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1. Introduction

1.1. Motivation

Correctness of source code has always been a problem in software development. Be-
cause the cost of correcting errors made during software construction and found dur-
ing system or in-field testing can increase by a factor of 10 or 15 [8, p. 29], it is
desireable to detect defects and problematic corner cases as early as possible.

When narrowing down the problem domain, a multitude of failure classes can be
eliminated using handcrafted tests, like serialising a specified type of data structure
into a clearly defined output stream or single transitions in a finite state machine.
Others, like control code for remote controlled and autonomous vehicles, have a more
open problem definition. To still be able to verify such systems in a timely manner, one
option is to develop automated tools to check for dangerous corner cases in unknown
source code (black-box testing) and to sort out all possible inputs to a software system
to find potential defects. Testing is, however, only suited to a limited extent for this
task, as famously stated by Edsger W. Dijkstra:

Program testing can be a very effective way to show the presence of bugs,
but is hopelessly inadequate for showing their absence [3].

The analysis of options and the development of a prototype for such a loosely specified
system is the goal of this thesis, with special focus on the practical implementation
on the Versatile Nature Exploration Rover (VERNER) platform.1 This platform is a
custom-built, six wheeled exploratory vehicle, designed to be extendable and capable
of carrying varying sensors read by multiple operators at the same time. Exploring
new ideas for controlling code should not endanger the entire device. Instead, the
code should be proven to be safe before running full system tests on the device.

Software produced in this work is published under the MIT license on github.com/
HARPTech, in the repositories RVerify and RTest.

1www.harptech.eu
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1.2. Problem Statement

Ensuring high quality and correctness of any steering strategy while constructing new
controlling software called Regulation Kernels (RKs) for the VERNER platform is chal-
lenging during development. Certain corner cases can be easily overseen or the soft-
ware could crash during use because of a calculation error. The most critical failure
class manifests in a technically working RK, which then fails with input parameters
that produce out of range outputs. The cost of finding such failures during system
testing is time consuming and potentially expensive, therefore such errors should be
detected on the development machine before commencing the test on real hardware.
Because the two main input variables every RK has to process are of type int16, the
problem space stretches over 216 · 216 inputs. This is too big to be searched exhaus-
tively using regular testing methods over the whole input range.

The VERNER platform itself consists of six wheels, four of which can be individually
controlled in speed and steering direction. The input parameters for the direct motor
controls are in the range of [−255,255] (for speed v) and [0,255] (for steering s). The
remote control abstracts the individual wheels by just sending two values for the steer-
ing direction S and the speed V , each in the range of [−215, 215−1] = [−32768,32767].
These two values represent the two primary variables mentioned in the paragraph
above. An RK can therefore be seen like a function, mapping the input vector (S, V ) to
the output vectors (s, v) for every wheel.

1.3. Aim of the Work

This work aims to create a software tool called RVerify, based on satisfiability modulo
theories (SMT) solvers to analyse the given RK written in the programming language
Python. SMT is a decision problem around finding valid assignments for variables in
first-order logic formulas over theories like Int, Real, Bit-Vectors, etc. It has received
much research attention in the computer science community and was implemented in
a wide variety of solvers, competing against others and ranked by their performance
in benchmarks like the SMT-LIB benchmark set [12]. The standard input format is
called SMT-LIB2 [1].

The developed tool is able to automatically parse RKs, to generate SMT-LIB2-compatible
code as a (printable) intermediate step and then use that representation to verify the
intended behaviour of the RK against a given specification. The conversion between
the imperative environment of Python into SMT-LIB2 supports common control struc-
tures, trigonometry and small utility functions used in such environments. The most
critical failure cases to detect consist of:

• Motors being on while servos point against other servos, effectively jamming the
wheels into each other and trying to move in opposite directions.
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• Servos getting an invalid steer-setting s with s > 255 or s < 0, which would cause
a crash of the RK. Such a crashed kernel would not send any more commands to
the rest of the system, taking control from the operator and making the device
unresponsive.

• Motors receiving an invalid speed-setting v with v > 255 or v < −255, which
would also cause a crash of the RK.

In addition to finding these defects, RVerify is also able to identify internal logic in-
consistencies in the source code, like multiple assignments to the same variable in the
same scope. If it finds any, they are printed in a well-readable form. To display the
mentioned programming defects, another tool is provided to present the collected in-
formation in a visual manner, called RTest.

