Timed Pattern Matching

Doğan Ulus joint with T. Ferrere, E. Asarin, O. Maler and D. Nickovic

Real-time systems

Real-time systems

Systems with timing constraints

\longrightarrow Biological

They are complex

+ Extremely large (or infinite) state-spaces
+ Functional equivalence between abstractions is an exception.

Verification of real-time systems

+ Simulation-based techniques to reason about correctness/performance
+ Only some segments of simulation behaviors are interesting.

Example Find for "was" or "were" in the text

Regex Pattern w(as +ere)
It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness, it was the epoch of belief, it was the epoch of incredulity, it was the season of Light, it was the season of Darkness, it was the spring of hope, it was the winter of despair, we had everything before us, we had nothing before us, we were all going direct to Heaven, we were all going direct the other way - in short, the period was so far like the present period, that some of its noisiest authorities insisted on its being received, for good or for evil, in the superlative degree of comparison only.

Our intention

Consider a simulation behavior including some pulses. Assume long pulses are interesting.

Our intention

Consider a simulation behavior including some pulses. Assume long pulses are interesting.

We would like to

+ Locate all interesting segments in a formal way.

Consider a simulation behavior including some pulses. Assume long pulses are interesting.

We would like to

+ Locate all interesting segments in a formal way.
How?
+ Abstract behaviors in timed level
+ Specify patterns using timed regular expressions
+ Perform timed pattern matching
+ A Long Introduction
+ Timed level of abstraction
+ Why not real-time logics?
+ Path to timed regular expressions
+ Theory and Practice
+ Definitions
+ Algorithms
+ Implementation
+ Discrete values + Metric Time
+ States as primitive timed entities

Visual representation for timed state sequences (signals)

+ Discrete values + Metric Time
+ States as primitive timed entities

Visual representation for timed state sequences (signals)

+ Timed patterns are meaningful compositions of timed states.
+ Certain patterns are caused by design or by nature.

A timed pattern

Our extent

Our extent

Our extent

+ We use TRE as a timed specification language. Why not real-time logics?

Real-time logics

+ Real-time logics (e.g. MTL) used to specify timed properties
+ Until operator (of LTL) enhanced as $\mathcal{U}_{\text {I }}$ for time-bounded sequential reasoning.

$$
\begin{aligned}
(w, t) \vDash \psi_{1} \mathcal{U}_{[a, b]} \psi_{2} \leftrightarrow & \exists t^{\prime} \in[t+a, t+b] .\left(w, t^{\prime}\right) \vDash \psi_{2} \text { and } \\
& \forall t^{\prime \prime} \in\left[t, t^{\prime}\right] .\left(w, t^{\prime \prime}\right) \vDash \psi_{1}
\end{aligned}
$$

+ Consider a pulse.
+ Pulse spec in English:
When low, increase until high and flat more than 0.5 time units then decrease
until low
$+\ln$ MTL:

$$
\begin{gathered}
\psi=(\text { Low } \wedge \operatorname{lnc}) \\
\mathcal{U}(\operatorname{lnc} \\
\mathcal{U}(\text { High } \wedge \text { Flat }) \\
\mathcal{U}_{\geq 0.5}(\text { Dec } \\
\mathcal{U}(\text { Dec } \wedge \text { Low }))))
\end{gathered}
$$

$$
w_{0}(t)=\left\{\begin{array}{ll}
\text { High } & \text { if } y(t)>c_{h} \\
\text { Low } & \text { if } y(t)<c_{l}
\end{array} w_{1}(t)= \begin{cases}\text { Inc } & \text { if } \dot{y}(t)>d \\
\text { Dec } & \text { if } \dot{y}(t)<-d \\
\text { Flat } & \text { if otherwise }\end{cases}\right.
$$

$+\ln$ TRE:

$$
\varphi:=(\text { Low } \wedge \operatorname{lnc}) \cdot \operatorname{lnc} \cdot\langle\text { High } \wedge \text { Flat }\rangle_{\geq 0.5} \cdot \text { Dec } \cdot(\text { Dec } \wedge \text { Low })
$$

Comparison 1 - Intuitiveness

Adding additional constraint over total duration will result: $+\ln$ MTL:

$$
\begin{gathered}
\psi^{\prime}=(\text { Low } \wedge \text { Inc }) \\
\mathcal{U}(\text { Inc } \\
\mathcal{U}(\text { High } \wedge \text { Flat }) \\
\mathcal{U} \geq 0.5(\text { Dec } \\
\mathcal{U}(\text { Dec } \wedge \text { Low }))))
\end{gathered}
$$

