Javier Esparza¹ Jan Křetínský² Salomon Sickert¹

¹ Fakultät für Informatik, Technische Universität München, Germany

²IST Austria

May 11, 2015

• Directly yields a deterministic system

- Directly yields a deterministic system
- Product of several automata

- Directly yields a deterministic system
- Product of several automata
- Logical structure of the input formula is preserved
 - e.g.: "Which G-subformulae are eventually true?"

- Directly yields a deterministic system
- Product of several automata
- Logical structure of the input formula is preserved
 - e.g.: "Which G-subformulae are eventually true?"
- Smaller Systems¹

¹In most cases according to our experimental data; compared to the standard approach Salomon Sickert (TU München) 5/16

- Directly yields a deterministic system
- Product of several automata
- Logical structure of the input formula is preserved
 - e.g.: "Which G-subformulae are eventually true?"
- Smaller Systems¹
- Bonus: Construction and correctness theorem verified in Isabelle/HOL

¹ In most cases according to our experimental data; compared to the standard approach Salomon Sickert (TU München) 5/16

- Directly yields a deterministic system
- Product of several automata
- Logical structure of the input formula is preserved
 - e.g.: "Which G-subformulae are eventually true?"
- Smaller Systems¹
- Bonus: Construction and correctness theorem verified in Isabelle/HOL with code extraction 50% done

¹ In most cases according to our experimental data; compared to the standard approach Salomon Sickert (TU München) 5/16

Experimental Data

$\bigwedge \mathbf{GF}a_i \Rightarrow \mathbf{GF}b_i$	NBA	DRA	DTGRA
<i>i</i> ∈{1,, <i>n</i> }			
	LTL2BA	ltl2dstar	Rabinizer 3
<i>n</i> = 1	4		
<i>n</i> = 2	14		
<i>n</i> = 3	40		

Experimental Data

$\bigwedge \mathbf{GF}a_i \Rightarrow \mathbf{GF}b_i$	NBA	DRA	DTGRA
<i>i</i> ∈{1,, <i>n</i> }			
	LTL2BA	ltl2dstar	Rabinizer 3
<i>n</i> = 1	4	4	
<i>n</i> = 2	14	> 10 ⁴	
n = 3	40	> 10 ⁶	

Experimental Data

$\bigwedge \mathbf{GF}a_i \Rightarrow \mathbf{GF}b_i$	NBA	DRA	DTGRA
<i>i</i> ∈{1,, <i>n</i> }			
	LTL2BA	ltl2dstar	Rabinizer 3
<i>n</i> = 1	4	4	1
n = 2	14	> 10 ⁴	1
n = 3	40	> 10 ⁶	1

An ω -word is an infinite sequence: $w = a_0 a_1 a_2 a_3 \dots$

An ω -word is an infinite sequence: $w = a_0 a_1 a_2 a_3 \dots$

Definition (LTL Semantics, Negation-Normal-Form)

	⊢			α set word $\rightarrow \alpha$ $ t \rightarrow \mathbb{R}$
	-		••	a set word $\rightarrow a$ iff $\rightarrow \mathbb{D}$
W	Þ	tt	=	True
W	Þ	ff	=	False
W	Þ	а	=	$a \in w_0$
W	Þ	$\neg a$	=	<i>a</i> ∉ <i>w</i> ₀
W	Þ	$\varphi \wedge \psi$	=	$\texttt{W} \models \varphi \land \texttt{W} \models \psi$
W	Þ	$\varphi \lor \psi$	=	$\textit{W} \models \varphi \lor \textit{W} \models \psi$

An ω -word is an infinite sequence: $w = a_0 a_1 a_2 a_3 \dots$

Definition (LTL Semantics, Negation-Normal-Form)

	Þ		::	$\alpha \text{ set word} \rightarrow \alpha \text{ ltl} \rightarrow \mathbb{B}$
w	Þ	tt	=	True
w	⊨	ff	=	False
w	Þ	а	=	$a \in w_0$
w	Þ	$\neg a$	=	<i>a</i> ∉ <i>w</i> ₀
w	⊨	$\varphi \wedge \psi$	=	$w \models \varphi \land w \models \psi$
w	⊨	$\varphi \lor \psi$	=	$\pmb{w} \models \varphi \lor \pmb{w} \models \psi$
w	Þ	${f F}arphi$	=	$\exists k. \ w_{k\infty} \models \varphi$
w	Þ	$\mathbf{G}\varphi$	=	$\forall k. \ w_{k\infty} \models \varphi$
w	Þ	$\psi {f U} arphi$	=	$\exists k. \ w_{k\infty} \models \varphi \land \forall j < k. \ w_{j\infty} \models \psi$
w	Þ	$\mathbf{X} \varphi$	=	$W_{1\infty} \models \varphi$

