
AVM, May 4-6 2015

A n d r e a s H o l z e r 2 , D a n i e l S c h w a r t z - N a r b o n n e 3 , M i t r a Ta b a e i 1 ,
G e o r g W e i s s e n b a c h e r 1 , T h o m a s W i e s 3

1V i e n n a U n i v e r s i t y o f Te c h n o l o g y

2U n i v e r s i t y o f To r o n t o
3N e w Yo r k U n i v e r s i t y

AV M , A u s t r i a

Explaining Concurrency Bugs
with Interpolants

AVM, May 4-6 2015 2

Debugging

P

input

ouput

Test input

Execution

Violating Specification

AVM, May 4-6 2015 3

Debugging

P

input

ouput

Test input

Execution
What
went

wrong?

Error
Explanation

Fault
Localization

Cause of failure

Location of fault

Violating Specification

AVM, May 4-6 2015 4

Automatic Debugging Techniques

 Dynamic analysis:
 Comparison of failing and passing traces

 Quality of test suite

 Symbolic execution analysis:
 Max-SAT

 Cause clue clauses [PLDI11]
 Interpolation

 Error Invariant [FM12]
 Flow-sensitive Fault Localization[VMCAI13]
 Hybrid Algorithm [VSSTE14]

Root Cause

AVM, May 4-6 2015 5

Overview of our Method

 A concurrency bug explanation technique:
 Symbolic execution analysis
 Interpolation

 A general framework for concurrency bug explanation
 Not relying on specific bug characteristic
 No given pattern templates or annotations

AVM, May 4-6 2015 6

Outline

 Notion of Interpolant
 Interpolants for debugging sequential traces
 Encoding control-dependencies

 Flow-sensitive slices

 Interpolants for explaining concurrency bugs
 Encoding:

 Locks
 Inter-thread data-dependencies

 Empirical Evaluation

AVM, May 4-6 2015 7

Interpolants

Given: an unsatisfiable conjunction of formulas 𝐴𝐴 ∧ 𝐵𝐵:
 𝐴𝐴 ∧ 𝐵𝐵 ≡ false

An Interpolant for 𝐴𝐴 ∧ 𝐵𝐵 is a formula 𝐼𝐼 s.t. :
 𝐴𝐴 ⇒ 𝐼𝐼
 𝐼𝐼 ∧ 𝐵𝐵 ≡ false
 𝐼𝐼 is only on common variables of
𝐴𝐴 and 𝐵𝐵

A

B

I

AVM, May 4-6 2015 8

Trace Formula

. . .

input

. . .

program
statement

assertion

Failing trace

AVM, May 4-6 2015 9

Trace Formula

. . .

input

. . .

program
statement

𝑻𝑻𝒊𝒊:SSA form of
program statements

assertion

Failing trace

. . .

. . .

input

Trace in SSA form

In SSA form:
• Every variable is assigned once:

Example:
 x0 = 1
 y = x0 + 5
 x1 = 2

AVM, May 4-6 2015 10

Trace Formula

. . .

input

. . .

program
statement

𝑻𝑻𝒊𝒊:SSA form of
program statements

assertion

Failing trace

. . .

. . .

input

Trace in SSA form

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∧ 𝑇𝑇1 ∧ 𝑇𝑇2 …∧ 𝑇𝑇𝑛𝑛 ∧ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

Unsatisfiable trace formula:

AVM, May 4-6 2015 11

Interpolants for Debugging

... ...
input

assertion

Trace formula

Position P
X Y ∧ ≡ false
X ¬Y ⟹

X ¬Y ⟹ 𝐼𝐼𝑃𝑃 ⇒
Interpolant at Position P:

