
Deterministic ω-Automata for LTL:
A safraless, compositional,

and mechanically verified construction

Javier Esparza1 Jan Křetínský2 Salomon Sickert1

1Fakultät für Informatik, Technische Universität München, Germany

2IST Austria

May 11, 2015

Salomon Sickert (TU München) 1 / 16

Deterministic ω-Automata for LTL:
A safraless, compositional, and mechanically verified construction

Salomon Sickert (TU München) 2 / 16

Deterministic ω-Automata for LTL:
A safraless, compositional, and mechanically verified construction

System with stochasticity
and non-determinism

expressed as a

Markov decision
process M

Linear time property
expressed as an

LTL formula ϕ

Non-deterministic
Büchi automaton B

Deterministic
Rabin automaton R

Product M × R
to be analysed

Salomon Sickert (TU München) 3 / 16

Deterministic ω-Automata for LTL:
A safraless, compositional, and mechanically verified construction

System with stochasticity
and non-determinism

expressed as a

Markov decision
process M

Linear time property
expressed as an

LTL formula ϕ

Non-deterministic
Büchi automaton B

Deterministic
Rabin automaton R

Product M × R
to be analysed

Salomon Sickert (TU München) 3 / 16

Deterministic ω-Automata for LTL:
A safraless, compositional, and mechanically verified construction

System with stochasticity
and non-determinism

expressed as a

Markov decision
process M

Linear time property
expressed as an

LTL formula ϕ

Non-deterministic
Büchi automaton B

Deterministic
Rabin automaton R

Product M × R
to be analysed

Safra

Salomon Sickert (TU München) 3 / 16

Deterministic ω-Automata for LTL:
A safraless, compositional, and mechanically verified construction

System with stochasticity
and non-determinism

expressed as a

Markov decision
process M

Linear time property
expressed as an

LTL formula ϕ

Deterministic
(transition-based)

Generalised Rabin
automaton RProduct M × R

to be analysed

Salomon Sickert (TU München) 4 / 16

Deterministic ω-Automata for LTL:
A safraless, compositional, and mechanically verified construction

Directly yields a deterministic system

Product of several automata
Logical structure of the input formula is preserved

e.g.: “Which G-subformulae are eventually true?”

Smaller Systems

Bonus: Construction and correctness theorem verified in
Isabelle/HOL with code extraction 50% done

Salomon Sickert (TU München) 5 / 16

Deterministic ω-Automata for LTL:
A safraless, compositional, and mechanically verified construction

Directly yields a deterministic system

Product of several automata
Logical structure of the input formula is preserved

e.g.: “Which G-subformulae are eventually true?”

Smaller Systems

Bonus: Construction and correctness theorem verified in
Isabelle/HOL with code extraction 50% done

Salomon Sickert (TU München) 5 / 16

Deterministic ω-Automata for LTL:
A safraless, compositional, and mechanically verified construction

Directly yields a deterministic system

Product of several automata

Logical structure of the input formula is preserved
e.g.: “Which G-subformulae are eventually true?”

Smaller Systems

Bonus: Construction and correctness theorem verified in
Isabelle/HOL with code extraction 50% done

Salomon Sickert (TU München) 5 / 16

Deterministic ω-Automata for LTL:
A safraless, compositional, and mechanically verified construction

Directly yields a deterministic system

Product of several automata
Logical structure of the input formula is preserved

e.g.: “Which G-subformulae are eventually true?”

Smaller Systems

Bonus: Construction and correctness theorem verified in
Isabelle/HOL with code extraction 50% done

Salomon Sickert (TU München) 5 / 16

Deterministic ω-Automata for LTL:
A safraless, compositional, and mechanically verified construction

Directly yields a deterministic system

Product of several automata
Logical structure of the input formula is preserved

e.g.: “Which G-subformulae are eventually true?”

