Tutorial on Model Checking Modelling and Verification in Computer Science Armin Biere

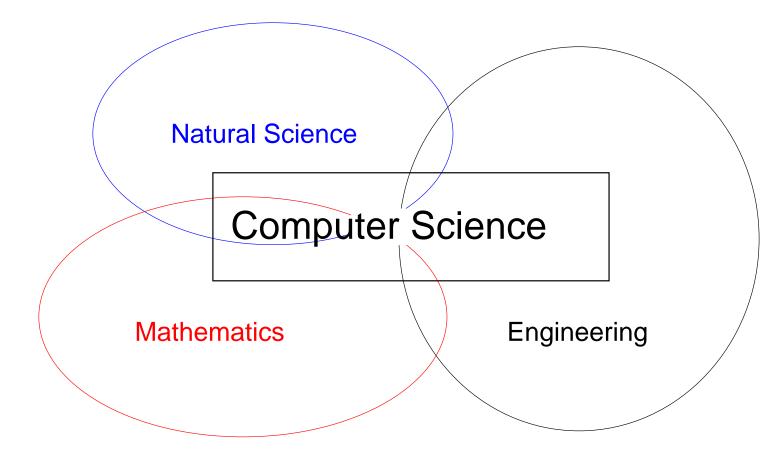
Institute for Formal Models and Verification Johannes Kepler University Linz, Austria

