Tutorial on Model Checking
Modelling and Verification in Computer Science

Armin Biere

AB'08
Algebraic Biology

Castle of Hagenberg, Austria

Origin of Computer Science

Natural Science

/

- |
- Computer Science

|

Mathematics Engineering

Models in Natural Science

growth of bakteria population

1X @ Modelling > AAFt)(t) = o P(t)

1 18h leads to differential equation

PO - o pey

dt
2X @ with solution
< Validation P(t) = Cet

Reality Model

Mathematical Models in Computer Science

e programs and other digital systems are formal objects
— they have precise mathematical models (denotational/operational)

— Reality = Model
(modulo complex semantics, compiler bugs, hardware failure, ...)

— properties of the models also hold in reality

e proving properties of models is difficult
— for Software in general undecidable

— for Hardware in NP or PSPACE

e only valid for functional properties , not for quantitative aspects

— availability, through put, latency, etc. are difficult to model precisely

Formal Methods in Computer Science

Formal
Specification

Formal
Verification

Formal
Synthesis

Examples of Formal Methods

Formal
Specification

UML

Formal
Verification

Compiler | Equivalence
Checking

SAT

Formal
Synthesis

What is Model Checking?

e mechanically check properties of models

e models:
— finite automata, labelled transition systems

— often requires automatic/manual abstraction techniques

e properties:
— only interested in partial properties
— specified in temporal logic: CTL, LTL, etc.
— safety: something bad should not happen

— liveness: something god should happen

e automatic generation of counterexamples

A Personal History of Model Checking

BurchClarkeMcMillanDill[Hwang'90: Symbolic Model Checking
DavisPutnam’60: DP

CoudertMadre’89: Symbolic Reachability McMillan’03: Interpolation

DavisL.ogemannLoveland'62: DPLL Marques—SilvaSakallah’'96: GRASP

Bryant’86: BDDs BiereArthoSchuppan’0l1: Liveness2Safety

Pnueli’77: Temporal Logic MoskewiczMadiganZhaoZhangMalik'01: CHAFF

McMillan’93: SMV EenSorensson’03: MiniSAT

ClarkeEmerson’82: Model Checking BiereCimattiClarkeZhu'99: Bounded Model Checking
Kurshan’93: Localization EenBiere'05: SatkLite
SheeranSinghStalmarck’00: k-Induction

QuielleSifakis’82: Model Checking BallRajamani'01: SLAM

Holzmann’'91: SPIN GrafSaidi'97: Predicate Abstraction
Holzmann’81: On—-The—Fly Reachability ClarkeGrumbergJahLuVeith’'03: CEGAR

Peled’94: Partial-Order—Reduction

Reachability

e set of states S, initial states I, transition relation T

e bad states B reachable from 7 via T'?

e symbolic representation of T (ciruit, program, parallel product)
— avoid explicit matrix representations, because of the
— state space explosion problem, e.g. n-bit counter: |T|=0(n), |S|=0(2")

— makes reachability PSPACE complete [Savitch’70]

e on-the-fly [Holzmann’81’] for protocols
— restrict search to reachable states

— simulate and hash reached concrete states

Forward Fixpoint Algorithm: Initial and Bad States

Forward Fixpoint Algorithm:

Step 1

10

Forward Fixpoint Algorithm:

Step 2

11

Forward Fixpoint Algorithm: Bad State Reached

Forward Fixpoint Algorithm: Termination, No Bad State Reachable 14

Forward Least Fixpoint Algorithm for Model Checking Safety

initial states 7, transition relation 7, bad states B

model-checkl: .
Sc=0; Sy =1,
while S¢ # Sy do

if BNSy 0 then

return “found error trace to bad states’;

(I, T, B)

Sc = SN;
Sy =ScU Img(SC) ;
done;
return “no bad state reachable”;

15

Model Checking 16

e algorithms to check more general properties [ClarkeEmerson’82], [QuielleSifakis’82]
— uses temporal logic [Pnueli’/7] as property specification language

— model checkers are usually fully automatic

linear vs. branching time formalisms (CTL vs LTL) was hotly debated
— either determine that property holds or ...

