
Timed Pattern Matching

Doğan Ulus

joint with T. Ferrere, E. Asarin, O. Maler and D. Nickovic

Verimag, University of Grenoble-Alpes May 6, 2015

2Real-time systems

Real-time
systems

Systems with
timing
constraints

Control
Communication
Biological
. . .

They are complex
+ Extremely large (or infinite) state-spaces
+ Functional equivalence between abstractions is an exception.

Verification of real-time systems
+ Simulation-based techniques to reason about

correctness/performance
+ Only some segments of simulation behaviors are interesting.

3Pattern Matching

Example Find for "was" or "were" in the text

Regex Pattern w(as + ere)

It was the best of times, it was the worst of times, it
was the age of wisdom, it was the age of foolishness, it
was the epoch of belief, it was the epoch of incredulity, it
was the season of Light, it was the season of Darkness, it
was the spring of hope, it was the winter of despair, we had
everything before us, we had nothing before us, we were all
going direct to Heaven, we were all going direct the other
way - in short, the period was so far like the present period,
that some of its noisiest authorities insisted on its being
received, for good or for evil, in the superlative degree of
comparison only.

4Our intention

Consider a simulation behavior including some pulses. Assume
long pulses are interesting.

y(t)

t

We would like to
+ Locate all interesting segments in a formal way.

How?
+ Abstract behaviors in timed level
+ Specify patterns using timed regular expressions
+ Perform timed pattern matching

4Our intention

Consider a simulation behavior including some pulses. Assume
long pulses are interesting.

y(t)

t

We would like to
+ Locate all interesting segments in a formal way.

How?
+ Abstract behaviors in timed level
+ Specify patterns using timed regular expressions
+ Perform timed pattern matching

4Our intention

Consider a simulation behavior including some pulses. Assume
long pulses are interesting.

y(t)

t

We would like to
+ Locate all interesting segments in a formal way.

How?
+ Abstract behaviors in timed level
+ Specify patterns using timed regular expressions
+ Perform timed pattern matching

5Outline

+ A Long Introduction
+ Timed level of abstraction
+ Why not real-time logics?
+ Path to timed regular

expressions

+ Theory and Practice
+ Definitions
+ Algorithms
+ Implementation

6Timed Level of Abstraction

+ Discrete values + Metric
Time

+ States as primitive timed
entities t

w0 :

w1 :

Visual representation for
timed state sequences (signals)

+ Timed patterns are
meaningful compositions of
timed states.

+ Certain patterns are caused
by design or by nature. t

duration

A timed pattern

6Timed Level of Abstraction

+ Discrete values + Metric
Time

+ States as primitive timed
entities t

w0 :

w1 :

Visual representation for
timed state sequences (signals)

+ Timed patterns are
meaningful compositions of
timed states.

+ Certain patterns are caused
by design or by nature. t

duration

A timed pattern

7Flow

Deeper reality

Timed level

Real-time
System Behaviors

Signals

Simulation

Abstraction

Signals

Timed
Regular

Expressions

Timed
Pattern

Matching

Matches
(Locations
in time)

Our extent

Interesting
Behaviors

More analysis

More analysis

+ We use TRE as a timed specification language. Why not
real-time logics?

7Flow

Deeper reality

Timed level

Real-time
System Behaviors

Signals

Simulation

Abstraction

Signals

Timed
Regular

Expressions

Timed
Pattern

Matching

Matches
(Locations
in time)

Our extent

Interesting
Behaviors

More analysis

More analysis

+ We use TRE as a timed specification language. Why not
real-time logics?

7Flow

Deeper reality

Timed level

Real-time
System Behaviors

Signals

Simulation

Abstraction

Signals

Timed
Regular

Expressions

Timed
Pattern

Matching

Matches
(Locations
in time)

Our extent

Interesting
Behaviors

More analysis

More analysis

+ We use TRE as a timed specification language. Why not
real-time logics?

7Flow

Deeper reality

Timed level

Real-time
System Behaviors

Signals

Simulation

Abstraction

Signals

Timed
Regular

Expressions

Timed
Pattern

Matching

Matches
(Locations
in time)

Our extent

Interesting
Behaviors

More analysis

More analysis

+ We use TRE as a timed specification language. Why not
real-time logics?

8Real-time logics

+ Real-time logics (e.g. MTL) used to specify timed properties
+ Until operator (of LTL) enhanced as UI for time-bounded

sequential reasoning.