AB'08

Algebraic Biology

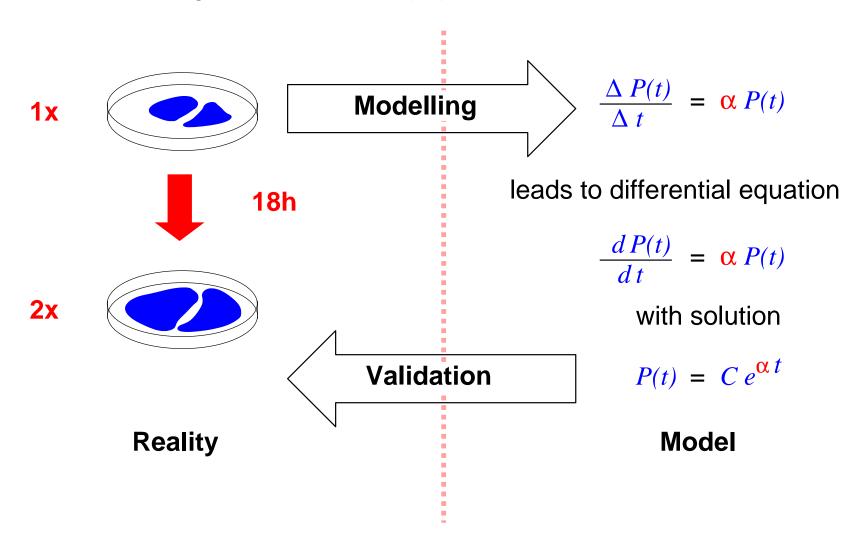
Castle of Hagenberg, Austria

Friday, August 1, 2008

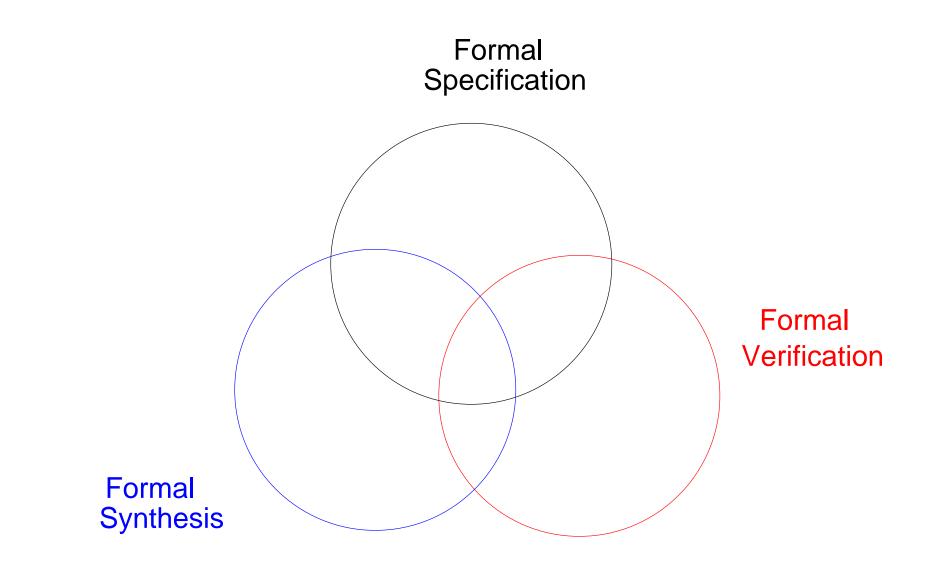


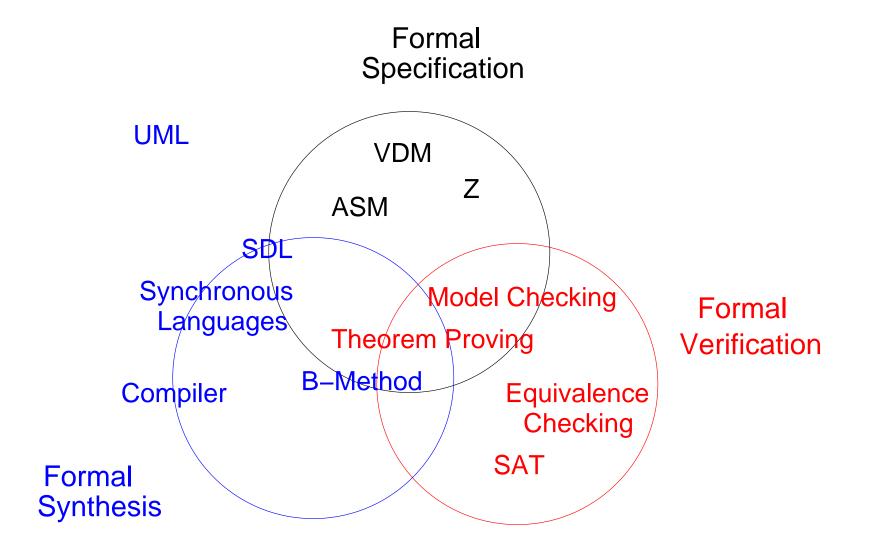
Models in Natural Science

growth of bakteria population



- programs and other digital systems are formal objects
 - they have precise mathematical models (denotational/operational)
 - Reality = Model
 (modulo complex semantics, compiler bugs, hardware failure, ...)
 - properties of the models also hold in reality
- proving properties of models is difficult
 - for Software in general **undecidable**
 - for Hardware in **NP** or **PSPACE**
- only valid for **functional properties**, not for **quantitative aspects**
 - availability, through put, latency, etc. are difficult to model precisely





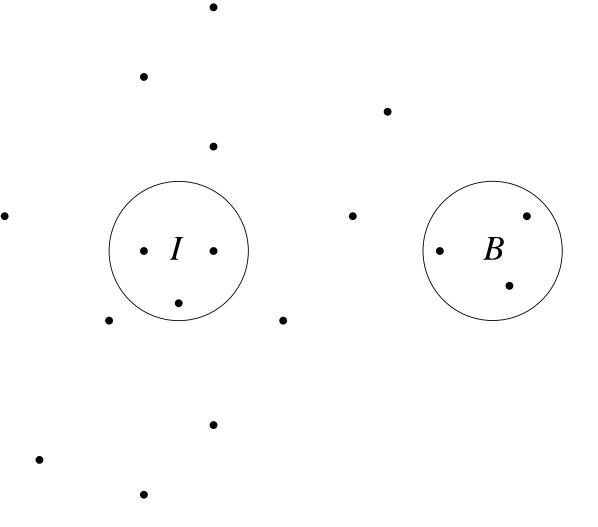
- mechanically check properties of models
- models:
 - finite automata, labelled transition systems
 - often requires automatic/manual abstraction techniques
- properties:
 - only interested in *partial properties*
 - specified in temporal logic: CTL, LTL, etc.
 - safety: something bad should not happen
 - liveness: something god should happen
- automatic generation of counterexamples

BurchClarkeMcMillanDillHwang'90: Symbolic Model Checking DavisPutnam'60: DP	
CoudertMadre'89: Symbolic F	Reachability McMillan'03: Interpolation
DavisLogemannLoveland'62: DPLL	Marques–SilvaSakallah'96: GRASP
Bryant'86: BDDs	BiereArthoSchuppan'01: Liveness2Safety
Pnueli'77: Temporal Logic	MoskewiczMadiganZhaoZhangMalik'01: CHAFF
McMillan'93: SMV	EenSorensson'03: MiniSAT
ClarkeEmerson'82: Model Checking	BiereCimattiClarkeZhu'99: Bounded Model Checking
Kurshan'93: Localiza	ation EenBiere'05: SatELite
QuielleSifakis'82: Model Checking	SheeranSinghStalmarck'00: k – Induction
	BallRajamani'01: SLAM
Holzmann'91: SPIN	GrafSaidi'97: Predicate Abstraction
Holzmann'81: On–The–Fly Reachability	ClarkeGrumbergJahLuVeith'03: CEGAR
Peled'94: Partial–Order–Reduction	