Smaller Systems1

Bonus: Construction and correctness theorem verified in
Isabelle/HOL with code extraction 50% done

1In most cases according to our experimental data; compared to the standard approach
Salomon Sickert (TU München) 5 / 16

Deterministic ω-Automata for LTL:
A safraless, compositional, and mechanically verified construction

Directly yields a deterministic system

Product of several automata
Logical structure of the input formula is preserved

e.g.: “Which G-subformulae are eventually true?”

Smaller Systems1

Bonus: Construction and correctness theorem verified in
Isabelle/HOL

with code extraction 50% done

1In most cases according to our experimental data; compared to the standard approach
Salomon Sickert (TU München) 5 / 16

Deterministic ω-Automata for LTL:
A safraless, compositional, and mechanically verified construction

Directly yields a deterministic system

Product of several automata
Logical structure of the input formula is preserved

e.g.: “Which G-subformulae are eventually true?”

Smaller Systems1

Bonus: Construction and correctness theorem verified in
Isabelle/HOL with code extraction 50% done

1In most cases according to our experimental data; compared to the standard approach
Salomon Sickert (TU München) 5 / 16

Experimental Data

∧
i∈{1,...,n}

GFai ⇒ GFbi NBA DRA DTGRA

LTL2BA ltl2dstar Rabinizer 3

n = 1 4
n = 2 14
n = 3 40

Salomon Sickert (TU München) 6 / 16

Experimental Data

∧
i∈{1,...,n}

GFai ⇒ GFbi NBA DRA DTGRA

LTL2BA ltl2dstar Rabinizer 3

n = 1 4 4
n = 2 14 > 104

n = 3 40 > 106

Salomon Sickert (TU München) 6 / 16

Experimental Data

∧
i∈{1,...,n}

GFai ⇒ GFbi NBA DRA DTGRA

LTL2BA ltl2dstar Rabinizer 3

n = 1 4 4 1
n = 2 14 > 104 1
n = 3 40 > 106 1

Salomon Sickert (TU München) 6 / 16

ω-Words and LTL

An ω-word is an infinite sequence: w = a0a1a2a3

Definition (LTL Semantics, Negation-Normal-Form)

� � � :: α set word→ α ltl→ B
w � tt = True
w � ff = False
w � a = a ∈ w0

w � ¬a = a < w0

w � ϕ ∧ ψ = w � ϕ ∧ w � ψ
w � ϕ ∨ ψ = w � ϕ ∨ w � ψ

Salomon Sickert (TU München) 7 / 16

ω-Words and LTL

An ω-word is an infinite sequence: w = a0a1a2a3

Definition (LTL Semantics, Negation-Normal-Form)

� � � :: α set word→ α ltl→ B
w � tt = True
w � ff = False
w � a = a ∈ w0

w � ¬a = a < w0

w � ϕ ∧ ψ = w � ϕ ∧ w � ψ
w � ϕ ∨ ψ = w � ϕ ∨ w � ψ

Salomon Sickert (TU München) 7 / 16

ω-Words and LTL

An ω-word is an infinite sequence: w = a0a1a2a3

Definition (LTL Semantics, Negation-Normal-Form)

� � � :: α set word→ α ltl→ B
w � tt = True
w � ff = False
w � a = a ∈ w0

w � ¬a = a < w0

w � ϕ ∧ ψ = w � ϕ ∧ w � ψ
w � ϕ ∨ ψ = w � ϕ ∨ w � ψ
w � Fϕ = ∃k . wk∞ � ϕ
w � Gϕ = ∀k . wk∞ � ϕ
w � ψUϕ = ∃k . wk∞ � ϕ ∧ ∀j < k . wj∞ � ψ
w � Xϕ = w1∞ � ϕ

Salomon Sickert (TU München) 7 / 16

ω-Words and LTL

An ω-word is an infinite sequence: w = a0a1a2a3

Definition (LTL Semantics, Negation-Normal-Form)

� � � :: α set word→ α ltl→ B
w � tt = True
w � ff = False
w � a = a ∈ w0

w � ¬a = a < w0

w � ϕ ∧ ψ = w � ϕ ∧ w � ψ
w � ϕ ∨ ψ = w � ϕ ∨ w � ψ
w � Fϕ = ∃k . wk∞ � ϕ X
w � Gϕ = ∀k . wk∞ � ϕ
w � ψUϕ = ∃k . wk∞ � ϕ ∧ ∀j < k . wj∞ � ψ X
w � Xϕ = w1∞ � ϕ X