AVM, May 4-6 2015 12

Interpolants for Debugging

Interpolant Sequence

Trace formula

... ...
true

𝐼𝐼0 𝐼𝐼1 𝐼𝐼𝑛𝑛−1 𝐼𝐼𝑝𝑝 false

AVM, May 4-6 2015 13

Interpolants for Debugging

Trace formula

Sp

Over-approximaton of reachable states at p

... ...
true

𝐼𝐼0 𝐼𝐼1 𝐼𝐼𝑛𝑛−1 𝐼𝐼𝑝𝑝
false

AVM, May 4-6 2015 14

Interpolants for Debugging

... ... true false
𝐼𝐼0 𝐼𝐼1 𝐼𝐼𝑝𝑝−1 𝐼𝐼𝑛𝑛−1 𝐼𝐼𝑝𝑝

𝑇𝑇𝑝𝑝

Sp-1=Sp

𝐼𝐼𝑝𝑝−1 ≡ 𝐼𝐼𝑝𝑝

AVM, May 4-6 2015 15

Interpolants for Debugging

... ... true false
𝐼𝐼0 𝐼𝐼1 𝐼𝐼𝑝𝑝−1 𝐼𝐼𝑛𝑛−1 𝐼𝐼𝑝𝑝

𝑇𝑇𝑝𝑝

Sp-1=Sp

𝐼𝐼𝑝𝑝−1 ≡ 𝐼𝐼𝑝𝑝

AVM, May 4-6 2015 16

Interpolants for Debugging

1. x=3;

2. y=5;

3. m=y+x;

4. n=y-x;

5. y=y+1;

6. assert(n>m);

Sample Trace

x0=3

y0=5

m0=y0+x0

n0=y0-x0

y1=y0+1

n0>m0

Trace SSA encoding

true
x0=3

x0=3

m0=y0+3, x0=3

m0=n0+6

m0=n0+6

false

Interpolants

• Interpolants
• contain enough information to understand the failure

AVM, May 4-6 2015 17

Interpolants for Debugging

1. x=3;

2. y=5;

3. m=y+x;

4. n=y-x;

5. y=y+1;

6. assert(n>m);

Sample Trace

1. x0=3

2. y0=5

3. m0=y0+x0

4. n0=y0-x0

5. y1=y0+1

6. n0>m0

Trace SSA encoding

true
x0=3

x0=3

m0=y0+3, x0=3

m0=n0+6

m0=n0+6

false

Interpolants

Unchanged

Unchanged

Irrelevant

Irrelevant

AVM, May 4-6 2015 18

Error Explantion

1. x=3;

2. y=5;

3. m=y+x;

4. n=y-x;

5. y=y+1;

6. assert(n>m);

Sample Trace

1. x=3

3. m=y+x

4. n=y-x

6. assert(n>m)

Error Explantion
(Slice)

true

x=3

m=y+3,x=3

m=n+6

false

Error Invariants

Error Explanation:
• Slice: Isolating relevant statements for assertion violation

• Error Invariants: Revealing the relevant variables

AVM, May 4-6 2015 19

Error Explantion

1. x=3;

2. y=5;

3. m=y+x;

4. n=y-x;

5. y=y+1;

6. assert(n>m);

Sample Trace

1. x=3

3. m=y+x

4. n=y-x

6. assert(n>m)

Error Explantion
(Slice)

true

x=3

m=y+3,x=3

m=n+6

false

Error Invariants

Error Explanation:
• Slice: Isolating relevant statements for assertion violation

• Error Invariants: Revealing the relevant variables

Interpolants are not unique: any formula between WP and SP

AVM, May 4-6 2015 20

Sound Error Explanation Slices

 Soundness of explanation
 Slice forms an unsatisfiable formula

1. x=3

3. m=y+x

4. n=y-x

6. assert(n>m)

Sound Slice

true

x=3

m=y+3,x=3

m=n+6

false

AVM, May 4-6 2015 21

Sound Error Explanation Slices

 Soundness of explanation
 Achieved by Inductive Interpolant Sequence [VSSTE 2014]

... ... false
𝐼𝐼0

true
𝐼𝐼1 𝐼𝐼𝑝𝑝 𝐼𝐼𝑝𝑝−1 𝐼𝐼𝑛𝑛−1

𝐼𝐼𝑝𝑝−1 ∧ 𝑇𝑇𝑝𝑝 ⇒ 𝐼𝐼𝑝𝑝 Inductive property

𝑇𝑇𝑝𝑝

AVM, May 4-6 2015 22

Sound Error Explanation Slices

 Soundness of explanation
 Achieved by Inductive Interpolant Sequence [VSSTE 2014]

... ...
false

𝐼𝐼0
true

𝐼𝐼1 𝐼𝐼𝑗𝑗 𝐼𝐼𝑗𝑗−1 𝐼𝐼𝑛𝑛−1

𝐼𝐼𝑝𝑝−1 ∧ 𝑇𝑇𝑝𝑝 ⇒ 𝐼𝐼𝑝𝑝 Inductive property

𝑇𝑇𝑗𝑗
...

