

Deterministic ω-Automata for LTL:

A safraless, compositional, and mechanically verified construction

- Directly yields a deterministic system
- Product of several automata
- Logical structure of the input formula is preserved
- e.g.: "Which G-subformulae are eventually true?"
- Smaller Systems ${ }^{1}$
- Bonus: Construction and correctness theorem verified in Isabelle/HOL
${ }^{1}$ In most cases according to our experimental data; compared to the standard approach

Deterministic ω-Automata for LTL:

A safraless, compositional, and mechanically verified construction

- Directly yields a deterministic system
- Product of several automata
- Logical structure of the input formula is preserved
- e.g.: "Which G-subformulae are eventually true?"
- Smaller Systems ${ }^{1}$
- Bonus: Construction and correctness theorem verified in Isabelle/HOL with code extraction 50\% done
${ }^{1}$ In most cases according to our experimental data; compared to the standard approach

Experimental Data

$\bigwedge_{i \in\{1, \ldots, n\}} \mathbf{G F a} a_{i} \Rightarrow \mathbf{G F b}_{i}$	NBA	DRA	DTGRA
	LTL2BA	lt12dstar	Rabinizer 3
$n=1$	4		
$n=2$	14		
$n=3$	40		

Experimental Data

$\bigwedge_{i \in\{1, \ldots, n\}} \mathbf{G F a} a_{i} \Rightarrow \mathbf{G F b} b_{i}$	NBA	DRA	DTGRA
	LTL2BA	lt12dstar	Rabinizer 3
$n=1$	4	4	
$n=2$	14	$>10^{4}$	
$n=3$	40	$>10^{6}$	

Experimental Data

$\bigwedge_{i \in\{1, \ldots, n\}} \mathbf{G F a} a_{i} \Rightarrow \mathbf{G F b} b_{i}$	NBA	DRA	DTGRA
	LTL2BA	lt12dstar	Rabinizer 3
$n=1$	4	4	1
$n=2$	14	$>10^{4}$	1
$n=3$	40	$>10^{6}$	1

ω-Words and LTL

An ω-word is an infinite sequence: $w=a_{0} a_{1} a_{2} a_{3} \ldots$

ω-Words and LTL

An ω-word is an infinite sequence: $w=a_{0} a_{1} a_{2} a_{3} \ldots$

Definition (LTL Semantics, Negation-Normal-Form)

$$
\begin{array}{lll}
\square & \vDash & \square \\
w & \vDash & :: \\
\mathbf{t t} & = & \text { Truet word } \rightarrow \alpha \text { Itl } \rightarrow \mathbb{B} \\
w & \vDash & \mathbf{f f} \\
w & = & \text { False } \\
w & \vDash & =a \in w_{0} \\
w & \vDash \varphi \wedge \psi & =a \notin w_{0} \\
w & \vDash \varphi \vee \psi \wedge w \vDash \psi \\
w & =w \vDash \varphi \vee w \vDash \psi
\end{array}
$$

ω-Words and LTL

An ω-word is an infinite sequence: $w=a_{0} a_{1} a_{2} a_{3} \ldots$

Definition (LTL Semantics, Negation-Normal-Form)

$$
\begin{aligned}
& \square \quad \vDash \quad \square \quad:: \quad \alpha \text { set word } \rightarrow \alpha \text { ItI } \rightarrow \mathbb{B} \\
& \mathbf{w} \vDash \text { tt }=\text { True } \\
& w \vDash \mathbf{f f} \quad=\text { False } \\
& w \vDash a \quad=a \in w_{0} \\
& w \vDash \neg a \quad=\quad a \notin w_{0} \\
& w \vDash \varphi \wedge \psi=w \vDash \varphi \wedge w \vDash \psi \\
& w \vDash \varphi \vee \psi=w \vDash \varphi \vee w \vDash \psi \\
& w \vDash \mathrm{~F} \varphi=\exists k . w_{k \infty} \vDash \varphi \\
& w \vDash \mathbf{G} \varphi=\forall k . w_{k \infty} \vDash \varphi \\
& \boldsymbol{w} \vDash \psi \mathbf{U} \varphi=\exists k . w_{k \infty} \vDash \varphi \wedge \forall j<k . w_{j \infty} \vDash \psi \\
& \omega \vDash \mathbf{X} \varphi=w_{1 \infty} \vDash \varphi
\end{aligned}
$$