((Low \wedge Inc)
\checkmark Inc
(High \wedge Flat)
\checkmark Dec)
$\mathcal{U}_{[2,5]}($ Dec \wedge Low)
$+\ln$ TRE:
$\varphi^{\prime}:=\left\langle(\text { Low } \wedge \text { Inc }) \cdot \operatorname{Inc} \cdot\langle\text { High } \wedge \text { Flat }\rangle_{\geq 0.5} \text {. Dec } \cdot(\text { Dec } \wedge \text { Low })\right\rangle_{[2,5]}$

Comparison 2 - Expressiveness

Everyday patterns

Sequential composition (Pulse)

Alternation
(2nd order response)
Parallel composition
(Switching capacitors)

Repetition
(Modulated pulse)

We can express in

MTL and TRE

MTL and TRE

MTL and TRE
only TRE

Comparison 3 - Semantics

+ MTL semantics is over time-points, monitoring gives only beginnings.
+ TRE semantics is over time-segments, monitoring gives all beginnings, endings and durations.

$\chi(\psi, w)$

$\mathcal{M}(\varphi, w)$

Timed regular expressions

$$
\varphi:=\epsilon|p| \bar{p}|\varphi \cdot \varphi| \varphi \vee \varphi|\varphi \wedge \varphi| \varphi^{*} \mid\langle\varphi\rangle_{I}
$$

p is a propositional variable, l is an interval

$$
\begin{array}{llll}
\left(w, t, t^{\prime}\right) & \vDash \epsilon & \leftrightarrow & \leftrightarrow t=t^{\prime} \\
\left(w, t, t^{\prime}\right) & \vDash p & \leftrightarrow & \leftrightarrow<t^{\prime} \text { and } \forall t^{\prime \prime} \in\left(t, t^{\prime}\right), p\left[t^{\prime \prime}\right]=1 \\
\left(w, t, t^{\prime}\right) & \vDash \bar{p} & \leftrightarrow & \leftrightarrow \\
\left(w, t, t^{\prime}\right) & \vDash \varphi \cdot \psi & \leftrightarrow & \leftrightarrow t^{\prime \prime} \in\left(t, t^{\prime}\right),\left(w, t, t^{\prime \prime}\right) \vDash \varphi \text { and }\left(w, t^{\prime \prime}, t^{\prime}\right) \vDash \psi \\
\left(w, t, t^{\prime}\right) & \vDash \varphi \vee \psi & \leftrightarrow\left(w, t, t^{\prime}\right) \vDash \varphi \text { or }\left(w, t, t^{\prime}\right) \vDash \psi \\
\left(w, t, t^{\prime}\right) & \vDash \varphi \wedge \psi & \leftrightarrow & \cdots \\
\left(w, t, t^{\prime}\right) & \vDash \varphi^{*} & \leftrightarrow & \leftrightarrow k \geq 0,\left(w, t, t^{\prime}\right) \vDash \varphi^{k} \\
\left(w, t, t^{\prime}\right) & \vDash\langle\varphi\rangle_{I} & \leftrightarrow & t^{\prime}-t \in I \text { and }\left(w, t, t^{\prime}\right) \vDash \varphi
\end{array}
$$

Definition (Match-set)

For a signal w and an expression φ the match-set is

$$
\mathcal{M}(\varphi, w):=\left\{\left(t, t^{\prime}\right) \mid\left(w, t, t^{\prime}\right) \vDash \varphi\right\}
$$

Problem (Timed pattern matching)

Given a signal and an expression compute the match-set.

Data structure
Mark $\left(t, t^{\prime}\right)$ if $\left(w, t, t^{\prime}\right) \vDash \varphi$.
Better mark as zones.

A match beginning at t ending at t^{\prime}.

$$
\begin{gathered}
b \leq t \leq b^{\prime} \\
e \leq t^{\prime} \leq e^{\prime} \\
d \leq t^{\prime}-t \leq d^{\prime}
\end{gathered}
$$

Theorem

The match-set $\mathcal{M}(\varphi, w)$ is computable as a finite union of $2 D$ zones.