𝑇𝑇𝑘𝑘

𝐼𝐼𝑘𝑘 𝐼𝐼𝑘𝑘−1
𝐼𝐼𝑗𝑗−1 ≡ 𝐼𝐼𝑗𝑗 𝐼𝐼𝑘𝑘−1 ≡ 𝐼𝐼𝑘𝑘

AVM, May 4-6 2015 23

Interpolants for Debugging

 Generating unsatisfiable trace formula
 by SSA encoding

 Computing inductive interpolants
 for each position in the trace

 Excluding statements
 with stationary surrounding interpolants

AVM, May 4-6 2015 24

Encoding Conditions

1. x=1;

2. y=*;

3. if (y < 0)

4. x=0;

5. assert(x!=0);

Sample Code

1. x0=1

2. y0=-10

3. (y0<0)∧x1=0

4. x1 ≠ 0

Sample Trace

true

true

x1=0

false

4. x=0;

5. assert(x != 0)

Slice

Conditions are required for understanding the failure.

x=0

true

AVM, May 4-6 2015 25

Encoding Conditions

1. x0=1;

2. y0=-10;

3. (y0<0) ∧ x1=0;

4. x1 ≠ 0

 SSA Trace

true

true

x1=0

false

1. x0=1;

2. y0=-10;

3. (y0 <0)⇒x1=0;

4. x1 ≠ 0

Flow-sensitive SSA Trace

true

y0 <0

x1=0

false

1. x=1;

2. y=*;

3. if (y < 0)

4. x=0;

5. assert(x!=0);

1. x=1;

2. y=*;

3. if (y < 0)

4. x=0;

5. assert(x!=0);

true true

AVM, May 4-6 2015 26

Flow-sensitive Slices

1. x0=1;

2. y0=-10;

3. (y0<0) ∧ x1=0;

4. x1 ≠ 0

 SSA Trace

true

true

x1=0

false

1. x0=1;

2. y0=-10;

3. (y0 <0)⇒x1=0;

4. x1 ≠ 0

Flow-sensitive SSA Trace

true

y0 <0

x1=0

false

1. x=1;

2. y=*;

3. if (y < 0)

4. x=0;

5. assert(x!=0);

1. x=1;

2. y=*;

3. if (y < 0)

4. x=0;

5. assert(x!=0);

• Encoding of control-dependency:
• Conditions are encoded as implications in SSA traces:

� 𝑐𝑐
𝑐𝑐∈𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

⇒ 𝑥𝑥 = 𝑒𝑒

true true

AVM, May 4-6 2015 27

Model of Concurrent Traces

𝑡𝑡1 𝑡𝑡2 𝑡𝑡𝑛𝑛

Shared Variables

Multi-threaded Programs

AVM, May 4-6 2015 28

Model of Concurrent Traces

[𝑐𝑐] [¬𝑐𝑐]

Thread CFG

x=0 y=-1

Atomic
Statements

𝑡𝑡1 𝑡𝑡2 𝑡𝑡𝑛𝑛

Shared Variables

Multi-threaded Programs

modeled as

AVM, May 4-6 2015 29

Model of Concurrent Traces

[𝑐𝑐] [¬𝑐𝑐]

Thread CFG

x=0 y=-1

Atomic
Statements

𝑡𝑡1 𝑡𝑡2 𝑡𝑡𝑛𝑛

Shared Variables

Multi-threaded Programs

modeled as

executing

𝑒𝑒1

𝑒𝑒2

𝑒𝑒3

.

.

.

.

.

𝑒𝑒𝑛𝑛

Concurrent Trace

Total order
(interleaving
semantics)

AVM, May 4-6 2015 30

Concurrent Trace Formula

 SSA encoding of variables
 Encoding control-dependency as implication

 Modeling Locks as:
 Atomic guarded assignments:

acquire ℓ: ℓ = 0 ⊳ ℓ ≔ 𝑡𝑡𝑡𝑡𝑡𝑡
release ℓ: ℓ = 𝑡𝑡𝑡𝑡𝑡𝑡 ⊳ ℓ ≔ 0

 Encoding locks as implications (similar to control-
dependency)