1.4. Approaches for Formal Verification of Source Code

As has been stated previously, software tests often specify desired outputs (or ranges
for them to fit into) for fixed inputs. This makes them a very well suited tool during
software construction and to check correctness over the lifetime of an application. This
approach has issues though. One of them is that testers can never be certain that all
possible failure cases have been covered. Even very diligent testing cannot mitigate
this problem because new corner cases might be introduced with every change.

What differentiates testing from verification is that tests can only find deficiencies in
programs but never validate their correctness. To achieve that level of confidence,
software needs to be checked to work for all possible inputs being run through all
execution code paths [10]. The following section describes multiple approaches for
such a task.

For software development, some workflows around direct formal verification of source
code revolve around manually translating imperative source code from programming
languages like Python or C++ into some kind of descriptive representation of a theo-
rem, which can then be automatically proved (like with KeYmaera X [5]). This repre-
sentation could be completely independent (e.g. describing what a program does using
a language like SMT or Coq [14]) and, additionally, could be generated in multiple
steps with different intermediate representations [7].

Likewise, such complementary languages can also be given side-by-side to the source
code of the actual implementation, providing meta-information about how the code
should behave if it is correct (compare to the Java Modelling Language [2]). Because
of the high variance in languages and grammars, only a few programming languages
have yet received automatic translators, like LLVM IR [4, 6].

New automatic translators have to translate their source language into a target like
SMT and can choose to utilise projects like Boogie [7], if the problem at hand needs
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to have deeper language understanding. This thesis focuses on the development of a
direct translation from Python into SMT formulas without such intermediary steps, to
speed up the translation and to enhance the verification workflow for the RK devel-
oper.

1.5. Approach

To archieve the goals stated above, multiple levels of processing the given source code
were implemented. The list below describes the main challenges of this work, each
of which resulting in an independently usable tool that can be combined with other
software.

1. Conversion of the Python source code into SMT-LIB2 representation.

2. Calculation of approximatory lookup-tables for tan and arctan to be used in the
SMT-solver.

3. Checking the generated SMT formulas for inconsistencies using parallelized
delta debugging [15] techniques.

4. Verifying the generated SMT formulas against the specified behaviour to check
for defects.

1.6. Structure of the Work

This work is structured in a similar way as the milestones were completed to guide
through the important pieces of the implementation and show how to use each com-
ponent individually.

First, the concepts behind the VERNER platform are explained in Section 2.1, includ-
ing a visualisation of the steering subsystem. A requirements analysis for RVerify (ver-
ification tool developed in this work) is given in Section 2.2 and the list of supported
Python language features in Section 2.3.

In the next section, we discuss the generation of the SMT code from a RK together with
the challenges encountered during this translation: The trigonometric lookup tables in
Subsection 2.4.1, python parsing in Subsection 2.4.2, and finally the SMT generation
itself in Subsection 2.4.3.

Having the parsing and translation phases complete, we check for defects in Sec-
tion 2.5. Afterwards, failure states are analysed and the RK is compared against the
specified behaviour in Section 2.6.

8



In the last chapter, we test the developed RVerify tool against errors encountered in
the past during development of the current RK to check if these defects could have
been prevented using this new tool. The first of these defects is a crash bug stemming
from a wrong calculation in Subsection 3.1.1 and the second one in Subsection 3.1.2
was caused by an invalid negation. Finally yet importantly, it is discussed how RVerify
could handle future RK defects and how it could be improved further.
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2. Architecture

2.1. Concepts

The primary concept this work builds upon is the separation of a robotic platform into
the following interchangeable parts:

• Core software, which passes commands between the other parts (RMaster).

• Supplementary tooling for controlling the whole system through a dedicated GUI
(RController).

• Controlling actuators by issuing electronic signals (RBreakout).

• Code for interpreting the steering commands into direct motor controls (Regula-
tion Kernel).

This thesis focuses on the Regulation Kernel, a visualisation of which is given in Fig-
ure 2.1 on page 11. The rest of the software stack has been designed in modules and
specified to minimise the number of corner cases, which makes it well testable using
automated tests. The RK on the other hand makes such testing harder to do, because
it has no clear relation between its inputs and outputs. The problem is not as clearly
definable as with the remaining stack, as there can be many ways of controlling a rover
such as VERNER. Wheels can be parallel or on circular paths, speeds can be propor-
tional to the individual angles of the wheels, etc. Even though such programs can be
very short, corner cases could be missed, causing expensive damage to hardware.