— ... provide counter example for debugging purposes

e originally explicit (as in SPIN [Holzmann'91])
— search works with concrete states,
— bottle neck: number of states, that have to be stored

— local (on-the-fly) and global algorithms (not on-the-fly)

Symbolic Model Checking

e Work with symbolic representations of states
— symbolic representations are potentially exponentially more succinct

— favors BFS: next frontier set of states in BFS is calculated symbolically

e originally “symbolic” meant model checking with BDDs
[CoudertMadre’89/'90,BurchClarkeMcMillanDillHwang'90,McMillan’93]

e Binary Decision Diagrams [Bryant’86]
— canonical representation for boolean functions
— BDDs have fast operations (but image computation is expensive)
— often blow up in space

— restricted to hundreds of variables

17

Linear Size BDD for Bit-Vector Comparison

boolean function/expression:

n—1
0 ‘ 0 N xi=yi
i=0
) interleaved variable order:
0 0
X3 >YyY3 >Xp >yp>X] > Y > X0 >)0
0 0 , . .
comparison of two n-bit-vectors needs 3 -n in-
ner nodes for the interleaved variable order
0 0

18

Exponential BDD for Bit-Vector Comparison

missing edges
lead to O e

/
/

/ / /
/ /
/ /
/ / / / /
/ / / / /
N \\ S <~ - = - = -
\ A RS T~ = = - =
\ N > ~ == - =
N ~ =~ oo =~ < =~ -

~
~ T~ = -
~
\
N\ ~
\

19

Unrolling of Forward Least Fixpoint Algorithm

0: continue?
0: terminate?
0: bad state?

1: continue?
1: terminate?

1: bad state?

2: continue?

2: terminate?

2: bad state?

0 , 0
S04 53
0 _ 0
¢ = SN
BNSY #0

1 ol
Sc 7 Sy
1 ol
Sc =Sy
BNSL #0
2, D
Sc 7 Sy

2 _ Q2
% =58%

BNSL #£0

Jso[1(s0)]
Vso[—1(s0)]
Jsol1(so) A B(s0)]

350,51 (s0) AT (50,51) A —I(s1)]

Vs0,511(s0) AT (so,51) — 1(s1)]
350,51 [1(s0) AT (s0,51) AB(s1)]

/\T(S(),Sl /\T(Sl,S2>/\
s2) V 3oL (10) AT (29, 52)])]

))
((
Vs0,51,521(s0) AT (s0,51) AT (s1,82) —
I(s2) V oI (1) AT (9,52)]]
(s0) JAT

ElSO,Sl,SQ[I S0 /\T(S(),Sl (S1,52>/\B(S2)]

350,51, 52[1(sg
(I

20

Falsification Part of Fixpoint Algorithm o1

0-continue? SO / SO = *&Oﬂ—
' ' C N .
O-—terminate?2 0 — ¢0 gt 0000
' ' C N .
£

. : 1 4 ¢l -
b-eontinue? S #Sy—Isorstf o) AT Sos A
. : 1 _ ¢l -
bterminate? —So =Sy vsos it so A T Sos) — Ao
4

Qe

2
N gl B Y Y

Bounded Model Checking (BMC)

[BiereCimattiClarkeZhu’99]

e look only for counter example made of k states

S0 S S S+ =)

(the bound)

S
O or O
P

O @ @)
-p L] -p] -0 :@ - p -

e simple for safety properties p is invariantly true

I(s0) N T(s0,81)) A=+ AT (sg—1

S 3+1
O »Q
P . p
(e.g. p =—B)
k
ssk) A\ —p(si)
i=0

e harder for liveness properties p is eventually true

I(so) N T(s0,51)) A+ AT (sg—1,5) A

k

N —p(si) A T (sg,59)
i=0

P

22

Bounded Model Checking (BMC)

[BiereCimattiClarkeZhu’99]

e look only for counter example made of k states (the bound)

S S S S S S S s@;/sﬂ\)s(
O >0 >0 >0 or O O >0 O
- O -v0 1] Ao A %

2P - 2P 2P 2P

e simple for safety properties p is invariantly true (e.g. p = —B)
k
I(SO) A T(S()asl>) ASERRA T(Sk_l,Sk) A\ \/ _'p(Si)
i=0

e harder for liveness properties p is eventually true

k k

I(so) A T(s0,s1)) A=+ AT (se—1,50) A\ —p(si) AN T(sg,s1)
i=0 1=0

23

BMC with SAT

e satisfiability checking (SAT)
— of propositional/combinational problems (only boolean variables)
— actually restricted to conjunctive normal form (CNF)

— classical NP hard problem [Cook’71]

e key motivation of BMC
— leverage capacity of SAT solvers
— SAT solvers could handle 10000 variables in late 90’ties

— compared to hundreds of variables with BDDs

e key insight: trade capacity for completeness

24

Bounded Model Checking State-of-the-Art

e increase in efficiency of SAT solvers [ZChaff,MiniSAT,SatELite,PicoSAT]

e SAT more robust than BDDs in bug finding

(shallow bugs are easily reached by explicit model checking or testing)

better unbounded but still SAT based model checking algorithms

— k-induction [SinghSheeranStalmarck’00]