AVM, May 4-6 2015 31

Interpolants for Debugging Concurrent Bugs

Thread 1

acquire ℓ
bal = balance
release ℓ

bal = bal + deposit

acquire ℓ
balance = bal
release ℓ

Thread 2

acquire ℓ
bal = balance
release ℓ

bal = bal - withdrawal

acquire ℓ
balance = bal
release ℓ

Main Thread
balance := 40
withdrawal := 20
deposit := 10
...

assert(balance = 40 – 20 + 10)

AVM, May 4-6 2015 32

Interpolants for Debugging Concurrent Bugs

Thread 1

acquire ℓ
bal = balance
release ℓ

bal = bal + deposit

acquire ℓ
balance = bal
release ℓ

Thread 2

acquire ℓ
bal = balance
release ℓ

bal = bal - withdrawal

acquire ℓ
balance = bal
release ℓ

Main Thread
balance := 40
withdrawal := 20
deposit := 10
...

assert(balance = 40 – 20 + 10)

(1)

AVM, May 4-6 2015 33

Interpolants for Debugging Concurrent Bugs

Thread 1

acquire ℓ
bal = balance
release ℓ

bal = bal + deposit

acquire ℓ
balance = bal
release ℓ

Thread 2

acquire ℓ
bal = balance
release ℓ

bal = bal - withdrawal

acquire ℓ
balance = bal
release ℓ

Main Thread
balance := 40
withdrawal := 20
deposit := 10
...

assert(balance = 40 – 20 + 10)

(1)

(2) bal 40

AVM, May 4-6 2015 34

Interpolants for Debugging Concurrent Bugs

Thread 1

acquire ℓ
bal = balance
release ℓ

bal = bal + deposit

acquire ℓ
balance = bal
release ℓ

Thread 2

acquire ℓ
bal = balance
release ℓ

bal = bal - withdrawal

acquire ℓ
balance = bal
release ℓ

Main Thread
balance := 40
withdrawal := 20
deposit := 10
...

assert(balance = 40 – 20 + 10)

(1)

(2) bal 40

(3)

balance 50

AVM, May 4-6 2015 35

Interpolants for Debugging Concurrent Bugs

Thread 1

acquire ℓ
bal = balance
release ℓ

bal = bal + deposit

acquire ℓ
balance = bal
release ℓ

Thread 2

acquire ℓ
bal = balance
release ℓ

bal = bal - withdrawal

acquire ℓ
balance = bal
release ℓ

Main Thread
balance := 40
withdrawal := 20
deposit := 10
...

assert(balance = 30)

(1)

(2) bal 40

(3)

balance 50
(4)

balance 20

AVM, May 4-6 2015 36

Interpolants for Debugging Concurrent Bugs

Thread 1

acquire ℓ
bal = balance
release ℓ

bal = bal + deposit

acquire ℓ
balance = bal
release ℓ

Thread 2

acquire ℓ
bal = balance
release ℓ

bal = bal - withdrawal

acquire ℓ
balance = bal
release ℓ

Main Thread
balance := 40
withdrawal := 20
deposit := 10
...

assert(balance = 30)

(1)

(2) bal 40

(3)

balance 50
(4)

balance 20

AVM, May 4-6 2015 37

Interpolants for Debugging Concurrent Bugs

Thread 1 (T1)
acquire ℓ
bal = balance
release ℓ

bal = bal + deposit

acquire ℓ
balance = bal
release ℓ

Thread 2 (T2)
acquire ℓ
bal = balance
release ℓ

bal = bal - withdrawal

acquire ℓ
balance = bal
release ℓ

Main Thread (T0)
balance := 40
withdrawal := 20
deposit := 10

assert(balance = 30)

(1)

(2)

(3)
(4)

T0 : balance := 40
T0 : withdrawal := 20

 T2 : bal = balance
 T2 : bal = bal - withdrawal
 T2 : balance = bal

T0 : assert(balance = 30)

Flow-insensitive Slice

Ignoring Thread 1 altogether

AVM, May 4-6 2015 38

Interpolants for Debugging Concurrent Bugs

Thread 1 (T1)
 acquire ℓ

bal = balance
release ℓ

bal = bal + deposit

acquire ℓ
balance = bal
release ℓ

Thread 2 (T2)
 acquire ℓ

bal = balance
release ℓ

bal = bal - withdrawal

acquire ℓ
balance = bal
release ℓ

Main Thread (T0)
 balance := 40

withdrawal := 20
deposit := 10

assert(balance = 30)