Salomon Sickert (TU München) 7 / 16

ω-Words and LTL

An ω-word is an infinite sequence: w = a0a1a2a3

Definition (LTL Semantics, Negation-Normal-Form)

� � � :: α set word→ α ltl→ B
w � tt = True
w � ff = False
w � a = a ∈ w0

w � ¬a = a < w0

w � ϕ ∧ ψ = w � ϕ ∧ w � ψ
w � ϕ ∨ ψ = w � ϕ ∨ w � ψ
w � Fϕ = ∃k . wk∞ � ϕ X
w � Gϕ = ∀k . wk∞ � ϕ ×
w � ψUϕ = ∃k . wk∞ � ϕ ∧ ∀j < k . wj∞ � ψ X
w � Xϕ = w1∞ � ϕ X

Salomon Sickert (TU München) 7 / 16

Unfolding Modal Operators

Fϕ ≡ XFϕ ∨ ϕ
Gϕ ≡ XGϕ ∧ ϕ
ψUϕ ≡ ϕ ∨ (ψ ∧ X(ψUϕ))

Salomon Sickert (TU München) 8 / 16

Co-Büchi Automata for G-free ϕ

ϕ = a ∨ (b U c)

ϕ→ a ∨ c ∨ (b ∧ X(bUc))→ābc̄ bUc

q1 : a ∨ (b U c)

q2 : b U c

q3 : tt q4 : ff

ābc̄

a + āc āb̄c̄
bc̄

c b̄c̄

true true

Salomon Sickert (TU München) 9 / 16

Co-Büchi Automata for G-free ϕ

ϕ = a ∨ (b U c)

ϕ

→ a ∨ c ∨ (b ∧ X(bUc))→ābc̄ bUc

q1 : a ∨ (b U c)

q2 : b U c

q3 : tt q4 : ff

ābc̄

a + āc āb̄c̄
bc̄

c b̄c̄

true true

Salomon Sickert (TU München) 9 / 16

Co-Büchi Automata for G-free ϕ

ϕ = a ∨ (b U c)

ϕ→ a ∨ c ∨ (b ∧ X(bUc))

→ābc̄ bUc

q1 : a ∨ (b U c)

q2 : b U c

q3 : tt q4 : ff

ābc̄

a + āc āb̄c̄
bc̄

c b̄c̄

true true

Salomon Sickert (TU München) 9 / 16

Co-Büchi Automata for G-free ϕ

ϕ = a ∨ (b U c)

ϕ→ a ∨ c ∨ (b ∧ X(bUc))→ābc̄ bUc

q1 : a ∨ (b U c)

q2 : b U c

q3 : tt q4 : ff

ābc̄

a + āc āb̄c̄
bc̄

c b̄c̄

true true

Salomon Sickert (TU München) 9 / 16

Co-Büchi Automata for G-free ϕ

ϕ = a ∨ (b U c)

ϕ→ a ∨ c ∨ (b ∧ X(bUc))→ābc̄ bUc

q1 : a ∨ (b U c)

q2 : b U c

q3 : tt q4 : ff

ābc̄

a + āc āb̄c̄
bc̄

c b̄c̄

true true

Salomon Sickert (TU München) 9 / 16

Tackling the G-Operator

Relaxed case: FGϕ
w |= FGϕ iff wi∞ |= ϕ for almost all i

Reason: G-subformulae may be nested inside X,F,U.

Salomon Sickert (TU München) 10 / 16

Automata for FGϕ where ϕ is G-free

w = . . .