+ When a segment of p satisfies, all sub-segments satisfy p.
+ Triangle zones

Base cases - Duration constraints

+ Restricting duration

$$
\begin{aligned}
\mathcal{M}\left(\langle\varphi\rangle_{I}, w\right) & =\mathcal{M}(\varphi, w) \\
& \cap\left\{\left(t, t^{\prime}\right) \mid t^{\prime}-t \in I\right\}
\end{aligned}
$$

Base cases - Concatenation

+ Concatenation is a composition of match sets.

$$
\mathcal{M}(\varphi \cdot \psi)=\mathcal{M}(\varphi) \circ \mathcal{M}(\psi)
$$

$\left(t, t^{\prime}\right) \in \mathcal{M}(\varphi) \circ \mathcal{M}(\psi) \leftrightarrow \exists t^{\prime \prime}:\left(t, t^{\prime \prime}\right) \in \mathcal{M}(\varphi) \wedge\left(t^{\prime \prime}, t^{\prime}\right) \in \mathcal{M}(\psi)$

+ Can be obtained using standard zone operations.
+ Composition preserves zones and match sets

$$
\bigcup_{i} z_{i} \circ \bigcup_{j} z_{j}^{\prime}=\bigcup_{i j} z_{i} \circ z_{j}^{\prime}
$$

+ Most resulting zones are empty in practice.
+ Plane-sweep algorithm: sorting zones by start / end time allows to avoid most empty operations

Overall Computation

$\varphi:=($ Low $\wedge \operatorname{lnc}) \cdot \operatorname{lnc} \cdot\langle\text { High } \wedge \text { Flat }\rangle_{>0.5} \cdot \operatorname{Dec} \cdot($ Dec \wedge Low $)$

$$
\varphi:=(\text { Low } \wedge \operatorname{lnc}) \cdot \operatorname{lnc} \cdot\langle\text { High } \wedge \text { Flat }\rangle_{\geq 0.5} \cdot \operatorname{Dec} \cdot(\operatorname{Dec} \wedge \text { Low })
$$

$$
\varphi:=(\text { Low } \wedge \operatorname{lnc}) \cdot \operatorname{lnc} \cdot\langle\text { High } \wedge \text { Flat }\rangle_{\geq 0.5} \cdot \text { Dec } \cdot(\text { Dec } \wedge \text { Low })
$$

$$
\varphi:=(\text { Low } \wedge \operatorname{lnc}) \cdot \operatorname{lnc} \cdot\langle\text { High } \wedge \text { Flat }\rangle_{\geq 0.5} \cdot \text { Dec } \cdot(\text { Dec } \wedge \text { Low })
$$

$$
\varphi:=(\text { Low } \wedge \operatorname{lnc}) \cdot \operatorname{lnc} \cdot\langle\text { High } \wedge \text { Flat }\rangle_{\geq 0.5} \cdot \text { Dec } \cdot(\text { Dec } \wedge \text { Low })
$$

$$
\varphi:=(\text { Low } \wedge \operatorname{lnc}) \cdot \operatorname{Inc} \cdot\langle\text { High } \wedge \text { Flat }\rangle_{\geq 0.5} \cdot \text { Dec } \cdot(\text { Dec } \wedge \text { Low })
$$

$$
\varphi:=(\text { Low } \wedge \operatorname{lnc}) \cdot \operatorname{lnc} \cdot\langle\text { High } \wedge \text { Flat }\rangle_{\geq 0.5} \cdot \text { Dec } \cdot(\text { Dec } \wedge \text { Low })
$$

$$
\varphi:=(\text { Low } \wedge \operatorname{lnc}) \cdot \operatorname{Inc} \cdot\langle\text { High } \wedge \text { Flat }\rangle_{\geq 0.5} \cdot \text { Dec } \cdot(\text { Dec } \wedge \text { Low })
$$

$\varphi:=($ Low $\wedge \operatorname{Inc}) \cdot \operatorname{lnc} \cdot\langle\text { High } \wedge \text { Flat }\rangle_{\geq 0.5} \cdot$ Dec $\cdot($ Dec \wedge Low $)$

$$
\varphi:=(\text { Low } \wedge \operatorname{lnc}) \cdot \operatorname{Inc} \cdot\langle\text { High } \wedge \text { Flat }\rangle_{\geq 0.5} \cdot \text { Dec } \cdot(\text { Dec } \wedge \text { Low })
$$

$$
\mathcal{M}(\varphi, w)=\{\boldsymbol{\square}\}=\left\{\left(t, t^{\prime}\right) \in[2,2.2] \times[3.8,4]\right\}
$$

Return back to behaviors, segments in contain a pulse.

On Implementation

+ in Python and C (using IF library for zones)
On Performance
+32 K zones + complex expression $=$ few seconds
+ Negligible overhead compared to simulation times
+ TRE is intuitive, expressive and informative for timed pattern matching purposes.
+ Problem of timed pattern matching stated and solved in a 2D world.
+ A prototype tool developed.
+ Experiments on synthetic data witness scalability.

More details in

+ Timed Pattern Matching, [FORMATS'14]
D. Ulus, T. Ferrere, E. Asarin, O. Maler
+ Measuring with Timed Patterns, [CAV'15]
T. Ferrere, D. Nickovic, O. Maler, D. Ulus