(1)

(2)

(3)
(4)

 T0 : balance := 40
 T0 : withdrawal := 20

 T2 : acquire ℓ
 T2 : bal = balance
 T2 : release ℓ
T1 : acquire ℓ
T1 : release ℓ
T1 : acquire ℓ
T1 : release ℓ
 T2 : bal = bal -
 withdrawal
 T2 : acquire ℓ
 T2 : balance = bal
 T2 : release ℓ

 T0 : assert(balance = 30)

Flow-sensitive Slice

T1 : balance = bal is missing

AVM, May 4-6 2015 39

Data dependencies

 Data dependency:
 Flow of data between statements

 Types of data dependency (in general)
 Read-after-write

a = x;
y = a + 10;

 Write-after-read
x = a;
a = y + 10;

 Write-after-write
 a = x + 10;
 a = y + 10;

 Inter-thread data dependencies (in multi threaded programs)
 Being able to indicate

 conflicting accesses or hazards

AVM, May 4-6 2015 40

Interpolants for Debugging Concurrent Bugs

Thread 1 (T1)
 acquire ℓ

bal = balance
release ℓ

bal = bal + deposit

acquire ℓ
balance = bal
release ℓ

Thread 2 (T2)
 acquire ℓ

bal = balance
release ℓ

bal = bal - withdrawal

acquire ℓ
balance = bal
release ℓ

Main Thread (T0)
 balance := 40

withdrawal := 20
deposit := 10

assert(balance = 30)

(1)

(2)

(3)
(4)

 T0 : balance := 40
 T0 : withdrawal := 20

 T2 : acquire ℓ
 T2 : bal = balance
 T2 : release ℓ
T1 : acquire ℓ
T1 : release ℓ
T1 : acquire ℓ
T1 : release ℓ
 T2 : bal = bal -
 withdrawal
 T2 : acquire ℓ
 T2 : balance = bal
 T2 : release ℓ

 T0 : assert(balance = 30)

Flow-sensitive Slice

w-a-w

AVM, May 4-6 2015 41

Hazard-sensitive Slices

 Encoding inter-thread data dependencies:
 as implication (using auxiliary variables)

 The resulting slice:
 Hazard-sensitive slice

AVM, May 4-6 2015 42

Hazard-sensitive Slice

Thread 1 (T1)
 acquire ℓ

bal = balance
release ℓ

bal = bal + deposit

acquire ℓ
balance = bal
release ℓ

Thread 2 (T2)
 acquire ℓ

bal = balance
release ℓ

bal = bal - withdrawal

acquire ℓ
balance = bal
release ℓ

Main Thread (T0)
 balance := 40

withdrawal := 20
deposit := 10

assert(balance = 30)

(1)

(2)

(3)
(4)

w-a-w T1: 𝑣𝑣 ∧ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑏𝑏𝑏𝑏𝑏𝑏
T2: 𝑣𝑣 ⇒ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑏𝑏𝑏𝑏𝑏𝑏

AVM, May 4-6 2015 43

Interpolants for Debugging Concurrent Bugs

Thread 1 (T1)
 acquire ℓ

bal = balance
release ℓ

bal = bal + deposit

acquire ℓ
balance = bal
release ℓ

Thread 2 (T2)
 acquire ℓ

bal = balance
release ℓ

bal = bal - withdrawal

acquire ℓ
balance = bal
release ℓ

Main Thread (T0)
 balance := 40

withdrawal := 20
deposit := 10

assert(balance = 30)

(1)

(2)

(3)
(4)

 T0 : balance := 40
 T0 : withdrawal := 20

 T2 : bal = balance

T1 : balance = bal

 T2 : bal = bal –
 withdrawal
 T2 : balance = bal

 T0 : assert(balance = 30)

Hazard-sensitive Slice

AVM, May 4-6 2015 44

Interpolants for Debugging Concurrent Bugs

Thread 1 (T1)
 acquire ℓ

bal = balance
release ℓ

bal = bal + deposit

acquire ℓ
balance = bal
release ℓ

Thread 2 (T2)
 acquire ℓ

bal = balance
release ℓ

bal = bal - withdrawal

acquire ℓ
balance = bal
release ℓ

Main Thread (T0)
 balance := 40

withdrawal := 20
deposit := 10

assert(balance = 30)