Armin Biere – FMV – JKU Linz

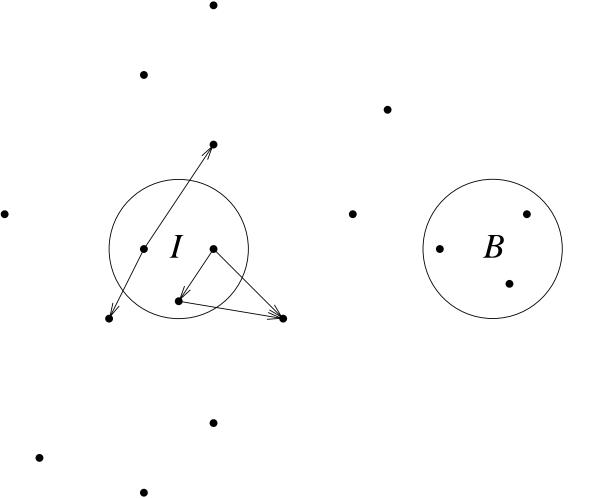
- set of states *S*, initial states *I*, transition relation *T*
- bad states *B* reachable from *I* via *T*?
- symbolic representation of *T* (ciruit, program, parallel product)
 - avoid explicit matrix representations, because of the
 - state space explosion problem, e.g. *n*-bit counter: |T| = O(n), $|S| = O(2^n)$
 - makes reachability PSPACE complete [Savitch'70]
- on-the-fly [Holzmann'81'] for protocols
 - restrict search to reachable states
 - simulate and hash reached concrete states

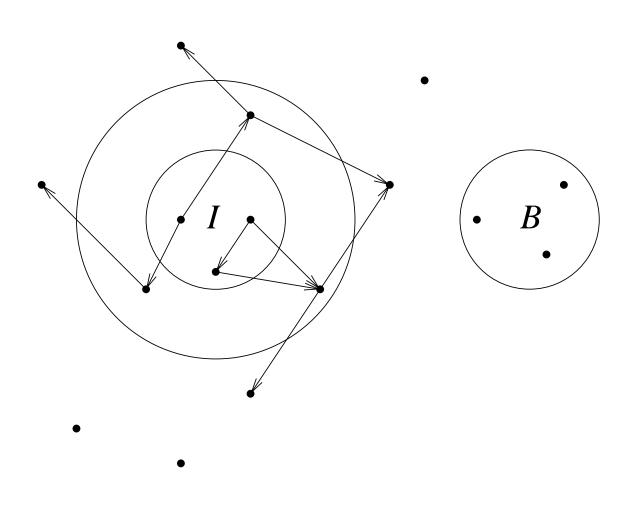
Forward Fixpoint Algorithm: Initial and Bad States