•

q2

q3 q4

ābc̄a + āc āb̄c̄

bc̄
c b̄c̄

q3 q4

ābc̄a + āc āb̄c̄

bc̄
c b̄c̄

q3 q4

ābc̄a + āc āb̄c̄

bc̄
c b̄c̄

•

q2

q3 q4

ābc̄a + āc āb̄c̄

bc̄
c b̄c̄

3

1, 2

0

ābc̄a + āc āb̄c̄

bc̄
c b̄c̄

Salomon Sickert (TU München) 11 / 16

Automata for FGϕ where ϕ is G-free

w = abc . . .

q1

q2

• q4

ābc̄a + āc āb̄c̄

bc̄
c b̄c̄

q3 q4

ābc̄a + āc āb̄c̄

bc̄
c b̄c̄

q3 q4

ābc̄a + āc āb̄c̄

bc̄
c b̄c̄

•

q2

q3 q4

ābc̄a + āc āb̄c̄

bc̄
c b̄c̄

3

1, 2

0

ābc̄a + āc āb̄c̄

bc̄
c b̄c̄

Salomon Sickert (TU München) 11 / 16

Automata for FGϕ where ϕ is G-free

w = abc . . .

q1

q2

• q4

ābc̄a + āc āb̄c̄

bc̄
c b̄c̄

•

q2

q3 q4

ābc̄a + āc āb̄c̄

bc̄
c b̄c̄

q3 q4

ābc̄a + āc āb̄c̄

bc̄
c b̄c̄

•

q2

q3 q4

ābc̄a + āc āb̄c̄

bc̄
c b̄c̄

3

1, 2

0

ābc̄a + āc āb̄c̄

bc̄
c b̄c̄

Salomon Sickert (TU München) 11 / 16

Automata for FGϕ where ϕ is G-free

w = abc ābc̄ . . .

q1

q2

• q4

ābc̄a + āc āb̄c̄

bc̄
c b̄c̄

q1

•

q3 q4

ābc̄a + āc āb̄c̄

bc̄
c b̄c̄

•

q2

q3 q4

ābc̄a + āc āb̄c̄

bc̄
c b̄c̄

•

q2

q3 q4

ābc̄a + āc āb̄c̄

bc̄
c b̄c̄

3

1, 2

0

ābc̄a + āc āb̄c̄

bc̄
c b̄c̄

Salomon Sickert (TU München) 11 / 16

Automata for FGϕ where ϕ is G-free

w = abc ābc̄ ābc̄ . . .

q1

q2

• q4

ābc̄a + āc āb̄c̄

bc̄
c b̄c̄

q1

•

q3 q4

ābc̄a + āc āb̄c̄

bc̄
c b̄c̄

q1

•

q3 q4

ābc̄a + āc āb̄c̄

bc̄
c b̄c̄

•

q2

q3 q4

ābc̄a + āc āb̄c̄

bc̄
c b̄c̄

3

1, 2

0

ābc̄a + āc āb̄c̄

bc̄
c b̄c̄

Salomon Sickert (TU München) 11 / 16

Automata for FGϕ where ϕ is G-free

w = abc ābc̄ ābc̄ . . .

q1

q2

• q4

ābc̄a + āc āb̄c̄

bc̄
c b̄c̄

q1

•

q3 q4

ābc̄a + āc āb̄c̄

bc̄
c b̄c̄

q1

•

q3 q4

ābc̄a + āc āb̄c̄

bc̄
c b̄c̄

•

q2

q3 q4

ābc̄a + āc āb̄c̄

bc̄
c b̄c̄

3

1, 2

0

ābc̄a + āc āb̄c̄

bc̄
c b̄c̄

Salomon Sickert (TU München) 11 / 16

Mojmir Automata

3

1, 2

0

α1
α2 α3

β1

β2 β3

Σ Σ

In every step a new token is placed in the initial state and all other
tokens are moved according to the transition function.

Deterministic
Accepts an ω-word w iff almost all tokens reach the final states

Mojmir automata are “blind” to events that only happen finitely often

Salomon Sickert (TU München) 12 / 16

Mojmir Automata

3

1, 2

0

α1
α2 α3

β1

β2 β3

Σ Σ

In every step a new token is placed in the initial state and all other
tokens are moved according to the transition function.