(1)

(2)

(3)
(4)

 T0 : balance := 40
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ≤ 40

 T0 : withdrawal := 20
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ≤ 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 20

 T2 : bal = balance
𝑏𝑏𝑏𝑏𝑏𝑏 ≤ 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 20

T1 : balance = bal
𝑏𝑏𝑏𝑏𝑏𝑏 ≤ 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 20

 T2 : bal = bal –
 withdrawal
𝑏𝑏𝑏𝑏𝑏𝑏 ≤ 20

 T2 : balance = bal
𝑏𝑏𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ≤ 20

 T0 : assert(balance = 30)

Hazard-sensitive Slice

w-a-w

AVM, May 4-6 2015 45

Fine-Tuning Explanations

 Adding different levels of detail to the explanations
 Encoding:

 control- and inter-thread data-dependency (fs+hs)
 control-dependency (fs)
 inter-thread data-dependency (hs)
 no dependency (∅)

 Leading to different reductions in number of:
 variables
 statements

AVM, May 4-6 2015 46

Fine-Tuning Explanations

T0 : balance := 40
T0 : withdrawal := 20
T2 : bal = balance
T2 : bal = bal - withdrawal
T2 : balance = bal
T0 : assert(balance = 30)

T0 : balance := 40
T0 : withdrawal := 20
T2 : acquire ℓ
T2 : bal = balance
T2 : release ℓ
T1 : acquire ℓ
T1 : release ℓ
T1 : acquire ℓ
T1 : release ℓ
T2 : bal = bal - withdrawal
T2 : acquire ℓ
T2 : balance = bal
T2 : release ℓ
T0 : assert(balance = 30)

T0 : balance := 40
T0 : withdrawal := 20

T2 : bal = balance

T1 : balance = bal

T2 : bal = bal – withdrawal
T2 : balance = bal

T0 : assert(balance = 30)

∅ fs hs

AVM, May 4-6 2015 47

Empirical Evaluation

Program Concurrency
bug

Number of
traces

Type of slice Avg. reduction of
statements(%)

Avg. reduction of
variables

Lock free pool Linearizability
problem

8 fs 61% 34%

fs+hs 60% 34%

Bank account Atomicity
violation

5 fs+hs 46% 23%

hs 88% 33%

Quality + Quantity results:

AVM, May 4-6 2015 48

Conclusion

 A general framework for concurrency bug explantion
 Interpolation
 Symbolic execution analysis

 Encoding of :
 Control-dependency
 Inter-thread data-dependency

 Implementation
 Interpolant computation
 VERMEER [ICSE15]

 Tracing failing concurrent traces
 ConCrest [FSE13]

AVM, May 4-6 2015 49

	Explaining Concurrency Bugs with Interpolants
	Debugging
	Debugging
	Automatic Debugging Techniques
	Overview of our Method
	Outline
	Interpolants
	Trace Formula
	Trace Formula
	Trace Formula
	Interpolants for Debugging
	Interpolants for Debugging
	Interpolants for Debugging
	Interpolants for Debugging
	Interpolants for Debugging
	Interpolants for Debugging
	Interpolants for Debugging
	Error Explantion
	Error Explantion
	Sound Error Explanation Slices
	Sound Error Explanation Slices
	Sound Error Explanation Slices
	Interpolants for Debugging
	Encoding Conditions
	Encoding Conditions
	Flow-sensitive Slices
	Model of Concurrent Traces
	Model of Concurrent Traces
	Model of Concurrent Traces
	Concurrent Trace Formula
	Interpolants for Debugging Concurrent Bugs
	Interpolants for Debugging Concurrent Bugs
	Interpolants for Debugging Concurrent Bugs
	Interpolants for Debugging Concurrent Bugs
	Interpolants for Debugging Concurrent Bugs
	Interpolants for Debugging Concurrent Bugs
	Interpolants for Debugging Concurrent Bugs
	Interpolants for Debugging Concurrent Bugs
	Data dependencies
	Interpolants for Debugging Concurrent Bugs
	Hazard-sensitive Slices
	Hazard-sensitive Slice
	Interpolants for Debugging Concurrent Bugs
	Interpolants for Debugging Concurrent Bugs
	Fine-Tuning Explanations
	Fine-Tuning Explanations
	Empirical Evaluation
	Conclusion
	Slide Number 49