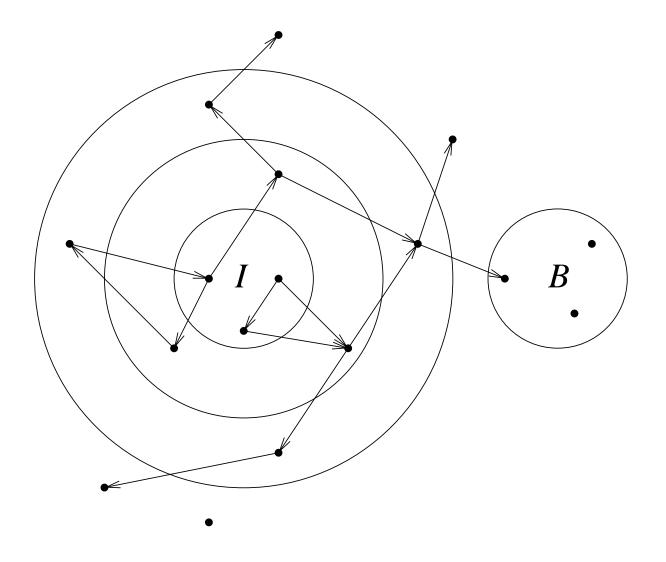


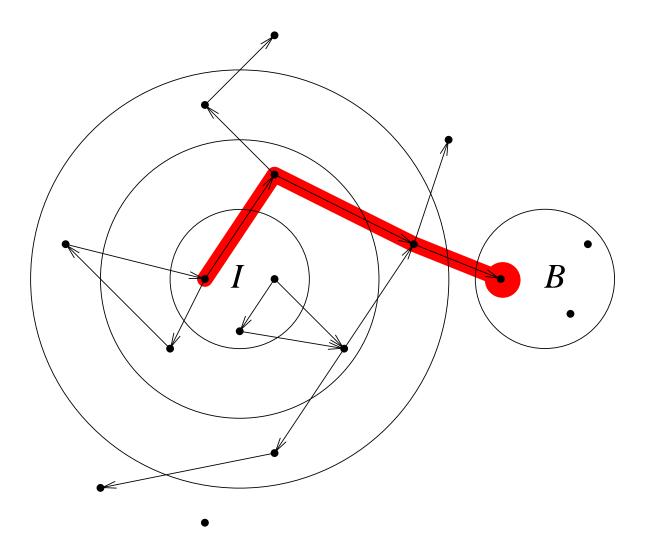
Tutorial on Model Checking – Algebraic Biology (AB'08)

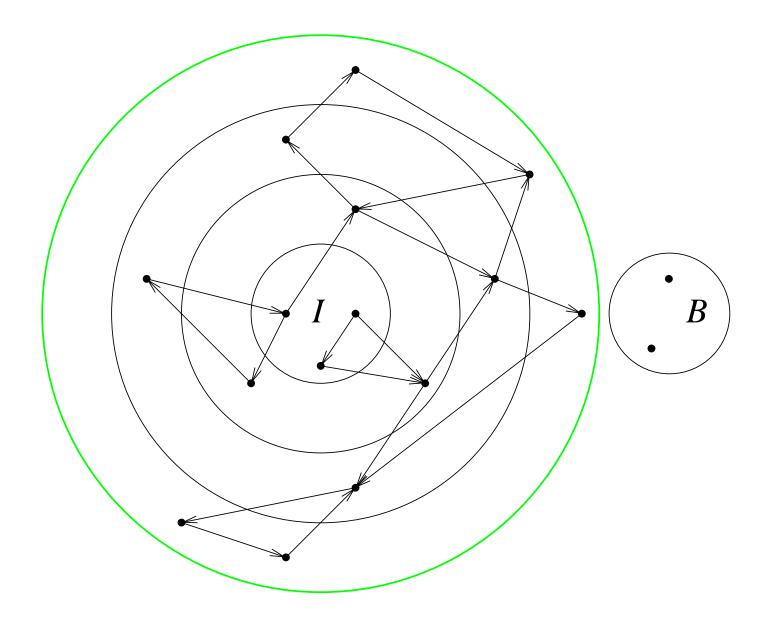
Armin Biere – FMV – JKU Linz











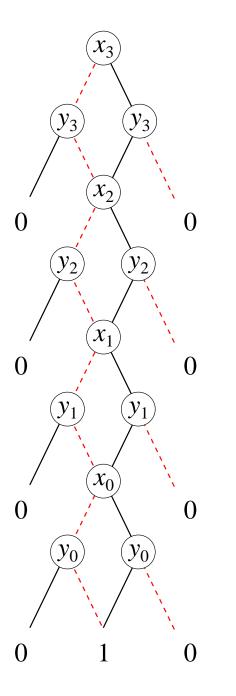
Armin Biere – FMV – JKU Linz

initial states *I*, transition relation *T*, bad states *B*

 $\begin{array}{l} \underline{\mathsf{model}} \cdot \mathsf{check}_{\mathrm{forward}}^{\mu} \ (I, \ T, \ B) \\ S_C = \emptyset; \ S_N = I; \\ \mathbf{while} \ S_C \neq S_N \ \mathbf{do} \\ \mathbf{if} \ B \cap S_N \neq \emptyset \ \mathbf{then} \\ \mathbf{return} \ \text{``found error trace to bad states'';} \\ S_C = S_N; \\ S_N = S_C \cup \ \underline{\mathit{Img}(S_C)}; \\ \mathbf{done}; \\ \mathbf{return} \ \text{``no bad state reachable'';} \end{array}$

- algorithms to check more general properties [ClarkeEmerson'82], [QuielleSifakis'82]
 - uses temporal logic [Pnueli'77] as property specification language
 - model checkers are usually fully automatic
 linear vs. branching time formalisms (CTL vs LTL) was hotly debated
 - either determine that property holds or ...
 - ... provide counter example for debugging purposes
- originally explicit (as in SPIN [Holzmann'91])
 - search works with concrete states,
 - bottle neck: number of states, that have to be stored
 - local (on-the-fly) and global algorithms (not on-the-fly)