Deterministic
Accepts an ω-word w iff almost all tokens reach the final states

Mojmir automata are “blind” to events that only happen finitely often

Salomon Sickert (TU München) 12 / 16

Mojmir Automata

3

1, 2

0

α1
α2 α3

β1

β2 β3

Σ Σ

In every step a new token is placed in the initial state and all other
tokens are moved according to the transition function.

Deterministic

Accepts an ω-word w iff almost all tokens reach the final states
Mojmir automata are “blind” to events that only happen finitely often

Salomon Sickert (TU München) 12 / 16

Mojmir Automata

3

1, 2

0

α1
α2 α3

β1

β2 β3

Σ Σ

In every step a new token is placed in the initial state and all other
tokens are moved according to the transition function.

Deterministic
Accepts an ω-word w iff almost all tokens reach the final states

Mojmir automata are “blind” to events that only happen finitely often

Salomon Sickert (TU München) 12 / 16

Mojmir Automata

3

1, 2

0

α1
α2 α3

β1

β2 β3

Σ Σ

In every step a new token is placed in the initial state and all other
tokens are moved according to the transition function.

Deterministic
Accepts an ω-word w iff almost all tokens reach the final states

Mojmir automata are “blind” to events that only happen finitely often

Salomon Sickert (TU München) 12 / 16

Mojmir Automata

3

1, 2

0

α1
α2 α3

β1

β2 β3

Σ Σ

In every step a new token is placed in the initial state and all other
tokens are moved according to the transition function.

Deterministic
Accepts an ω-word w iff almost all tokens reach the final states

Mojmir automata are “blind” to events that only happen finitely often

Salomon Sickert (TU München) 12 / 16

Going Further

From Mojmir to Rabin Automata

Unbounded number of tokens?
Abstraction with ranking functions for states and tokens
Mojmir acceptance (∀

∞
) vs. Rabin acceptance (finite, ∃

∞

)?
Alternative definition for Mojmir acceptance

Mojmir Automata for FGϕ for arbitrary ϕ
Divide-and-conquer approach
Construct for every G-subformula a separate automaton
Instead of expanding G’s rely on the other automata
Intersection and Union of several Mojmir Automata

Salomon Sickert (TU München) 13 / 16

Going Further

From Mojmir to Rabin Automata
Unbounded number of tokens?

Abstraction with ranking functions for states and tokens
Mojmir acceptance (∀

∞
) vs. Rabin acceptance (finite, ∃

∞

)?
Alternative definition for Mojmir acceptance

Mojmir Automata for FGϕ for arbitrary ϕ
Divide-and-conquer approach
Construct for every G-subformula a separate automaton
Instead of expanding G’s rely on the other automata
Intersection and Union of several Mojmir Automata

Salomon Sickert (TU München) 13 / 16

Going Further

From Mojmir to Rabin Automata
Unbounded number of tokens?
Abstraction with ranking functions for states and tokens

Mojmir acceptance (∀
∞

) vs. Rabin acceptance (finite, ∃
∞

)?
Alternative definition for Mojmir acceptance

Mojmir Automata for FGϕ for arbitrary ϕ
Divide-and-conquer approach
Construct for every G-subformula a separate automaton
Instead of expanding G’s rely on the other automata
Intersection and Union of several Mojmir Automata

Salomon Sickert (TU München) 13 / 16

Going Further

From Mojmir to Rabin Automata
Unbounded number of tokens?
Abstraction with ranking functions for states and tokens
Mojmir acceptance (∀

∞
) vs. Rabin acceptance (finite, ∃

∞

)?