ω-Words and LTL

An ω-word is an infinite sequence: $w=a_{0} a_{1} a_{2} a_{3} \ldots$

Definition (LTL Semantics, Negation-Normal-Form)

$$
\begin{array}{lll}
\square & \vDash & :: \alpha \text { set word } \rightarrow \alpha \text { Itl } \rightarrow \mathbb{B} \\
w & \vDash \mathbf{t t} & =\text { True } \\
w & \vDash \mathbf{f f} & =\text { False } \\
w & \vDash a & =a \in w_{0} \\
w & \vDash \neg a & =a \notin w_{0} \\
w & \vDash \varphi \wedge \psi & =w \vDash \varphi \wedge w \vDash \psi \\
w & \vDash \varphi \vee \psi & =w \vDash \varphi \vee w \vDash \psi \\
w & \vDash F \varphi & =\exists k \cdot w_{k \infty} \vDash \varphi \checkmark \\
w & \vDash \mathbf{G} \varphi & =\forall k \cdot w_{k \infty} \vDash \varphi \\
w & \vDash \psi \cup \varphi & =\exists k \cdot w_{k \infty} \vDash \varphi \wedge \forall j<k . w_{j \infty} \vDash \psi \checkmark \\
w & \vDash \mathbf{X} \varphi & =w_{1 \infty} \vDash \varphi \checkmark
\end{array}
$$

ω-Words and LTL

An ω-word is an infinite sequence: $w=a_{0} a_{1} a_{2} a_{3} \ldots$

Definition (LTL Semantics, Negation-Normal-Form)

$$
\begin{array}{lll}
\square & \vDash & :: \alpha \text { set word } \rightarrow \alpha \text { Itl } \rightarrow \mathbb{B} \\
w & \vDash \mathbf{t t} & =\text { True } \\
w & \vDash \mathbf{f f} & =\text { False } \\
w & \vDash a & =a \in w_{0} \\
w & \vDash \neg a & =a \notin w_{0} \\
w & \vDash \varphi \wedge \psi & =w \vDash \varphi \wedge w \vDash \psi \\
w & \vDash \varphi \vee \psi & =w \vDash \varphi \vee w \vDash \psi \\
w & \vDash F \varphi & =\exists k \cdot w_{k \infty} \vDash \varphi \checkmark \\
w & \vDash G \varphi & =\forall k \cdot w_{k \infty} \vDash \varphi \times \\
w & \vDash \psi U \varphi & =\exists k \cdot w_{k \infty} \vDash \varphi \wedge \forall j<k . w_{j \infty} \vDash \psi \checkmark \\
w & \vDash \mathrm{X} \varphi & =w_{1 \infty} \vDash \varphi \checkmark
\end{array}
$$

Unfolding Modal Operators

$$
\begin{aligned}
\mathbf{F} \varphi & \equiv \mathbf{X F} \varphi \vee \varphi \\
\mathbf{G} \varphi & \equiv \mathbf{X G} \varphi \wedge \varphi \\
\psi \mathbf{U} \varphi & \equiv \varphi \vee(\psi \wedge \mathbf{X}(\psi \mathbf{U} \varphi))
\end{aligned}
$$

Co-Büchi Automata for G-free φ

$$
\varphi=a \vee(b \mathbf{U} c)
$$

Co-Büchi Automata for G-free φ

$$
\varphi=a \vee(b \mathbf{U} c)
$$

φ

Co-Büchi Automata for G-free φ

$$
\begin{array}{r}
\varphi=a \vee(b \mathbf{U} c) \\
\varphi \rightarrow a \vee c \vee(b \wedge \mathbf{X}(b \mathbf{U} c))
\end{array}
$$

Co-Büchi Automata for G-free φ

$$
\begin{gathered}
\varphi=a \vee(b \mathbf{U} c) \\
\varphi \rightarrow a \vee c \vee(b \wedge \mathbf{X}(b \mathbf{U} c)) \rightarrow \bar{a} b \bar{c} b \mathbf{U} c
\end{gathered}
$$

Co-Büchi Automata for G-free φ

$$
\begin{gathered}
\varphi=a \vee(b \mathbf{U} c) \\
\varphi \rightarrow a \vee c \vee(b \wedge \mathbf{X}(b \mathbf{U} c)) \rightarrow \bar{a} b \bar{c} b \mathbf{U} c
\end{gathered}
$$

Tackling the G-Operator

- Relaxed case: $\mathbf{F G} \varphi$
- $w \models$ FG φ iff $w_{i o} \models \varphi$ for almost all i
- Reason: G-subformulae may be nested inside X, F, U.

Automata for $\mathrm{FG} \varphi$ where φ is \mathbf{G}-free

$$
w=\ldots
$$

Automata for $\mathrm{FG} \varphi$ where φ is \mathbf{G}-free

$$
w=a b c \ldots
$$

Automata for $\mathrm{FG} \varphi$ where φ is \mathbf{G}-free

$$
w=a b c \ldots
$$

Automata for $\mathrm{FG} \varphi$ where φ is \mathbf{G}-free

$$
w=a b c \bar{a} b \bar{c} \ldots
$$

Automata for $\mathrm{FG} \varphi$ where φ is \mathbf{G}-free

$$
w=a b c \bar{a} b \bar{c} \bar{a} b \bar{c} \ldots
$$

Automata for $\mathrm{FG} \varphi$ where φ is \mathbf{G}-free

$$
w=a b c \bar{a} b \bar{c} \bar{a} b \bar{c} \ldots
$$

Mojmir Automata

Mojmir Automata

- In every step a new token is placed in the initial state and all other tokens are moved according to the transition function.