- work with symbolic representations of states
 - symbolic representations are potentially exponentially more succinct
 - favors BFS: next frontier set of states in BFS is calculated symbolically
- originally "symbolic" meant model checking with BDDs
 [CoudertMadre'89/'90,BurchClarkeMcMillanDillHwang'90,McMillan'93]
- Binary Decision Diagrams [Bryant'86]
 - canonical representation for boolean functions
 - BDDs have fast operations (but image computation is expensive)
 - often blow up in space
 - restricted to hundreds of variables



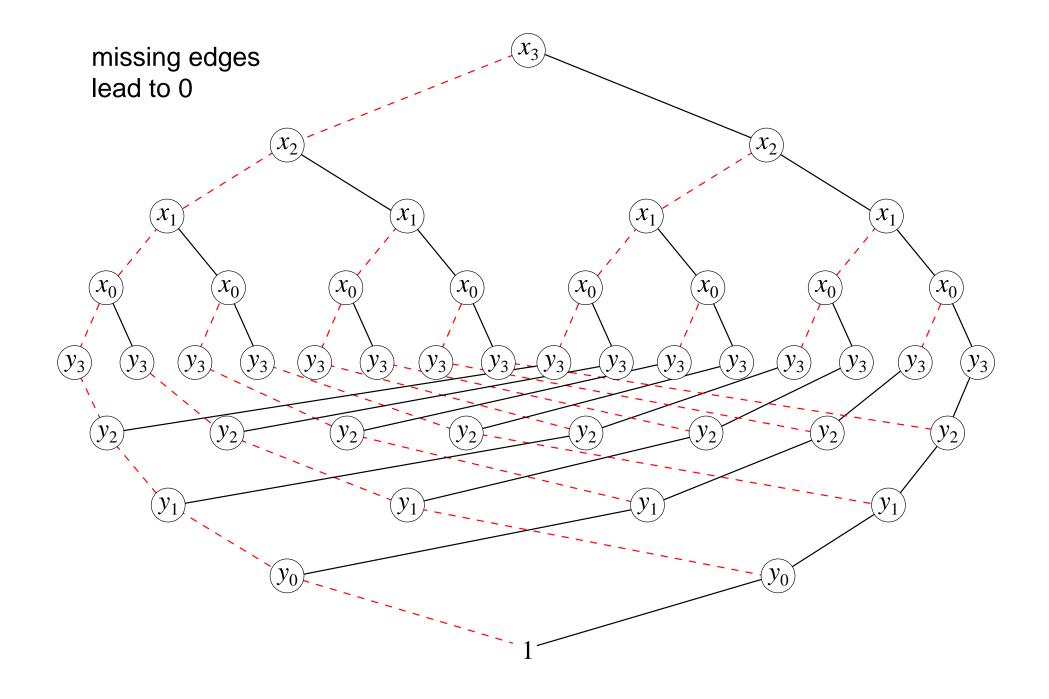
boolean function/expression:

$$\bigwedge_{i=0}^{n-1} x_i = y_i$$

interleaved variable order:

$$x_3 > y_3 > x_2 > y_2 > x_1 > y_1 > x_0 > y_0$$

comparison of two *n*-bit-vectors needs $3 \cdot n$ inner nodes for the interleaved variable order



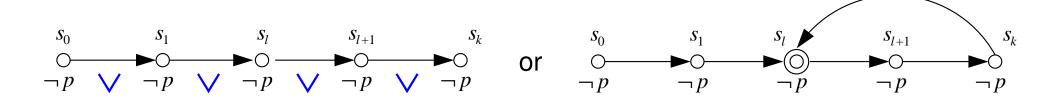
 $S_C^0 \neq S_N^0 \quad \exists s_0[I(s_0)]$ 0: continue? $S_C^0 = S_N^0 \qquad \forall s_0[\neg I(s_0)]$ 0: terminate? 0: bad state? $B \cap S_N^0 \neq \emptyset$ $\exists s_0[I(s_0) \land B(s_0)]$ $S_C^1 \neq S_N^1 \qquad \exists s_0, s_1[I(s_0) \land T(s_0, s_1) \land \neg I(s_1)]$ 1: continue? $S_C^1 = S_N^1 \quad \forall s_0, s_1[I(s_0) \land T(s_0, s_1) \to I(s_1)]$ 1: terminate? 1: bad state? $B \cap S_N^1 \neq \emptyset$ $\exists s_0, s_1[I(s_0) \land T(s_0, s_1) \land B(s_1)]$ $S_{C}^{2} \neq S_{N}^{2} = \exists s_{0}, s_{1}, s_{2}[I(s_{0}) \wedge T(s_{0}, s_{1}) \wedge T(s_{1}, s_{2}) \wedge$ 2: continue? $\neg (I(s_2) \lor \exists t_0 [I(t_0) \land T(t_0, s_2)])]$ $S_C^2 = S_N^2 \qquad \forall s_0, s_1, s_2[I(s_0) \land T(s_0, s_1) \land T(s_1, s_2) \rightarrow I(s_1, s_2) \land T(s_1, s_2) \land T(s_2) \land T(s_1, s_2) \land T(s_1, s_2) \land T(s_2) \land T(s_2) \land T($ 2: terminate? $I(s_2) \vee \exists t_0 [I(t_0) \wedge T(t_0, s_2)]$ **2:** bad state? $B \cap S_N^1 \neq \emptyset$ $\exists s_0, s_1, s_2[I(s_0) \land T(s_0, s_1) \land T(s_1, s_2) \land B(s_2)]$

