
Benchmarking and

Resource Measurement

 Dirk Beyer Stefan Löwe Philipp Wendler

SoSy-Lab
Software Systems

2

Benchmarking is Important

● Evaluation of new approaches
● Evaluation of tools
● Competitions
● Tool development (testing, optimizations)

Reliable, reproducible, and accurate results
needed!

Reliable, reproducible, and accurate results
needed!

3

Benchmarking is Hard

● Influence of I/O
● Networking
● Distributed tools
● User input

● Different hardware
architectures

● Heterogenity of tools
● Parallel benchmarks

Relevant!Not relevant for
most verification tools

4

Goals

● Reproducibility
– Avoid non-deterministic effects

– Provide defined set of resources

● Accurate results
● For verification tools (and similar)
● On Linux

5

Measure and Limit Resources
Accurately

● Wall time and CPU time
● Define memory consumption

– Size of address space? Too large

– Size of heap? Too low

– Size of resident set (RSS)?

● Measure peak consumption
● Always define memory limit for reproducibility
● Include sub-processes

6

Measuring CPU time with „time“

S
ub

pr
oc

es
s

2

S
ub

pr
oc

es
s

1

S
ub

pr
oc

es
s

n

V
er

ifi
er

~$ time verifier

real Xs
user Ys
sys Zs

CPU time may not be included
in measurement

7

Limiting memory with „ulimit“

S
ub

pr
oc

es
s

2

S
ub

pr
oc

es
s

1

S
ub

pr
oc

es
s

n

V
er

ifi
er

~$ ulimit -v 1048576 # 1 GiB
~$ verifier

Process may use 1 GiB

Process may use 1 GiB

Process may use 1 GiB

Process may use 1 GiB

8

Limiting memory with „ulimit“

S
ub

pr
oc

es
s

2

S
ub

pr
oc

es
s

1

S
ub

pr
oc

es
s

n

V
er

ifi
er

~$ ulimit -v 1048576 # 1 GiB
~$ verifier

What about shared memory?

9

Kill Processes Reliably

S
ub

pr
oc

es
s

2

S
ub

pr
oc

es
s

1

S
ub

pr
oc

es
s

n

V
er

ifi
er

~$ verifier

Process might keep running
and occupy ressources

~$ kill <PID>

10

Assign Cores Deliberately

● Hyper Threading:
Multiple threads sharing execution units

● Shared caches

11

Respect Non-Uniform Memory
Access (NUMA)

● Memory regions have different performance
depending on current CPU core

● Hierarchical NUMA exists

12

CPU

core

memory region

13

Checklist

● Measure and Limit Resources Accurately
– Time

– Memory

● Kill Processes Reliably
● Assign Cores Deliberately
● Respect Non-Uniform Memory Access
● Avoid Swapping

14

Cgroups

● Linux kernel „control groups“
● Hierarchical tree of sets of processes

/

/user1

/benchmarks

/benchmarks/run1
1130 (verifier)
1131 (subprocess1)
...

...

5542 (bash)
5544 (firefox)
...

...

15

Cgroups

● Reliable tracking of spawned processes
● Resource limits and measurements per cgroup

– CPU time

– Memory

– I/O etc.

Only solution on Linux
for race-free handling of multiple processes!

Only solution on Linux
for race-free handling of multiple processes!

16

BenchExec

● A Framework for Reliable Benchmarking
and Resource Measurement

● Based on cgroups
● Handles multiple processes
● Allocates hardware resources appropriately
● Low system requirements (Linux and cgroups)

17

BenchExec

● Open source: Apache 2.0 License
● Written in Python 3
● https://github.com/dbeyer/benchexec
● Paper under submission
● Used in International Competition

on Software Verification (SV-COMP)

22 tools this year

● Originally developed for software verification,
but applicable to arbitrary tools

https://github.com/dbeyer/benchexec

18

BenchExec Architecture

● runexec

– Benchmarks a single run of a tool

– Measures and limits resources

– Easy integration into other frameworks

● benchexec

– Benchmarks multiple runs
(e.g., a set of configurations against a set of files)

– Allocates hardware resources

– Can check whether tool result is as expected

● table-generator

– Generates CSV and interactive HTML tables (with plots)

19

Conclusion

Try out BenchExec:
https://github.com/dbeyer/benchexec

Try out BenchExec:
https://github.com/dbeyer/benchexec

Be careful when benchmarking!Be careful when benchmarking!

Or ask me for a demo!

Don't use time, ulimit etc.
Always use cgroups!

https://github.com/dbeyer/benchexec
https://github.com/dbeyer/benchexec

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19