— interpolation [McMillan’03]

e 4th Intl. Workshop on Bounded Model Checking (BMC’06)

other logics beside LTL, better encodings, e.g. [LatvalaBiereHeljankoJuntilla’04]

e other system models, such as hybrid automata

25

Induction with SAT

[SinghSheeranStalmarck’00]

e more specifically k-induction

— does there exist k such that the following formula is unsatisfiable

B(so) A+ AB(sg—1) AT (s0,51) A+ AT (sg—1,5) AB(s) A\
0<i<j<k
— if unsatisfiable and -BMC(k) then bad state unreachable
e bound on k: length of longest cycle free path

e k=0 check whether —B tautological (propositionally)

e k=1 check whether —B inductive for T

Si S

26

A Short SAT Solver History

e Davis and Putnam procedure
— DP: elimination procedure [DavisPutnam’'60]

— DPLL: splitting [DavisLogemannLoveland’62]

e modern SAT solvers are mostly based on DPLL
— learning: GRASP [MarquesSilvaSakallah’96], RelSAT [BayardoSchrag'97]
— watched literals, VSIDS: CHAFF [MoskewiczMadiganZhaoZhangMalik’'01]

— improved heuristics: MiniSAT [EenSorensson’03] actually Version from 2005

e preprocessing is a hot topic:

— currently fastest solvers use SatELite style preprocessing [EenBiere’05] DP

e Www.satcompetition.org since 2002

27

Cactus Plot for SAT’06 Race Instances

900 —— . . o
* v
800 | " I -
+
* Yo
700 at v§® -
e N
600 5 PO -
* [vv o A
500 |- 0 R .]
+H A R R
% v i A
400 |- : v -
x o T
¥ [] vV .o‘ i
300 0 o A A Immat + -
+oE o¢ a8 " nanosat
[] [R f »
200 ' 3 oo - co mupns%); 0 A
X o °':vaAAAAAA N booleforce
e 0o, - at minisat2007
100 |- ol .;;ix*mz aasant? picosat2007 e -
oY aatt icosat2008 -
S picosat
0 MM“MA ! ! picoprep2008
0 20 40 60 80 100

28

Interpolation

[McMillan’03]

e SAT based technique to overapproximate frontiers Img(S¢)
— currently most effective technique to show that bad states are unreachable

— better than BDDs and k-induction in most cases [HWMCC’07]

e starts from a resolution proof refutation of a BMC problem with bound £+ 1
Sc(s0) AT (s0,51) AT (s1,52) A+ AT (g k1) AB(sg41)
— result is a characteristic function f(s;) over variables of the second state s,

— these states do not reach the bad state s; | in k steps

— any state reachable from S satisfies f: Sc(so) AT (so,51) = f(s1)

e kis bounded by the diameter (exponentially smaller than longest cycle free path)

29

Longest Shortest Path vs Diameter

= O O O

length of longest shortest path O(n)

diameter O(1)

30

Challenges | 31

e further convergence between theorem proving and model checking

— as pioneered by SLAM [BallRajamani’01] using

x predicate abstraction [GrafSaidi'97] and
x counter example guided abstraction refinement [ClarkeGrumbergJahLuVeith’03]
— handle large software and hardware systems precisely

— automate compositional reasoning, e.g. alias analysis

e improve Satisfiability Modulo Theory (SMT) procedures
— What is the right way to handle bit-vectors, arrays?

— Quantifiers, interpolation for bit-vectors and arrays?

Challenges |l

e Satisfiability Solver (SAT) (standard NP hard problem)
— Iimprove heuristics, remove magic constants
— more aggresive incremental preprocessing

— effective incorporation of more powerful reasoning engines

e Quantified Boolean Formulas (QBF) (standard PSPACE hard problem)
— new paradigms?

— improve capacity and effectively apply QBF to real problems

e and do not forget testing, debugging, simulation

32

Introductory Material on General Model Checking

e Edmund M. Clarke, Orna Grumberg, and Doron Peled.
Model Checking.
MIT press, 1999.

e Gerard Holzmann.
The SPIN Model Checker.
Addison Wesley, 2004.

e Helmut Veith and Orna Grumberg, editors.
25 Years of Model Checking, volume 5000 of LNCS. Springer, 2008.

33

Surveys on SAT based Model Checking

e Mukul Prasad, Armin Biere, and Aarti Gupta.
A survey on recent advances in SAT-based formal verification.
Software Tools for Technology Transfer (STTT), 7(2), 2005.

e Armin Biere.
Bounded Model Checking.
In Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors,
Handbook of Satisfiability,
To be published by IOS Press.

34

