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Deterministic ω-Automata for LTL:
A safraless, compositional, and mechanically verified construction

Directly yields a deterministic system

Product of several automata
Logical structure of the input formula is preserved

e.g.: “Which G-subformulae are eventually true?”

Smaller Systems

Bonus: Construction and correctness theorem verified in
Isabelle/HOL with code extraction 50% done
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Experimental Data

∧
i∈{1,...,n}

GFai ⇒ GFbi NBA DRA DTGRA

LTL2BA ltl2dstar Rabinizer 3

n = 1 4
n = 2 14
n = 3 40

Salomon Sickert (TU München) 6 / 16



Experimental Data

∧
i∈{1,...,n}

GFai ⇒ GFbi NBA DRA DTGRA

LTL2BA ltl2dstar Rabinizer 3

n = 1 4 4
n = 2 14 > 104

n = 3 40 > 106

Salomon Sickert (TU München) 6 / 16



Experimental Data

∧
i∈{1,...,n}

GFai ⇒ GFbi NBA DRA DTGRA

LTL2BA ltl2dstar Rabinizer 3

n = 1 4 4 1
n = 2 14 > 104 1
n = 3 40 > 106 1

Salomon Sickert (TU München) 6 / 16



ω-Words and LTL

An ω-word is an infinite sequence: w = a0a1a2a3 . . . .

Definition (LTL Semantics, Negation-Normal-Form)

� � � :: α set word→ α ltl→ B
w � tt = True
w � ff = False
w � a = a ∈ w0

w � ¬a = a < w0

w � ϕ ∧ ψ = w � ϕ ∧ w � ψ
w � ϕ ∨ ψ = w � ϕ ∨ w � ψ

Salomon Sickert (TU München) 7 / 16



ω-Words and LTL

An ω-word is an infinite sequence: w = a0a1a2a3 . . . .

Definition (LTL Semantics, Negation-Normal-Form)

� � � :: α set word→ α ltl→ B
w � tt = True
w � ff = False
w � a = a ∈ w0

w � ¬a = a < w0

w � ϕ ∧ ψ = w � ϕ ∧ w � ψ
w � ϕ ∨ ψ = w � ϕ ∨ w � ψ

Salomon Sickert (TU München) 7 / 16



ω-Words and LTL

An ω-word is an infinite sequence: w = a0a1a2a3 . . . .

Definition (LTL Semantics, Negation-Normal-Form)

� � � :: α set word→ α ltl→ B
w � tt = True
w � ff = False
w � a = a ∈ w0

w � ¬a = a < w0

w � ϕ ∧ ψ = w � ϕ ∧ w � ψ
w � ϕ ∨ ψ = w � ϕ ∨ w � ψ
w � Fϕ = ∃k . wk∞ � ϕ
w � Gϕ = ∀k . wk∞ � ϕ
w � ψUϕ = ∃k . wk∞ � ϕ ∧ ∀j < k . wj∞ � ψ
w � Xϕ = w1∞ � ϕ

Salomon Sickert (TU München) 7 / 16



ω-Words and LTL

An ω-word is an infinite sequence: w = a0a1a2a3 . . . .

Definition (LTL Semantics, Negation-Normal-Form)

� � � :: α set word→ α ltl→ B
w � tt = True
w � ff = False
w � a = a ∈ w0

w � ¬a = a < w0

w � ϕ ∧ ψ = w � ϕ ∧ w � ψ
w � ϕ ∨ ψ = w � ϕ ∨ w � ψ
w � Fϕ = ∃k . wk∞ � ϕ X
w � Gϕ = ∀k . wk∞ � ϕ
w � ψUϕ = ∃k . wk∞ � ϕ ∧ ∀j < k . wj∞ � ψ X
w � Xϕ = w1∞ � ϕ X

Salomon Sickert (TU München) 7 / 16



ω-Words and LTL

An ω-word is an infinite sequence: w = a0a1a2a3 . . . .