Tutorial on Model Checking – Algebraic Biology (AB'08)

$$\begin{array}{c|c} 0: \ \text{continue}? & S_C^0 \neq S_N^0 & \exists s_0[I(s_0)] \\ \hline 0: \ \text{terminate}? & S_C^0 = S_N^0 & \forall s_0[\neg I(s_0)] \\ \hline 0: \ \text{bad state}? & B \cap S_N^0 \neq \emptyset & \exists s_0[I(s_0) \wedge B(s_0)] \\ \hline 1: \ \text{continue}? & S_C^1 \neq S_N^1 & \exists s_0, s_1[I(s_0) \wedge T(s_0, s_1) \wedge \neg I(s_1)] \\ \hline 1: \ \text{terminate}? & S_C^1 = S_N^1 & \forall s_0, s_1[I(s_0) \wedge T(s_0, s_1) \rightarrow I(s_1)] \\ \hline 1: \ \text{bad state}? & B \cap S_N^1 \neq \emptyset & \exists s_0, s_1[I(s_0) \wedge T(s_0, s_1) \wedge B(s_1)] \\ \hline 2: \ \text{continue}? & S_C^2 \neq S_N^2 & \exists s_0, s_1, s_2[I(s_0) \wedge T(s_0, s_1) \wedge T(s_1, s_2) \wedge \\ & \neg (I(s_2) \vee \exists t_0[I(t_0) \wedge T(t_0, s_2)])] \\ \hline 2: \ \text{terminate}? & S_C^2 = S_N^2 & \forall s_0, s_1, s_2[I(s_0) \wedge T(s_0, s_1) \wedge T(s_1, s_2) \rightarrow \\ & I(s_2) \vee \exists t_0[I(t_0) \wedge T(t_0, s_2)]] \\ \hline 2: \ \text{bad state}? & B \cap S_N^1 \neq \emptyset & \exists s_0, s_1, s_2[I(s_0) \wedge T(s_0, s_1) \wedge T(s_1, s_2) \rightarrow \\ & I(s_2) \vee \exists t_0[I(t_0) \wedge T(t_0, s_2)]] \\ \hline 2: \ \text{bad state}? & B \cap S_N^1 \neq \emptyset & \exists s_0, s_1, s_2[I(s_0) \wedge T(s_0, s_1) \wedge T(s_1, s_2) \wedge B(s_2)] \\ \hline \end{array}$$

[BiereCimattiClarkeZhu'99]

• look only for counter example made of k states (the bound)



• simple for safety properties p is invariantly true (e.g. $p = \neg B$)

$$I(s_0) \wedge T(s_0, s_1)) \wedge \cdots \wedge T(s_{k-1}, s_k) \wedge \bigvee_{i=0}^k \neg p(s_i)$$

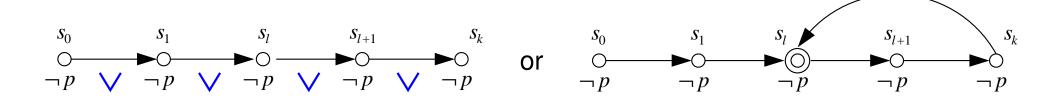
• harder for liveness properties *p* is eventually true

$$I(s_0) \wedge T(s_0, s_1)) \wedge \cdots \wedge T(s_{k-1}, s_k) \wedge \bigwedge_{i=0}^k \neg p(s_i) \wedge \exists l \ T(s_k, s_l)$$

Tutorial on Model Checking – Algebraic Biology (AB'08)