An ω -word is an infinite sequence: $w = a_0 a_1 a_2 a_3 \dots$

Definition (LTL Semantics, Negation-Normal-Form)

	Þ		::	$\alpha \text{ set word} \rightarrow \alpha \text{ ltl} \rightarrow \mathbb{B}$
w	⊨	tt	=	True
w	⊨	ff	=	False
w	Þ	а	=	$a \in w_0$
w	Þ	¬a	=	<i>a</i> ∉ <i>w</i> ₀
w	Þ	$\varphi \wedge \psi$	=	${\pmb{W}}\vDash\varphi\wedge{\pmb{W}}\vDash\psi$
w	Þ	$\varphi \lor \psi$	=	$\pmb{w} \models \varphi \lor \pmb{w} \models \psi$
w	Þ	Farphi	=	$\exists k. w_{k\infty} \models \varphi \checkmark$
w	Þ	$\mathbf{G} \varphi$	=	$\forall k. \ w_{k\infty} \models \varphi$
w	Þ	$\psi {f U} arphi$	=	$\exists k. \ w_{k\infty} \models \varphi \land \forall j < k. \ w_{j\infty} \models \psi \checkmark$
w	Þ	$\mathbf{X} \varphi$	=	$W_{1\infty} \models \varphi \checkmark$

An ω -word is an infinite sequence: $w = a_0 a_1 a_2 a_3 \dots$

Definition (L	ΓL (Semant	tics,	Negation-Normal-Form)
	Þ		::	$\alpha \text{ set word} \rightarrow \alpha \text{ ltl} \rightarrow \mathbb{B}$
W	Þ	tt	=	True
W	Þ	ff	=	False
W	Þ	а	=	$a \in w_0$
W	Þ	$\neg a$	=	$a \notin w_0$
W	Þ	$\varphi \wedge \psi$	=	$W\models\varphi\wedgeW\models\psi$
W	Þ	$\varphi \lor \psi$	=	$W\models\varphi\lorW\models\psi$
W	Þ	${\sf F}arphi$	=	$\exists k. \ w_{k\infty} \models \varphi \ \checkmark$
W	Þ	$\mathbf{G} arphi$	=	$\forall k. \ w_{k\infty} \models \varphi \ \times$
W	Þ	$\psi {f U} arphi$	=	$\exists k. \ w_{k\infty} \models \varphi \land \forall j < k. \ w_{j\infty} \models \psi \ \checkmark$
W	Þ	${f X}arphi$	=	$W_{1\infty} \models \varphi \checkmark$

Unfolding Modal Operators

$$\begin{array}{rcl} \mathbf{F}\varphi &\equiv & \mathbf{X}\mathbf{F}\varphi \lor \varphi \\ \mathbf{G}\varphi &\equiv & \mathbf{X}\mathbf{G}\varphi \land \varphi \\ \psi\mathbf{U}\varphi &\equiv & \varphi \lor (\psi \land \mathbf{X}(\psi\mathbf{U}\varphi)) \end{array}$$

$$\varphi = a \lor (b \mathbf{U} c)$$

 φ

$$\varphi = a \lor (b \mathbf{U} c)$$

$$arphi = \mathbf{a} \lor (b \ \mathbf{U} \ c)$$
 $arphi
ightarrow \mathbf{a} \lor \mathbf{c} \lor (b \land \mathbf{X}(b \mathbf{U} c))$

$$arphi = \mathbf{a} \lor (b \ \mathbf{U} \ c)$$
 $arphi o \mathbf{a} \lor c \lor (b \land \mathbf{X}(b\mathbf{U}c))
ightarrow_{ar{a}bar{c}} b\mathbf{U}c$

$$arphi = a \lor (b \ \mathbf{U} \ c)$$
 $arphi o a \lor c \lor (b \land \mathbf{X}(b \mathbf{U} c))
ightarrow_{ar{a} b ar{c}} b \mathbf{U} c$

- Relaxed case: $\mathbf{FG}\varphi$
 - $w \models \mathbf{FG}\varphi$ *iff* $w_{i\infty} \models \varphi$ for almost all *i*

• Reason: G-subformulae may be nested inside X, F, U.

 $w = \ldots$

 $w = abc \dots$

 $w = abc \dots$

 $w = abc \bar{a}b\bar{c} \dots$

 $w = abc \ \bar{a}b\bar{c} \ \bar{a}b\bar{c} \ \ldots$

 $w = abc \ \bar{a}b\bar{c} \ \bar{a}b\bar{c} \ \ldots$

 In every step a new token is placed in the initial state and all other tokens are moved according to the transition function.