2.2. Requirements Analysis

2.2.1. Goals of the Software

The software to be developed should be able to process generic Regulation Kernel
code from the VERNER Rover Platform, which is typically written in Python. Through
processing the source code of such a program, the following pieces of information have
to be gathered:

• Will running the given RK have a vector of inputs (S, V ) which produces a result
contradicting the specification?

10



Figure 2.1.: Visualisation of the VERNER platform in RTest (visualisation tool for RK-
code), running the Optimised Regulation Kernel as given in Appendix A.1

• If a possible error has been found, which failure case (which result) was reached
and what input vector (S, V ) caused that error?

2.2.2. Available Time and Computing Resources

Because this tool will be executed often on a development machine, it needs to give
results in < 1s for typical inputs. An input can be regarded as typical if it controls
all major aspects of the hardware platform similarly to the default implementation
called Optimised-Regulation-Kernel (see Appendix A.1). In lines of code, this would be
equivalent to 250 lines total.

The amount of resources needed to stay inside that time frame is limited by the pro-
cessing power of a 2018 high level laptop. In this context, this means a machine with
4 cores at 3GHz each. To still be able to configure the precision and therefore the
runtime of the tool, a precision parameter is introduced to scale the precision of the
trigonometric lookup tables.

2.2.3. Definition of Success

The project is successful, when statements about the working state of a given piece of
code can be proven, i.e. deviations from standard inputs as given in the reference im-
plementation of a RK (see Appendix A.1) are detected successfully. Full verification
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of an RK is not required however, as the focus of this work is on giving results dur-
ing the development process, not on complete system verification of an entire rover.
Completely different inputs also have to be analysed (with reported errors during pro-
cessing) and if nothing went wrong in the processing stage, the result must still be
reliable.

The supported language constructs from the inputs do not have to include all con-
structs the language supports. Instead, a minimal subset capable of implementing
behaviours comparable to the default implementation is enough for this tool to be
useful. More advanced language constructs can be added at a later stage though, so
the general architecture should either be small enough to be replaced easily or allow
these expansions.

2.3. Supported Language Features

Through having a problem statement with an exact definition of what kind of input
the analysis software is required to handle, the input code could be adapted. In order
to lessen the burden of parsing a grammatically complex programming language like
Python, changes were made to the old steering code to accomplish the goal of making
it automatically analysable.

Although the resulting program has been tailored to be more easily parsable, it is easier
to understand for the programmer and, even more importantly, uses less grammar
features. This decreases the amount of syntax the parser must handle. The chosen
subset of the language consists of:

• Certain objects, methods and attributes given from the environment (such as
registry methods from the rest of the codebase or methods like numpy.interp or
math.tan).

• If-Statements with optional else branches.

• An all-encompassing while-loop as main control structure.

• Variable declarations.

• Regular calculations with variables and numbers (+, -, /, *) with arbitrary nest-
ing.

2.4. Convert Python into SMT

Before explaining the translation of Python source code to SMT, the challenges are
discussed. The main challenge is the translation to declarative representation. Because
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Python is an imperative programming language, assignments have a different meaning
depending on when they are made. The program therefore has to be seen more like a
directed graph of variable assignments than a sequence of instructions for a machine.
The following paragraph illustrates how the Python source of one of the test cases of
RVerify represented:

foo = math.tan(1)
bar = math.atan(foo)

The snippet above is automatically translated into the following SMT-LIB2 code, given
in prefix notation:

(assert (= foo (tan 1 )))
(assert (= bar (atan foo )))

The tan and atan functions are hereby provided by a custom lookup table generated
with a user-specified precision for the tan and arctan functions. More detail about this
lookup table follows in the next subsection.

The directed graph for the snippet above looks like this:

tan1 foo arctanfoo bar
assign input assign

This graph representation is already very close to the representation in SMT. It can
be considered as a sequence of relations between variables, values and functions. To
make such a translation automatically, every assignment in the python code has to be
traced back to the top-most scope, where it is transformed into an (assert . . .), which
is then interpreted by SMT-solvers similarly to the graph shown in the figure above.
The solver primarily used in this thesis is Z3 [9] in the most recent version from its
repository.2 This decision was made because of its support for recursive functions and
its good performance with real numbers and integers.