Alternative definition for Mojmir acceptance

Mojmir Automata for FGϕ for arbitrary ϕ
Divide-and-conquer approach
Construct for every G-subformula a separate automaton
Instead of expanding G’s rely on the other automata
Intersection and Union of several Mojmir Automata

Salomon Sickert (TU München) 13 / 16

Going Further

From Mojmir to Rabin Automata
Unbounded number of tokens?
Abstraction with ranking functions for states and tokens
Mojmir acceptance (∀

∞
) vs. Rabin acceptance (finite, ∃

∞

)?
Alternative definition for Mojmir acceptance

Mojmir Automata for FGϕ for arbitrary ϕ
Divide-and-conquer approach
Construct for every G-subformula a separate automaton
Instead of expanding G’s rely on the other automata
Intersection and Union of several Mojmir Automata

Salomon Sickert (TU München) 13 / 16

Going Further

From Mojmir to Rabin Automata
Unbounded number of tokens?
Abstraction with ranking functions for states and tokens
Mojmir acceptance (∀

∞
) vs. Rabin acceptance (finite, ∃

∞

)?
Alternative definition for Mojmir acceptance

Mojmir Automata for FGϕ for arbitrary ϕ

Divide-and-conquer approach
Construct for every G-subformula a separate automaton
Instead of expanding G’s rely on the other automata
Intersection and Union of several Mojmir Automata

Salomon Sickert (TU München) 13 / 16

Going Further

From Mojmir to Rabin Automata
Unbounded number of tokens?
Abstraction with ranking functions for states and tokens
Mojmir acceptance (∀

∞
) vs. Rabin acceptance (finite, ∃

∞

)?
Alternative definition for Mojmir acceptance

Mojmir Automata for FGϕ for arbitrary ϕ
Divide-and-conquer approach
Construct for every G-subformula a separate automaton
Instead of expanding G’s rely on the other automata
Intersection and Union of several Mojmir Automata

Salomon Sickert (TU München) 13 / 16

Overview of the Construction

LTL

Master-Transition-System

Mojmir Rabin

Generalised Rabin

G-subformulae

Product

The Master-Transition-System tracks a finite prefix of the ω-word.
Acceptance:

1 Guess the set of eventually true G-subformulae
2 Verify this guess using the Mojmir automata
3 Accept iff almost all the time this guess entails the current state of the

master-transition-system

Salomon Sickert (TU München) 14 / 16

Overview of the Construction

LTL

Master-Transition-System

Mojmir Rabin

Generalised Rabin

G-subformulae

Product

The Master-Transition-System tracks a finite prefix of the ω-word.

Acceptance:
1 Guess the set of eventually true G-subformulae
2 Verify this guess using the Mojmir automata
3 Accept iff almost all the time this guess entails the current state of the

master-transition-system

Salomon Sickert (TU München) 14 / 16

Overview of the Construction

LTL

Master-Transition-System

Mojmir Rabin

Generalised Rabin

G-subformulae

Product

The Master-Transition-System tracks a finite prefix of the ω-word.
Acceptance:

1 Guess the set of eventually true G-subformulae
2 Verify this guess using the Mojmir automata
3 Accept iff almost all the time this guess entails the current state of the

master-transition-system

Salomon Sickert (TU München) 14 / 16

Conclusion and Future Work

The presented translation . . .

preservers the logical structure of the formula
is compositional

Aggressive optimization can lead to huge space savings
Some optimizations are already verified

yields small deterministic ω-automata

Open Problems:

Explore and formalize further optimizations
Adapt construction to support:

Alternation-free linear-time µ-calculus (contains LTL)
Parity automata

Salomon Sickert (TU München) 15 / 16

Conclusion and Future Work

The presented translation . . .

preservers the logical structure of the formula
is compositional

Aggressive optimization can lead to huge space savings
Some optimizations are already verified

yields small deterministic ω-automata

Open Problems:

Explore and formalize further optimizations
Adapt construction to support:

Alternation-free linear-time µ-calculus (contains LTL)
Parity automata

Salomon Sickert (TU München) 15 / 16

Getting More Information

Javier Esparza, Jan Kretínský: From LTL to Deterministic Automata:
A Safraless Compositional Approach. CAV 2014: pages 192–208

Isabelle/HOL Formalisation
To be submitted to the “Archive of Formal Proofs” -
afp.sourceforge.net
Available on request: sickert@in.tum.de

Thank you for your attention!

ar
X

iv
:1

40
2.