Definition (LTL Semantics, Negation-Normal-Form)

� � � :: α set word→ α ltl→ B
w � tt = True
w � ff = False
w � a = a ∈ w0

w � ¬a = a < w0

w � ϕ ∧ ψ = w � ϕ ∧ w � ψ
w � ϕ ∨ ψ = w � ϕ ∨ w � ψ
w � Fϕ = ∃k . wk∞ � ϕ X
w � Gϕ = ∀k . wk∞ � ϕ ×
w � ψUϕ = ∃k . wk∞ � ϕ ∧ ∀j < k . wj∞ � ψ X
w � Xϕ = w1∞ � ϕ X

Salomon Sickert (TU München) 7 / 16



Unfolding Modal Operators

Fϕ ≡ XFϕ ∨ ϕ
Gϕ ≡ XGϕ ∧ ϕ
ψUϕ ≡ ϕ ∨ (ψ ∧ X(ψUϕ))
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Co-Büchi Automata for G-free ϕ

ϕ = a ∨ (b U c)

ϕ→ a ∨ c ∨ (b ∧ X(bUc))→ābc̄ bUc

q1 : a ∨ (b U c)

q2 : b U c

q3 : tt q4 : ff

ābc̄

a + āc āb̄c̄
bc̄

c b̄c̄

true true
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Tackling the G-Operator

Relaxed case: FGϕ
w |= FGϕ iff wi∞ |= ϕ for almost all i

Reason: G-subformulae may be nested inside X,F,U.
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Automata for FGϕ where ϕ is G-free
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ābc̄a + āc āb̄c̄
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bc̄
c b̄c̄

Salomon Sickert (TU München) 11 / 16



Automata for FGϕ where ϕ is G-free

w = abc ābc̄ . . .
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Mojmir Automata

3

1, 2

0

α1
α2 α3

β1

β2 β3

Σ Σ

In every step a new token is placed in the initial state and all other
tokens are moved according to the transition function.

Deterministic
Accepts an ω-word w iff almost all tokens reach the final states

Mojmir automata are “blind” to events that only happen finitely often
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Going Further

From Mojmir to Rabin Automata

Unbounded number of tokens?
Abstraction with ranking functions for states and tokens
Mojmir acceptance (∀

∞
) vs. Rabin acceptance (finite, ∃

∞

)?
Alternative definition for Mojmir acceptance

Mojmir Automata for FGϕ for arbitrary ϕ
Divide-and-conquer approach
Construct for every G-subformula a separate automaton
Instead of expanding G’s rely on the other automata
Intersection and Union of several Mojmir Automata
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Overview of the Construction

LTL

Master-Transition-System

Mojmir Rabin

Generalised Rabin

G-subformulae

Product

The Master-Transition-System tracks a finite prefix of the ω-word.
Acceptance:

1 Guess the set of eventually true G-subformulae
2 Verify this guess using the Mojmir automata
3 Accept iff almost all the time this guess entails the current state of the

master-transition-system
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Conclusion and Future Work

The presented translation . . .

preservers the logical structure of the formula
is compositional

Aggressive optimization can lead to huge space savings
Some optimizations are already verified

yields small deterministic ω-automata

Open Problems:

Explore and formalize further optimizations
Adapt construction to support:

Alternation-free linear-time µ-calculus (contains LTL)
Parity automata
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Getting More Information

Javier Esparza, Jan Kretínský: From LTL to Deterministic Automata:
A Safraless Compositional Approach. CAV 2014: pages 192–208

Isabelle/HOL Formalisation
To be submitted to the “Archive of Formal Proofs” -
afp.sourceforge.net
Available on request: sickert@in.tum.de

Thank you for your attention!
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From LTL to Deterministic Automata:

A Safraless Compositional Approach

Javier Esparza and Jan Křet́ınský∗†

Institut für Informatik, Technische Universität München, Germany
IST Austria

Abstract. We present a new algorithm to construct a (generalized) de-
terministic Rabin automaton for an LTL formula ϕ. The automaton is
the product of a master automaton and an array of slave automata, one
for each G-subformula of ϕ. The slave automaton for Gψ is in charge of
recognizing whether FGψ holds. As opposed to standard determiniza-
tion procedures, the states of all our automata have a clear logical struc-
ture, which allows for various optimizations. Our construction subsumes
former algorithms for fragments of LTL. Experimental results show im-
provement in the sizes of the resulting automata compared to existing
methods.

1 Introduction

Linear temporal logic (LTL) is the most popular specification language for linear-
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