2.4.1. Generating a Trigonometric Lookup Table

Because the Optimised Regulation Kernel uses the tan and arctan functions, they also
have to be interpreted correctly by the SMT solver. As can be seen in Figure 2.2
(p. 14), the tangent is especially difficult to calculate when a value at its extremes is
looked for. To account for this highly varying function, it first gets reduced into only
one instance (the middle one in the graph), which then gets split up into three parts
to approximate the left and right extreme points together with the middle section.

2github.com/Z3Prover/z3

13

https://github.com/Z3Prover/z3


x

y

Figure 2.2.: Graph of the tan function.

To reduce the function to one instance, all queries into the lookup table with x > π
2

or x < −π2 are given recursively to itself with an adjusted parameter x ′, which is
set to either x −π or x +π. After this first reduction, the main lookup table (a se-
quence of (ite ... ... ...) statements with a length defined by the used preci-
sion) comes into effect. The values to generate this lookup table are generated us-
ing numpy (a collection of performance-optimised algorithms and primitives for sci-
entific computing in Python), the exact algorithm is provided in the Python source
file RVerify.smt_gen.trigonometric, which can also be used independently. The
approximation generated in a typical run (no precision adjustments) is illustrated in
Figure 2.3 (p. 15) and shows an even distribution over the tan function.

Approximating arctan is done in a similar manner by switching inputs and outputs (x
and y), so the function maps a x to given y values.

2.4.2. Parsing Python to an AST

On the way to process Python source code like in the example above, the code first has
to be parsed into an Abstract Syntax Tree (AST). This is done using a Python package
called typed_ast [13], a fork of the standard ast package. This fork allows the pro-
cessing of PEP 484 Type Hints [11], but most importantly, its parsers are independent
from the host Python version.

Using the typed_ast package, an unprocessed Abstract Syntax Tree (AST) is produced,
as can be seen in Appendix A.1.4. This tree is then simplified to suit itself better to
generating SMT-assertions. To simplify the tree, a Preorder traversal is done to identify
all contained nodes. During that traversal, another tree is built, the statement tree. This
tree contains the nodes gathered from the AST together with the line numbers of the
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Figure 2.3.: Generated approximation of the tan function. Each mark is a value in the
trigonometric lookup table.

original python script. When the statement tree is built completely, the ‘information
gathering phase’ is complete and the SMT formulas can be generated.

2.4.3. Generating SMT

After the statement tree is build, a mixture of Inorder, Postorder, and Preorder traver-
sals is done to gather all required information for each line of the resulting SMT for-
mulas. All variables are collected in a separate data structure, the variable store, at
the same time the statement tree is traversed. After the traversal is finished, all data
points can be combined for the complete output in the following way:

1. The SMT Logic to be used
(defined in RVerify.parser.predefined.logic, default logic is QF_UFNIRA)

2. Internal (predefined & global) variables and functions
(defined in RVerify.parser.predefined.internals)

3. Computed lookup-tables for tan and arctan as seen in Subsection 2.4.1

4. Variable declarations
(using (declare-fun)) from the variable store

5. The generated SMT-assertions from the statement tree

6. The predefined checks to be performed, as can be seen in Appendix A.2
(defined in RVerify.parser.predefined.checks)
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7. A call to (check-sat)
(defined in RVerify.parser.predefined.check_sat)

The resulting SMT-code can be displayed using the --print-smt switch on RVerify.
This output is then passed onwards to the checker.

2.5. Consistency Checking

The first phase of the checker analyses for internal consistency of the code by trying
to find a satisfiable assignment, i.e. finding a solution consistent with the previously
generated formulas for the generated SMT code. Inconsistent code contains multiple
assignments to the same variable in the same scope (not separated by if-else state-
ments), which results in invalid SMT formulas. Even though such statements are legal
in Python, they are not supported by the parser to reduce its complexity.

If such errors are found somewhere in the code, a delta debugging process [15] is
started. To debug the SMT formulas, they are split up into a list of strings, each entry
having one line less than its respective predecessor in the list. This list is then passed
to the solver again, which checks every entry for a possible satisfiable assignment.
This process is parallelised over all available cores, so the result can be found quicker.
The one with the highest number of contained lines of SMT formulas is selected, its
lines are counted, and finally matched against the saved Python line-numbers in the
statement tree. Once the fitting line number has been found, the offending Python
lines can be printed to the user of RVerify.

If no errors were found, analysis for possible failure states of the RK can begin.