(w , t) � ψ1U[a,b]ψ2 ↔ ∃t ′ ∈ [t + a, t + b]. (w , t ′) � ψ2 and
∀t ′′ ∈ [t, t ′]. (w , t ′′) � ψ1

B

t

p

q

p U[3,5] q

0 1 2 3 4 5 6 7 8 9 10 11 12 13

9Pulse Example
+ Consider a pulse.
+ Pulse spec in English:

When low, increase until high and flat

more than 0.5 time units then decrease

until low

+ In MTL:

ψ = (Low ∧ Inc)
U (Inc
U (High ∧ Flat)
U≥0.5 (Dec
U (Dec ∧ Low))))

w0(t) =

{
High if y(t) > ch
Low if y(t) < cl

w1(t) =

Inc if ẏ(t) > d
Dec if ẏ(t) < -d
Flat if otherwise

y(t)

t

w0 :

w1 :

Low High Low

Flat Inc Flat Dec Flat

+ In TRE:

ϕ := (Low ∧ Inc) · Inc · 〈High ∧ Flat〉≥0.5 · Dec · (Dec ∧ Low)

10Comparison 1 - Intuitiveness

Adding additional constraint over total duration will result:
+ In MTL:

ψ′ = (Low ∧ Inc)
U (Inc
U (High ∧ Flat)
U≥0.5 (Dec
U (Dec ∧ Low))))

∧

((Low ∧ Inc)
∨ Inc
∨ (High ∧ Flat)
∨ Dec)
U[2,5] (Dec ∧ Low)

+ In TRE:

ϕ′ := 〈 (Low∧Inc)·Inc·〈High∧Flat〉≥0.5 ·Dec·(Dec∧Low) 〉[2,5]

11Comparison 2 - Expressiveness

Everyday patterns We can express in

y(t)

t

Sequential composition
(Pulse) MTL and TRE

y(t)

t

OR

y(t)

t

Alternation
(2nd order response) MTL and TRE

y(t)

t

AND

y(t)

t

Parallel composition
(Switching capacitors) MTL and TRE

y(t)

t

Repetition
(Modulated pulse) only TRE

12Comparison 3 - Semantics
+ MTL semantics is over time-points,

monitoring gives only beginnings.
+ TRE semantics is over time-segments,

monitoring gives all beginnings, endings and durations.

t

w0 :

w1 :

Low High Low

Flat Inc Flat Dec Flat

Begin

χ(ψ,w)

End

Begin

M(ϕ,w)

13Timed regular expressions

ϕ := ε | p | p | ϕ · ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ∗ | 〈ϕ〉I
p is a propositional variable, I is an interval

(w , t, t ′) � ε ↔ t = t ′

(w , t, t ′) � p ↔ t < t ′ and ∀t ′′ ∈ (t, t ′), p[t ′′] = 1
(w , t, t ′) � p ↔ . . .
(w , t, t ′) � ϕ · ψ ↔ ∃t ′′ ∈ (t, t ′), (w , t, t ′′) � ϕ and (w , t ′′, t ′) � ψ
(w , t, t ′) � ϕ ∨ ψ ↔ (w , t, t ′) � ϕ or (w , t, t ′) � ψ
(w , t, t ′) � ϕ ∧ ψ ↔ . . .
(w , t, t ′) � ϕ∗ ↔ ∃k ≥ 0, (w , t, t ′) � ϕk

(w , t, t ′) � 〈ϕ〉I ↔ t ′ − t ∈ I and (w , t, t ′) � ϕ

14Formal problem statement

Definition (Match-set)

For a signal w and an expression ϕ the match-set is

M(ϕ,w) := {(t, t ′) | (w , t, t ′) � ϕ}

Problem (Timed pattern matching)

Given a signal and an expression compute the match-set.

15Data structure
Mark (t, t ′) if (w , t, t ′) � ϕ.

End

Begint

t ′

Better mark as zones.

End

Beginb b′

e

e ′

d ′

d

A match beginning at t
ending at t ′.

b ≤ t ≤ b′

e ≤ t ′ ≤ e ′

d ≤ t ′ − t ≤ d ′

16Main result

Theorem
The match-setM(ϕ,w) is computable as a finite union of 2D
zones.

17Base cases - Literals

t

p p p

A signal w

t ′

t

Going 2D

M(p,w)

+ When a segment of p
satisfies, all sub-segments
satisfy p.

+ Triangle zones

18Base cases - Duration constraints

t

p p

A signal w

t ′

t
M(〈p〉[1,2],w)

+ Restricting duration

M(〈ϕ〉I ,w) =M(ϕ,w)

∩ {(t, t ′) | t ′ − t ∈ I}

19Base cases - Concatenation

+ Concatenation is a composition of match sets.