Mojmir Automata

- In every step a new token is placed in the initial state and all other tokens are moved according to the transition function.
- Deterministic

Mojmir Automata

- In every step a new token is placed in the initial state and all other tokens are moved according to the transition function.
- Deterministic
- Accepts an ω-word w iff almost all tokens reach the final states

Mojmir Automata

- In every step a new token is placed in the initial state and all other tokens are moved according to the transition function.
- Deterministic
- Accepts an ω-word w iff almost all tokens reach the final states
- Mojmir automata are "blind" to events that only happen finitely often

Mojmir Automata

- In every step a new token is placed in the initial state and all other tokens are moved according to the transition function.
- Deterministic
- Accepts an ω-word w iff almost all tokens reach the final states
- Mojmir automata are "blind" to events that only happen finitely often

Going Further

- From Mojmir to Rabin Automata

Going Further

- From Mojmir to Rabin Automata
- Unbounded number of tokens?

Going Further

- From Mojmir to Rabin Automata
- Unbounded number of tokens?

Abstraction with ranking functions for states and tokens

Going Further

- From Mojmir to Rabin Automata
- Unbounded number of tokens? Abstraction with ranking functions for states and tokens
- Mojmir acceptance ((\bigcirc) vs. Rabin acceptance (finite, ${ }^{〔}$)?

Going Further

- From Mojmir to Rabin Automata
- Unbounded number of tokens? Abstraction with ranking functions for states and tokens
- Mojmir acceptance ($\stackrel{\circ}{\vee}$) vs. Rabin acceptance (finite, $\left.{ }^{(}\right)$)? Alternative definition for Mojmir acceptance

Going Further

- From Mojmir to Rabin Automata
- Unbounded number of tokens? Abstraction with ranking functions for states and tokens
- Mojmir acceptance ($\stackrel{\sim}{\forall})$ vs. Rabin acceptance (finite, $\Xi \exists$)? Alternative definition for Mojmir acceptance
- Mojmir Automata for FG φ for arbitrary φ

Going Further

- From Mojmir to Rabin Automata
- Unbounded number of tokens? Abstraction with ranking functions for states and tokens
- Mojmir acceptance ($\stackrel{\square}{\forall})$ vs. Rabin acceptance (finite, $\xlongequal{\beth}$)? Alternative definition for Mojmir acceptance
- Mojmir Automata for $\operatorname{FG} \varphi$ for arbitrary φ
- Divide-and-conquer approach
- Construct for every G-subformula a separate automaton
- Instead of expanding G's rely on the other automata
- Intersection and Union of several Mojmir Automata

Overview of the Construction

Overview of the Construction

- The Master-Transition-System tracks a finite prefix of the ω-word.

Overview of the Construction

- The Master-Transition-System tracks a finite prefix of the ω-word.
- Acceptance:
(1) Guess the set of eventually true G-subformulae
(2) Verify this guess using the Mojmir automata
(3) Accept iff almost all the time this guess entails the current state of the master-transition-system

Conclusion and Future Work

The presented translation...

- preservers the logical structure of the formula
- is compositional
- Aggressive optimization can lead to huge space savings
- Some optimizations are already verified
- yields small deterministic ω-automata

Conclusion and Future Work

The presented translation...

- preservers the logical structure of the formula
- is compositional
- Aggressive optimization can lead to huge space savings
- Some optimizations are already verified
- yields small deterministic ω-automata

Open Problems:

- Explore and formalize further optimizations
- Adapt construction to support:
- Alternation-free linear-time μ-calculus (contains LTL)
- Parity automata

Getting More Information

- Javier Esparza, Jan Kretínský: From LTL to Deterministic Automata: A Safraless Compositional Approach. CAV 2014: pages 192-208

Getting More Information

- Javier Esparza, Jan Kretínský: From LTL to Deterministic Automata: A Safraless Compositional Approach. CAV 2014: pages 192-208
- Isabelle/HOL Formalisation
- To be submitted to the "Archive of Formal Proofs" afp. sourceforge.net
- Available on request: sickert@in.tum.de

Getting More Information

- Javier Esparza, Jan Kretínský: From LTL to Deterministic Automata: A Safraless Compositional Approach. CAV 2014: pages 192-208
- Isabelle/HOL Formalisation
- To be submitted to the "Archive of Formal Proofs" afp. sourceforge.net
- Available on request: sickert@in.tum.de

Thank you for your attention!