2.6. Analyse for Possible Failure States

For the second analysis phase, the predefined set of possible failure conditions (as
explained in Section 1.3) is checked against the generated SMT code. These failure
states are not specified as concrete values, but instead as the negation of the desired
properties. The specification used can be seen in Appendix A.2.

As soon as the solver finds a model, an assignment has been found that violates the
specified behaviour. It is then printed to the user in the form of a list of all variables
and their assignments to be pasted into the input form of RTest, which then displays
the defect in its visualisation. The following chapter gives examples of such detected
defects.
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3. Results & Discussion

3.1. Checking for Known Defect-Classes

To verify the practicability of RVerify, it is used to check defect-classes encountered
during the development of the current RK as seen in Appendix A.1. The two main
failures with the current kernel concerned the speed setting underflowing (v < −255)
because of a faulty calculation and invalid wheel positions because of missing nega-
tions in their final assignments at the end of the current RK. An additional find after
using RVerify for checking the RK running on the rover, was the invalid interpretation
of several steering positions caused by upside-down positioned servo motors, leading
to a software fix to correct their behaviour.

3.1.1. Speed Setting Underflow

To provoke this defect again, the assignment for the forward velocity v of all mo-
tors is changed to be v = V

128 , with V being the forward velocity in the range of
[−32768,32767]. If the velocity drops to −32768, the maximum negative velocity, the
kernel crashed, because it let v become −256, which is out of its bounds.

After running RVerify against the changed RK, it produces the following output, finding
the defect. The offending lines have been highlighted and grep has been used to limit
output to the most relevant bits.

python3 -m RVerify -f RVerify/example-rk/kernel_code.py –check | grep -E
"_.*_|[A-Z]{7,}",→

CODE SOUNDNESS PASSED, CHECK FAILURE STATES
FAILURE STATES DETECTED!
_servo_rr_ = 34,
_motor_fr_ = -256,
_servo_fl_ = 160,
_motor_rl_ = -256,
_steer_direction_ = 25976,
_motor_fl_ = -256,
_forward_velocity_ = -32768,
_motor_rr_ = -256,
_servo_fr_ = 221,
_servo_rl_ = 95,
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Figure 3.1.: Visualisation of the defect discussed in Subsection 3.1.2

3.1.2. Invalid Negations in Final Steering Assignments

The following defect occurred during small tweaks of the kernel. By mistake, one
single minus was switched to a plus, which led to a wrong calculation for the final
angle of a wheel (front left, in this case). By reproducing that issue and then running
RVerify the now invalid RK, the following output is produced (again, using grep for
brevity):

python3 -m RVerify -f RVerify/example-rk/kernel_code.py –check | grep -E
"_.*_|[A-Z]{7,}",→

CODE SOUNDNESS PASSED, CHECK FAILURE STATES
FAILURE STATES DETECTED!
_servo_rr_ = 128,
_motor_fr_ = -255,
_servo_fl_ = -128,
_motor_rl_ = -255,
_steer_direction_ = -14,
_motor_fl_ = -255,
_forward_velocity_ = -32768,
_motor_rr_ = -255,
_servo_fr_ = 127,
_servo_rl_ = 128,

This defect can again be read as individual assignments for angles and velocities, or
the assignment parser of RTest can be used to visualise the behaviour, as seen in Fig-
ure 3.1.

18



3.2. Detecting Unknown Defects in the Future

The checks RVerify is based on, specifying allowed behaviour and detecting wrong re-
sults with previously unknown inputs over a search space with the size of 232, will be
of great help during further development and in letting less experienced developers
try themselves on writing RKs. If the need arises, its parsing capabilities can be ex-
pended and made more sophisticated. After the demonstrated detection of actual de-
fects encountered during software construction, it is however clear, that the capabili-
ties of SMT solvers can also be applied in environments such as this one, even without
having more specialised software or specific expertise.

If new failure classes emerge out of added complexity, RVerify is able to either signal
that it cannot parse the source code or that successfully checked the RK. Using that
information, the verification capabilities can be further expanded during later devel-
opment and used against new controlling software written for VERNER.

3.3. Lessons Learnt

The most important lesson learnt was to apply formal methods before building a phys-
ically constrained system. Through specifying dangerous corner cases, the RK code
became much easier to reason about and to debug. Additionally, reducing the sup-
ported language features became the only way to fit the translator for Python into this
thesis, without it being overrepresented.