33
88

v3
 [

cs
.L

O
]

 2
4

Se
p

20
14

From LTL to Deterministic Automata:

A Safraless Compositional Approach

Javier Esparza and Jan Křet́ınský∗†

Institut für Informatik, Technische Universität München, Germany
IST Austria

Abstract. We present a new algorithm to construct a (generalized) de-
terministic Rabin automaton for an LTL formula ϕ. The automaton is
the product of a master automaton and an array of slave automata, one
for each G-subformula of ϕ. The slave automaton for Gψ is in charge of
recognizing whether FGψ holds. As opposed to standard determiniza-
tion procedures, the states of all our automata have a clear logical struc-
ture, which allows for various optimizations. Our construction subsumes
former algorithms for fragments of LTL. Experimental results show im-
provement in the sizes of the resulting automata compared to existing
methods.

1 Introduction

Linear temporal logic (LTL) is the most popular specification language for linear-
time properties. In the automata-theoretic approach to LTL verification, formu-
lae are translated into ω-automata, and the product of these automata with the
system is analyzed. Therefore, generating small ω-automata is crucial for the
efficiency of the approach.

In quantitative probabilistic verification, LTL formulae need to be translated
into deterministic ω-automata [BK08,CGK13]. Until recently, this required to
proceed in two steps: first translate the formula into a non-deterministic Büchi
automaton (NBA), and then apply Safra’s construction [Saf88], or improve-
ments on it [Pit06,Sch09] to transform the NBA into a deterministic automaton
(usually a Rabin automaton, or DRA). This is also the approach adopted in
PRISM [KNP11], a leading probabilistic model checker, which reimplements the
optimized Safra’s construction of ltl2dstar [Kle].

In [KE12] we presented an algorithm that directly constructs a generalized
DRA (GDRA) for the fragment of LTL containing only the temporal operators

∗ This research was funded in part by the European Research Council (ERC) under
grant agreement 267989 (QUAREM) and by the Austrian Science Fund (FWF)
project S11402-N23 (RiSE). The author is on leave from Faculty of Informatics,
Masaryk University, Czech Republic, and partially supported by the Czech Science
Foundation, grant No. P202/12/G061.

† In the original paper published in CAV’14, the negative conjuncts in Theorem 31
were missing. We thank Salomon Sickert for his help in correcting the theorem and
its proof.

Salomon Sickert (TU München) 16 / 16

afp.sourceforge.net
sickert@in.tum.de

Getting More Information

Javier Esparza, Jan Kretínský: From LTL to Deterministic Automata:
A Safraless Compositional Approach. CAV 2014: pages 192–208
Isabelle/HOL Formalisation

To be submitted to the “Archive of Formal Proofs” -
afp.sourceforge.net
Available on request: sickert@in.tum.de

Thank you for your attention!

ar
X

iv
:1

40
2.

33
88

v3
 [

cs
.L

O
]

 2
4

Se
p

20
14

From LTL to Deterministic Automata:

A Safraless Compositional Approach

Javier Esparza and Jan Křet́ınský∗†

Institut für Informatik, Technische Universität München, Germany
IST Austria

Abstract. We present a new algorithm to construct a (generalized) de-
terministic Rabin automaton for an LTL formula ϕ. The automaton is
the product of a master automaton and an array of slave automata, one
for each G-subformula of ϕ. The slave automaton for Gψ is in charge of
recognizing whether FGψ holds. As opposed to standard determiniza-
tion procedures, the states of all our automata have a clear logical struc-
ture, which allows for various optimizations. Our construction subsumes
former algorithms for fragments of LTL. Experimental results show im-
provement in the sizes of the resulting automata compared to existing
methods.

1 Introduction

Linear temporal logic (LTL) is the most popular specification language for linear-
time properties. In the automata-theoretic approach to LTL verification, formu-
lae are translated into ω-automata, and the product of these automata with the
system is analyzed. Therefore, generating small ω-automata is crucial for the
efficiency of the approach.