[BiereCimattiClarkeZhu'99]

• look only for counter example made of k states (the bound)



• simple for safety properties p is invariantly true (e.g. $p = \neg B$)

$$I(s_0) \wedge T(s_0, s_1)) \wedge \cdots \wedge T(s_{k-1}, s_k) \wedge \bigvee_{i=0}^k \neg p(s_i)$$

• harder for liveness properties *p* is eventually true

$$I(s_0) \wedge T(s_0, s_1)) \wedge \cdots \wedge T(s_{k-1}, s_k) \wedge \bigwedge_{i=0}^k \neg p(s_i) \wedge \bigvee_{l=0}^k T(s_k, s_l)$$

Tutorial on Model Checking – Algebraic Biology (AB'08)

- satisfiability checking (SAT)
 - of propositional/combinational problems (only boolean variables)
 - actually restricted to conjunctive normal form (CNF)
 - classical NP hard problem [Cook'71]
- key motivation of BMC
 - leverage capacity of SAT solvers
 - SAT solvers could handle 10000 variables in late 90'ties
 - compared to hundreds of variables with BDDs
- key insight: trade capacity for completeness

- increase in efficiency of SAT solvers [ZChaff,MiniSAT,SatELite,PicoSAT]
- SAT more robust than BDDs in bug finding

(shallow bugs are easily reached by explicit model checking or testing)

- better unbounded but still SAT based model checking algorithms
 - *k*-induction [SinghSheeranStalmarck'00]
 - interpolation [McMillan'03]
- 4th Intl. Workshop on Bounded Model Checking (BMC'06)
- other logics beside LTL, better encodings, e.g. [LatvalaBiereHeljankoJuntilla'04]
- other system models, such as hybrid automata

[SinghSheeranStalmarck'00]

- more specifically *k*-induction
 - does there exist k such that the following formula is *unsatisfiable*

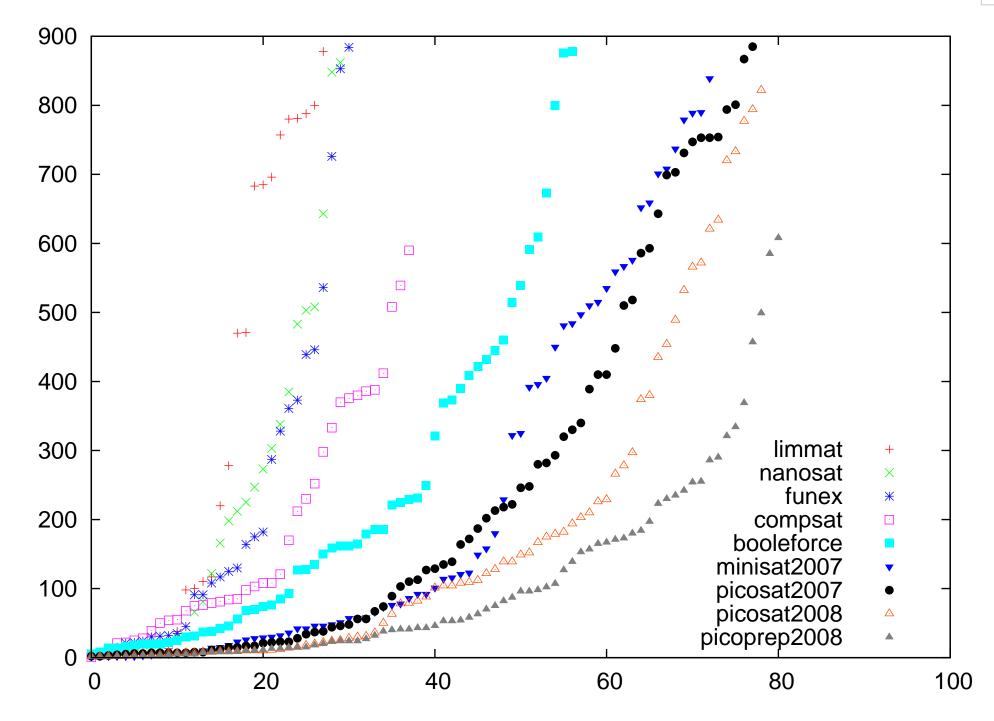
$$\overline{B(s_0)} \wedge \cdots \wedge \overline{B(s_{k-1})} \wedge T(s_0, s_1) \wedge \cdots \wedge T(s_{k-1}, s_k) \wedge B(s_k) \wedge \bigwedge_{0 \le i < j \le k} s_i \neq s_j$$