Furthermore, the STDIN, STDERR and STDOUT (Posix) streams were very useful dur-
ing development and testing of RTest, particularly during the first executions of old RK
versions. The possibility to use dynamic linking and a stable ABI to expand the fea-
tures of old kernels made creating such a generic visualisation possible. This area can
also be expanded in the future, by building streaming capabilities into the remaining
stack of VERNER, so that combining different components becomes easier.

3.4. Future Work

To further expand RVerify and its theoretical base, it would be advised to first improve
the Python parser and the SMT translation. There has been much research in the field
of writing such translators, for example Boogie [7] could be a big improvement once
a frontend for Python is introduced.

The specification on how the rover should behave already works very good and could
be expanded further, once more inputs and outputs are used in regulation kernels.
One possible scenario would be the addition of motor utilisation to the steering code,
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adding four additional int8 inputs to the RK. Even though more complex kernels
using that information do not exist yet, this could improve manoeuvrability in more
difficult terrain drastically. The gyroscope is also a sensor, which provides possibly
useful information for a RK. It is yet to be seen which data points will be used in RKs
of the future, but RVerify can certainly be expanded to handle the additional inputs.
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A. Source-Code and Examples

A.1. Optimised-Regulation-Kernel

This RK is the main regulation kernel used as a basis for developing new regulation
kernels. It computes the correct wheel positions to be on imagined circular lines on the
ground, so that no wheel is positioned against another one. To execute this regulation
kernel directly, RBase (shared software libraries of VERNER) needs to be installed on
the system (either locally in /usr/local or by the package manager in /usr). To
directly test a regulation kernel, RTest embeds the required Python modules and can
be directly installed on any Debian-based distribution. The latest release of the RTest
software can be downloaded from the Releases page3 on its GitHub repository.

A.1.1. Main Code

The following code (after the # RVERIFY_BEGIN comment) is checked by RVerify.

1 import RRegistry as RR
2 import RSupport as RS
3 import kernel_globals as g
4 from numpy import interp
5 import math
6 rsupport = g.rsupport
7 registry = g.registry
8 # RVERIFY_BEGIN
9

10 d_fl = 33
11 d_fr = 33
12 d_rl = 31
13 d_rr = 31
14 G = 30
15

16 while(True):
17 rsupport.service()
18

19 steer_direction = registry.getInt16(RR.Int16_MVMT_STEER_DIRECTION)
20 vel = registry.getInt16(RR.Int16_MVMT_FORWARD_VELOCITY)
21

22 forward_velocity = interp(vel, [-32768, 32767], [-255, 255])

3github.com/HARPTech/RTest/releases
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24 motor_fl = int(forward_velocity)
25 motor_fr = int(forward_velocity)
26 motor_rl = int(forward_velocity)
27 motor_rr = int(forward_velocity)
28

29 beta_sub = (interp(steer_direction, [-32768, 32767], [-72, 72])) / 100
30 beta = (math.pi / 2) - beta_sub
31

32 A = math.tan(beta) * G
33

34 beta_fl = math.atan((A + d_fl) / G)
35 beta_fr = math.atan((A - d_fr) / G)
36

37 beta_rl = -math.atan((A + d_rl) / G)
38 beta_rr = -math.atan((A - d_rr) / G)
39

40 multiplicators_1 = (beta_fl * 2) / math.pi
41 multiplicators_2 = (beta_fr * 2) / math.pi
42 multiplicators_3 = (beta_rl * 2) / math.pi
43 multiplicators_4 = (beta_rr * 2) / math.pi
44

45 if steer_direction >= 0:
46 values_1 = 128 + (1 - multiplicators_1) * 128
47 values_2 = 128 + (1 - multiplicators_2) * 128
48 values_3 = 128 - (1 + multiplicators_3) * 128
49 values_4 = 128 - (1 + multiplicators_4) * 128
50 else:
51 values_1 = 128 - (1 + multiplicators_1) * 128
52 values_2 = 128 - (1 + multiplicators_2) * 128
53 values_3 = 128 + (1 - multiplicators_3) * 128
54 values_4 = 128 + (1 - multiplicators_4) * 128
55

56 # Assign the calculated variables into the registry.
57 registry.setInt16(RR.Int16_MVMT_MOTOR_PWM_FL, int(motor_fl))
58 registry.setInt16(RR.Int16_MVMT_MOTOR_PWM_FR, int(motor_fr))
59 registry.setInt16(RR.Int16_MVMT_MOTOR_PWM_RL, int(motor_rl))
60 registry.setInt16(RR.Int16_MVMT_MOTOR_PWM_RR, int(motor_rr))
61