In quantitative probabilistic verification, LTL formulae need to be translated
into deterministic ω-automata [BK08,CGK13]. Until recently, this required to
proceed in two steps: first translate the formula into a non-deterministic Büchi
automaton (NBA), and then apply Safra’s construction [Saf88], or improve-
ments on it [Pit06,Sch09] to transform the NBA into a deterministic automaton
(usually a Rabin automaton, or DRA). This is also the approach adopted in
PRISM [KNP11], a leading probabilistic model checker, which reimplements the
optimized Safra’s construction of ltl2dstar [Kle].

In [KE12] we presented an algorithm that directly constructs a generalized
DRA (GDRA) for the fragment of LTL containing only the temporal operators

∗ This research was funded in part by the European Research Council (ERC) under
grant agreement 267989 (QUAREM) and by the Austrian Science Fund (FWF)
project S11402-N23 (RiSE). The author is on leave from Faculty of Informatics,
Masaryk University, Czech Republic, and partially supported by the Czech Science
Foundation, grant No. P202/12/G061.

† In the original paper published in CAV’14, the negative conjuncts in Theorem 31
were missing. We thank Salomon Sickert for his help in correcting the theorem and
its proof.

Salomon Sickert (TU München) 16 / 16

afp.sourceforge.net
sickert@in.tum.de

Getting More Information

Javier Esparza, Jan Kretínský: From LTL to Deterministic Automata:
A Safraless Compositional Approach. CAV 2014: pages 192–208
Isabelle/HOL Formalisation

To be submitted to the “Archive of Formal Proofs” -
afp.sourceforge.net
Available on request: sickert@in.tum.de

Thank you for your attention!

ar
X

iv
:1

40
2.

33
88

v3
 [

cs
.L

O
]

 2
4

Se
p

20
14

From LTL to Deterministic Automata:

A Safraless Compositional Approach

Javier Esparza and Jan Křet́ınský∗†

Institut für Informatik, Technische Universität München, Germany
IST Austria

Abstract. We present a new algorithm to construct a (generalized) de-
terministic Rabin automaton for an LTL formula ϕ. The automaton is
the product of a master automaton and an array of slave automata, one
for each G-subformula of ϕ. The slave automaton for Gψ is in charge of
recognizing whether FGψ holds. As opposed to standard determiniza-
tion procedures, the states of all our automata have a clear logical struc-
ture, which allows for various optimizations. Our construction subsumes
former algorithms for fragments of LTL. Experimental results show im-
provement in the sizes of the resulting automata compared to existing
methods.

1 Introduction

Linear temporal logic (LTL) is the most popular specification language for linear-
time properties. In the automata-theoretic approach to LTL verification, formu-
lae are translated into ω-automata, and the product of these automata with the
system is analyzed. Therefore, generating small ω-automata is crucial for the
efficiency of the approach.

In quantitative probabilistic verification, LTL formulae need to be translated
into deterministic ω-automata [BK08,CGK13]. Until recently, this required to
proceed in two steps: first translate the formula into a non-deterministic Büchi
automaton (NBA), and then apply Safra’s construction [Saf88], or improve-
ments on it [Pit06,Sch09] to transform the NBA into a deterministic automaton
(usually a Rabin automaton, or DRA). This is also the approach adopted in
PRISM [KNP11], a leading probabilistic model checker, which reimplements the
optimized Safra’s construction of ltl2dstar [Kle].

In [KE12] we presented an algorithm that directly constructs a generalized
DRA (GDRA) for the fragment of LTL containing only the temporal operators

∗ This research was funded in part by the European Research Council (ERC) under
grant agreement 267989 (QUAREM) and by the Austrian Science Fund (FWF)
project S11402-N23 (RiSE). The author is on leave from Faculty of Informatics,
Masaryk University, Czech Republic, and partially supported by the Czech Science
Foundation, grant No. P202/12/G061.

† In the original paper published in CAV’14, the negative conjuncts in Theorem 31
were missing. We thank Salomon Sickert for his help in correcting the theorem and
its proof.

Salomon Sickert (TU München) 16 / 16

afp.sourceforge.net
sickert@in.tum.de