M(ϕ · ψ) =M(ϕ) ◦M(ψ)

(t, t ′) ∈M(ϕ)◦M(ψ)↔ ∃t ′′ : (t, t ′′) ∈M(ϕ)∧(t ′′, t ′) ∈M(ψ)

+ Can be obtained using standard zone operations.

+ Composition preserves zones and match sets⋃
i

zi ◦
⋃
j

z ′j =
⋃
ij

zi ◦ z ′j

+ Most resulting zones are empty in practice.
+ Plane-sweep algorithm: sorting zones by start / end time

allows to avoid most empty operations

20Overall Computation

ϕ := (Low ∧ Inc) · Inc · 〈High ∧ Flat〉>0.5 · Dec · (Dec ∧ Low)

•

•

•

•

∧

LowDec

Dec

〈〉>0.5

∧

FlatHigh

Inc

∧

IncLow

21Matching Pulse Example

ϕ := (Low ∧ Inc) · Inc · 〈High ∧ Flat〉≥0.5 · Dec · (Dec ∧ Low)

t ′

t

t

Low High Low

Flat Inc Flat Dec Flat

Return back to behaviors, segments in � contain a pulse.

21Matching Pulse Example

ϕ := (Low ∧ Inc) · Inc · 〈High ∧ Flat〉≥0.5 · Dec · (Dec ∧ Low)

t ′

t

t

Low High Low

Flat Inc Flat Dec Flat

Return back to behaviors, segments in � contain a pulse.

21Matching Pulse Example

ϕ := (Low ∧ Inc) · Inc · 〈High ∧ Flat〉≥0.5 · Dec · (Dec ∧ Low)

t ′

t

t

Low High Low

Flat Inc Flat Dec Flat

Return back to behaviors, segments in � contain a pulse.

21Matching Pulse Example

ϕ := (Low∧ Inc) · Inc · 〈 High ∧ Flat 〉≥0.5 · Dec · (Dec ∧ Low)

t ′

t

t

Low High Low

Flat Inc Flat Dec Flat

Return back to behaviors, segments in � contain a pulse.

21Matching Pulse Example

ϕ := (Low ∧ Inc) · Inc · 〈 High ∧ Flat 〉≥0.5 · Dec · (Dec ∧ Low)

t ′

t

t

Low High Low

Flat Inc Flat Dec Flat

Return back to behaviors, segments in � contain a pulse.

21Matching Pulse Example

ϕ := (Low ∧ Inc) · Inc · 〈High ∧ Flat〉≥0.5 · Dec · (Dec ∧ Low)

t ′

t

t

Low High Low

Flat Inc Flat Dec Flat

Return back to behaviors, segments in � contain a pulse.

21Matching Pulse Example

ϕ := (Low ∧ Inc) · Inc · 〈High ∧ Flat〉≥0.5 · Dec · (Dec ∧ Low)

t ′

t

t

Low High Low

Flat Inc Flat Dec Flat

Return back to behaviors, segments in � contain a pulse.

21Matching Pulse Example

ϕ := (Low ∧ Inc) · Inc · 〈High ∧ Flat〉≥0.5 · Dec · (Dec ∧ Low)

t ′

t

t

Low High Low

Flat Inc Flat Dec Flat

Return back to behaviors, segments in � contain a pulse.

21Matching Pulse Example

ϕ := (Low ∧ Inc) · Inc · 〈High ∧ Flat〉≥0.5 · Dec · (Dec ∧ Low)

t ′

t

t

Low High Low

Flat Inc Flat Dec Flat

Return back to behaviors, segments in � contain a pulse.

21Matching Pulse Example

M(ϕ,w) = {�} = {(t, t ′) ∈ [2, 2.2]× [3.8, 4]}
t ′

t

t

Low High Low

Flat Inc Flat Dec Flat

Return back to behaviors, segments in � contain a pulse.

22Prototype Tool

On Implementation
+ in Python and C (using IF library for zones)

On Performance
+ 32K zones + complex expression = few seconds
+ Negligible overhead compared to simulation times

23Conclusion

+ TRE is intuitive, expressive and informative
for timed pattern matching purposes.

+ Problem of timed pattern matching stated
and solved in a 2D world.

+ A prototype tool developed.
+ Experiments on synthetic data witness scalability.

More details in
+ Timed Pattern Matching, [FORMATS’14]

D. Ulus, T. Ferrere, E. Asarin, O. Maler
+ Measuring with Timed Patterns, [CAV’15]

T. Ferrere, D. Nickovic, O. Maler, D. Ulus