62 registry.setUint8(RR.Uint8_MVMT_SERVO_FL_POSITION, int(values_1))
63 registry.setUint8(RR.Uint8_MVMT_SERVO_FR_POSITION, int(values_2))
64 registry.setUint8(RR.Uint8_MVMT_SERVO_RL_POSITION, int(values_3))
65 registry.setUint8(RR.Uint8_MVMT_SERVO_RR_POSITION, int(values_4))

A.1.2. Setup Code

The source code in the following listing initialises the connection between RMaster
(central VERNER software component) and RVerify and sets up the local RRegistry
(central list of named properties of the rover, like velocity and steering direction)
mirror.
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1 import sys
2

3 sys.path.append("/usr/local/share/python3/")
4

5 import RRegistry as RR
6 import RSupport as RS
7

8 import optimized-regulation-kernel-globals as g
9

10 print("Created handle! Trying to connect")
11

12 # Connect to default path.
13 status = g.rsupport.connect("/tmp/lrt_pipe_path.pipe")
14 if status != RS.RSupportStatus_Ok:
15 print("Error while connecting: " + RS.rsupport_status_msg(status))
16

17 # After connecting, options can be set.
18 g.rsupport.service()
19

20 # The frequency should be regulated automatically.
21 g.rsupport.setOption(RS.RSupportOption_AutoFrequency, True)
22 # After each loop, the movement state should be
23 # forwarded to the hardware and the Arduino.
24 g.rsupport.setOption(RS.RSupportOption_AutoMovementBurst, True)
25

26 # Receive the registry instance.
27 registry = g.rsupport.registry()
28 g.registry = registry
29

30 # Subscribe to inputs.
31 g.rsupport.subscribe(RR.Type_Int16, RR.Int16_MVMT_STEER_DIRECTION)
32 g.rsupport.subscribe(RR.Type_Int16, RR.Int16_MVMT_FORWARD_VELOCITY)
33

34 # Run the kernel code.
35 import optimized-regulation-kernel-code

A.1.3. Global Variables

This file serves as a bridge between the setup and the looping code, containing global
variables.

1 import RRegistry as RR
2 import RSupport as RS
3

4 rsupport = RS.RSupport()
5 registry = None
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A.1.4. AST-Dump of kernel_code.py

This dump has been created using the --dump-ast switch to RVerify. The contents are
minified to the most relevant bits, namely the dump of a function call, assignments
and an if, else combination. The most relevant lines are highlighted.

1 Module(
2 body=[
3 Assign(
4 targets=[Name(id='d_fl', ctx=Store())],
5 value=Num(n=33),
6 type_comment=None,
7 ),
8 ...
9 While(

10 test=NameConstant(value=True),
11 body=[
12 Expr(
13 value=Call(
14 func=Attribute(
15 value=Name(id='rsupport', ctx=Load()),
16 attr='service',
17 ctx=Load(),
18 ),
19 args=[],
20 keywords=[],
21 ),
22 ),
23 Assign(
24 targets=[Name(id='steer_direction', ctx=Store())],
25 value=Call(
26 func=Attribute(
27 value=Name(id='registry', ctx=Load()),
28 attr='getInt16',
29 ctx=Load(),
30 ),
31 args=[
32 Attribute(
33 value=Name(id='RR', ctx=Load()),
34 attr='Int16_MVMT_STEER_DIRECTION',
35 ctx=Load(),
36 ),
37 ],
38 keywords=[],
39 ),
40 type_comment=None,
41 ),
42 ...
43 If(
44 test=Compare(
45 left=Name(id='steer_direction', ctx=Load()),
46 ops=[GtE()],
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47 comparators=[Num(n=0)],
48 ),
49 body=[
50 Assign(
51 targets=[Name(id='values_1', ctx=Store())],
52 value=BinOp(
53 left=Num(n=128),
54 op=Add(),
55 right=BinOp(
56 left=BinOp(
57 left=Num(n=1),
58 op=Sub(),
59 right=Name(id='multiplicators_1', ctx=Load()),
60 ),
61 op=Mult(),
62 right=Num(n=128),
63 ),
64 ),
65 type_comment=None,
66 ...
67 orelse=[
68 Assign(
69 targets=[Name(id='values_1', ctx=Store())],
70 value=BinOp(
71 left=Num(n=128),
72 op=Sub(),
73 right=BinOp(
74 left=BinOp(
75 left=Num(n=1),
76 op=Add(),
77 right=Name(id='multiplicators_1', ctx=Load()),
78 ),
79 op=Mult(),
80 right=Num(n=128),
81 ),
82 ),
83 type_comment=None,
84 ...
85 ],
86 keywords=[],
87 ),
88 ),
89 ],
90 orelse=[],
91 ),
92 ],
93 type_ignores=[],
94 )
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A.2. Specification used in RVerify