- if *unsatisfiable* and $\neg BMC(k)$ then bad state unreachable
- bound on *k*: length of longest cycle free path
- k = 0 check whether $\neg B$ tautological (propositionally)
- k = 1 check whether $\neg B$ inductive for T

- Davis and Putnam procedure
 - DP: elimination procedure [DavisPutnam'60]
 - DPLL: splitting [DavisLogemannLoveland'62]
- modern SAT solvers are mostly based on DPLL
 - learning: GRASP [MarquesSilvaSakallah'96], ReISAT [BayardoSchrag'97]
 - watched literals, VSIDS: CHAFF [MoskewiczMadiganZhaoZhangMalik'01]
 - improved heuristics: MiniSAT [EenSorensson'03] actually Version from 2005
- preprocessing is a hot topic:
 - currently fastest solvers use SatELite style preprocessing [EenBiere'05]

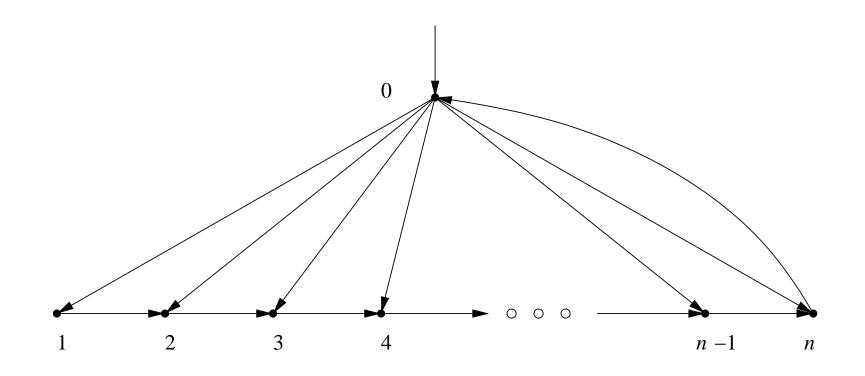
[•] www.satcompetition.org since 2002

Cactus Plot for SAT'06 Race Instances



[McMillan'03]

- SAT based technique to overapproximate frontiers $Img(S_C)$
 - currently most effective technique to show that bad states are unreachable
 - better than BDDs and *k*-induction in most cases [HWMCC'07]
- starts from a resolution proof refutation of a BMC problem with bound k+1 $S_C(s_0) \wedge T(s_0, s_1) \wedge T(s_1, s_2) \wedge \cdots \wedge T(s_k, s_{k+1}) \wedge B(s_{k+1})$
 - result is a characteristic function $f(s_1)$ over variables of the second state s_1
 - these states do not reach the bad state s_{k+1} in k steps
 - any state reachable from S_C satisfies f: $S_C(s_0) \wedge T(s_0, s_1) \Rightarrow f(s_1)$
- k is bounded by the diameter (exponentially smaller than longest cycle free path)



length of longest shortest path O(n)

diameter O(1)

Tutorial on Model Checking – Algebraic Biology (AB'08)

- further convergence between theorem proving and model checking
 - as pioneered by SLAM [BallRajamani'01] using
 - * predicate abstraction [GrafSaidi'97] and
 - * counter example guided abstraction refinement [ClarkeGrumbergJahLuVeith'03]
 - handle large software and hardware systems precisely
 - automate compositional reasoning, e.g. alias analysis
- improve Satisfiability Modulo Theory (SMT) procedures
 - What is the right way to handle bit-vectors, arrays?
 - Quantifiers, interpolation for bit-vectors and arrays?

- Satisfiability Solver (SAT) (standard NP hard problem)
 - improve heuristics, remove magic constants
 - more aggresive incremental preprocessing
 - effective incorporation of more powerful reasoning engines
- Quantified Boolean Formulas (QBF) (standard PSPACE hard problem)
 - new paradigms?
 - improve capacity and effectively apply QBF to real problems
- and do not forget testing, debugging, simulation

- Edmund M. Clarke, Orna Grumberg, and Doron Peled.
 Model Checking.
 MIT press, 1999.
- Gerard Holzmann.
 The SPIN Model Checker.
 Addison Wesley, 2004.
- Helmut Veith and Orna Grumberg, editors. *25 Years of Model Checking*, volume 5000 of *LNCS*. Springer, 2008.

- Mukul Prasad, Armin Biere, and Aarti Gupta.
 A survey on recent advances in SAT-based formal verification.
 Software Tools for Technology Transfer (STTT), 7(2), 2005.
- Armin Biere.

Bounded Model Checking. In Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors, *Handbook of Satisfiability*, To be published by IOS Press.