- In every step a new token is placed in the initial state and all other tokens are moved according to the transition function.
- Deterministic

- In every step a new token is placed in the initial state and all other tokens are moved according to the transition function.
- Deterministic
- Accepts an ω -word w *iff* almost all tokens reach the final states

- In every step a new token is placed in the initial state and all other tokens are moved according to the transition function.
- Deterministic
- Accepts an ω -word w *iff* almost all tokens reach the final states
 - Mojmir automata are "blind" to events that only happen finitely often

- In every step a new token is placed in the initial state and all other tokens are moved according to the transition function.
- Deterministic
- Accepts an ω -word w *iff* almost all tokens reach the final states
 - Mojmir automata are "blind" to events that only happen finitely often

• From Mojmir to Rabin Automata

• From Mojmir to Rabin Automata

• Unbounded number of tokens?

- From Mojmir to Rabin Automata
 - Unbounded number of tokens? Abstraction with ranking functions for states and tokens

- From Mojmir to Rabin Automata
 - Unbounded number of tokens?
 Abstraction with ranking functions for states and tokens
 - Mojmir acceptance $(\breve{\forall})$ vs. Rabin acceptance (finite, $\breve{\exists})$?

- From Mojmir to Rabin Automata
 - Unbounded number of tokens? Abstraction with ranking functions for states and tokens
 - Mojmir acceptance (∛) vs. Rabin acceptance (finite, ∃)? Alternative definition for Mojmir acceptance

- From Mojmir to Rabin Automata
 - Unbounded number of tokens? Abstraction with ranking functions for states and tokens
 - Mojmir acceptance (∀) vs. Rabin acceptance (finite, ∃)? Alternative definition for Mojmir acceptance

• Mojmir Automata for $\mathbf{FG}\varphi$ for arbitrary φ

• From Mojmir to Rabin Automata

- Unbounded number of tokens?
 Abstraction with ranking functions for states and tokens
- Mojmir acceptance (∀) vs. Rabin acceptance (finite, ∃)? Alternative definition for Mojmir acceptance

- Mojmir Automata for $\mathbf{FG}\varphi$ for arbitrary φ
 - Divide-and-conquer approach
 - Construct for every G-subformula a separate automaton
 - Instead of expanding G's rely on the other automata
 - Intersection and Union of several Mojmir Automata

Overview of the Construction

Overview of the Construction

• The Master-Transition-System tracks a finite prefix of the ω -word.

Overview of the Construction

- The Master-Transition-System tracks a finite prefix of the ω -word.
- Acceptance:
 - Guess the set of eventually true G-subformulae
 - Verify this guess using the Mojmir automata
 - Accept iff almost all the time this guess entails the current state of the master-transition-system

Conclusion and Future Work

The presented translation ...

- preservers the logical structure of the formula
- is compositional
 - Aggressive optimization can lead to huge space savings
 - Some optimizations are already verified
- yields small deterministic ω-automata

Conclusion and Future Work

The presented translation ...

- preservers the logical structure of the formula
- is compositional
 - Aggressive optimization can lead to huge space savings
 - Some optimizations are already verified
- yields small deterministic ω-automata

Open Problems:

- Explore and formalize further optimizations
- Adapt construction to support:
 - Alternation-free linear-time μ-calculus (contains LTL)
 - Parity automata

Getting More Information

 Javier Esparza, Jan Kretínský: From LTL to Deterministic Automata: A Safraless Compositional Approach. CAV 2014: pages 192–208

> From LTL to Deterministic Automata: A Safraless Compositional Approach

> > Javier Esparza and Jan Křetínský^{*†}

Institut für Informatik, Technische Universität München, Germany IST Austria

Getting More Information

- Javier Esparza, Jan Kretínský: From LTL to Deterministic Automata: A Safraless Compositional Approach. CAV 2014: pages 192–208
- Isabelle/HOL Formalisation
 - To be submitted to the "Archive of Formal Proofs" afp.sourceforge.net
 - Available on request: sickert@in.tum.de

Javier Esparza and Jan Křetínský^{*†}

Institut für Informatik, Technische Universität München, Germany IST Austria

Getting More Information

- Javier Esparza, Jan Kretínský: From LTL to Deterministic Automata: A Safraless Compositional Approach. CAV 2014: pages 192–208
- Isabelle/HOL Formalisation
 - To be submitted to the "Archive of Formal Proofs" afp.sourceforge.net
 - Available on request: sickert@in.tum.de

Thank you for your attention!

From LTL to Deterministic Automata: A Safraless Compositional Approach

Javier Esparza and Jan Křetínský^{*†}

Institut für Informatik, Technische Universität München, Germany IST Austria