This specification defines allowed behaviour for the rover and its RK. If the regulation
kernel would produce any output that is outside this spectrum, it would be faulty and
should be reworked.

1 (assert (not (and
2

3 (>= _motor_fl_ (- 255))
4 (<= _motor_fl_ 255)
5 (>= _motor_fr_ (- 255))
6 (<= _motor_fr_ 255)
7 (>= _motor_rl_ (- 255))
8 (<= _motor_rl_ 255)
9 (>= _motor_rr_ (- 255))

10 (<= _motor_rr_ 255)
11

12 (=> (or (> _steer_direction_ 1) (< _steer_direction_ (- 1)))
13 (and
14 (>= _servo_fl_ 0)
15 (<= _servo_fl_ 255)
16 (>= _servo_fr_ 0)
17 (<= _servo_fr_ 255)
18 (>= _servo_rl_ 0)
19 (<= _servo_rl_ 255)
20 (>= _servo_rr_ 0)
21 (<= _servo_rr_ 255)
22 ))
23

24 ;; Combined Properties
25 ;; –––––––––-
26

27 (=> (and (> _servo_fl_ 128) (< _servo_fr_ 128)) (or (and (>= _motor_fl_ 0) (<=
_motor_fr_ 0)) (and (<= _motor_fl_ 0) (>= _motor_fr_ 0)))),→

28 (=> (and (> _servo_fr_ 128) (< _servo_fl_ 128)) (or (and (>= _motor_fl_ 0) (<=
_motor_fr_ 0)) (and (<= _motor_fl_ 0) (>= _motor_fr_ 0)))),→

29 (=> (and (> _servo_rl_ 128) (< _servo_rr_ 128)) (or (and (>= _motor_rl_ 0) (<=
_motor_rr_ 0)) (and (<= _motor_rl_ 0) (>= _motor_rr_ 0)))),→

30 (=> (and (> _servo_rr_ 128) (< _servo_rl_ 128)) (or (and (>= _motor_rl_ 0) (<=
_motor_rr_ 0)) (and (<= _motor_rl_ 0) (>= _motor_rr_ 0)))),→

31 (=> (and (> _servo_fl_ 128) (> _servo_fr_ 128)) (or (and (>= _motor_fl_ 0) (>=
_motor_fr_ 0)) (and (<= _motor_fl_ 0) (<= _motor_fr_ 0)))),→

32 (=> (and (> _servo_rl_ 128) (> _servo_rr_ 128)) (or (and (>= _motor_rl_ 0) (>=
_motor_rr_ 0)) (and (<= _motor_rl_ 0) (<= _motor_rr_ 0)))),→

33

34 )))
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B. Acronyms

AST Abstract Syntax Tree 2, 13

C++ A compiled, multi-paradigm programming language originally based on C 6

RK Regulation Kernel 4, 5, 7–9, 15–18, 20, 25, 27

SMT Satisfiability modulo theories 2, 5–7, 11–15, 18

VERNER Versatile Nature Exploration Rover 4, 5, 7, 9, 10, 18, 20, 21, 27

30



C. Glossary

Python An interpreted programming language with very concise syntax. It is known
to be easy to learn for beginners and to have a very rich grammar 2, 5–7, 10, 11,
13, 15, 18, 20, 27

RBase Shared software libraries of VERNER. Includes the code of RRegistry and
Python modules for RKs 20

RMaster Central orchestrating component of the VERNER software stack, running on
the rover 21

RRegistry Central list of named properties of the rover, categorised by their data type
and purpose, like velocity and steering direction 21, 27

RTest Visualisation tool for RK-code. Accessible via github.com/HARPTech/RTest 9,
15, 17, 20

RVerify The tool developed in this work. Accessible via github.com/HARPTech/
RVerify 3, 7, 8, 11, 12, 15–18, 20, 21, 23, 25
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