
Linear Algebra, Boolean Rings and Resolution?
Armin Biere

Institute for Formal Models and Verification
Johannes Kepler University

Linz, Austria

ACA’08
Applications of Computer Algebra

Symbolic Computation and Deduction in
System Design and Verification

Castle of Hagenberg, Austria

Wednesday, July 30, 2008

Functional-Level vs Word-Level vs Bit-Level 1

• functional-level

– high-level descriptions of algorithms assume infinite memory

– for instance infinite tape, integers, functional languages, . . .

• word-level

– 32 or 64 bit systems

– modular arithmetic instead of integer arithmetic

– pointer arithmetic

• bit-level

– HW designs synthesized to bit-level

– processors all work on the bit-level

Applications of Computer Algebra (ACA’08) Armin Biere – FMV – JKU Linz

Bit-Level Verification 2

• equivalence checking (HW)

– heavy (mostly) automatic optimizations on the bit-level

– comparison with “golden” original implementation

• cryptanalysis (particularly of stream-cyphers)

– described on the word-level

– many bit-level operations, e.g. LFSR, AND-gates, XOR-gates

• verifying modular arithmetic in SW

“Nearly All Binary Searches and Mergesorts are Broken”

int l, r, m; ... m = (l + r)/2; ...

Applications of Computer Algebra (ACA’08) Armin Biere – FMV – JKU Linz

SAT Solver Technology 3

• DPLL (still!) plus

– learning: GRASP, RelSAT, SATO

– VSIDS decision heuristics: Chaff, MiniSAT, PicoSAT, . . .

– . . . and many more (important) optimizations:

restarts, pre-processing, data structures

• driven by yearly SAT competition / SAT race and many applications

• extensions to satisfiability modulo theories (SMT)

• the formal core technology in industry:

equivalence checking, bounded and unbounded model checking, synthesis

test case generation, coverage, consistency checking, configuration . . .

Applications of Computer Algebra (ACA’08) Armin Biere – FMV – JKU Linz

Cactus Plot for SAT’06 Race Instances 4

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 20 40 60 80 100

limmat
nanosat

funex
compsat

booleforce
minisat2007
picosat2007
picosat2008

picoprep2008

Applications of Computer Algebra (ACA’08) Armin Biere – FMV – JKU Linz

However . . . 5

• equivalence checking of arithmetic circuits (on the bit-level) is very difficult

– for instance associativity: x * (y * z) vs (x * y) * z

– needs four 32x32 to 32 bit multipliers after “bit-blasting”

– again: we need to reason on the bit-level!!

• breaking a stream cypher also needs bit-level reasoning

– long XOR-chains are bad for standard SAT solvers

– example: compute parity with two structural different circuits

• Why not use algebraic methods for boolean rings?

Applications of Computer Algebra (ACA’08) Armin Biere – FMV – JKU Linz

Encoding Bit-Level Problems into Algebra 6

• + = XOR · = AND K = Z2 = {0,1}

• SAT usually works on conjunctive normal form (CNF)

– we can either transform CNF into Ideal

(¬a∨b)∧ (¬a∨ c)∧ (a∨¬b∨¬c) satisfiable

iff

1+a(b+1) = 1, 1+a(c+1) = 1, 1+(a+1)bc = 1 solvable

iff

〈ab+a,ac+a,abc+b+ c〉 6= 〈1〉

with

¬a = 1+a, a∨b = ¬(¬a∧¬b) = 1+(a+1)(b+1) = ab+a+b

– or apply similar transformation/encoding of original problem (Tseitin)

Applications of Computer Algebra (ACA’08) Armin Biere – FMV – JKU Linz

Algebraic Methods for Bit-Level Reasoning 7

• linear algebra

– Gaussian elimination

– provides a generalization of various techniques for “equivalence reasoning”

– can still not be applied blindly (SAT solvers handle million of variables)

– similar integration as in SMT solvers? DPLL (LA(Z2))

• polynomials

– computing Gröbner bases with Buchberger’s algorithm

– brute force too expensive (similar problems as DP algorithm)

– refutational completeness useless in practice

– useful for preprocessing (?!)

Applications of Computer Algebra (ACA’08) Armin Biere – FMV – JKU Linz

Some Results on Stephen Cook’s SAT’04 Challenge 8

• given two square n×n matrices A, B over Z2, then AB = 1⇒ BA = 1

• algebraic bit-level encoding: n2 polynomials for LHS, n2 polynomials for RHS

– compute Gröbner basis for LHS

– check that each of the RHS polynomials is contained in the generated ideal

• CNF encoding: circuits of size O(n3) for both LHS and RHS

• benchmark in the crafted category of the SAT solver competition (linvrinv)

– SAT solvers: n = 4: seconds n = 5: 800 - 2000 seconds n = 6 : unsolved

– Singular: n = 4: seconds n = 5,6 : unsolved

Applications of Computer Algebra (ACA’08) Armin Biere – FMV – JKU Linz

Computer Algebra Challenge 9

ring r = 2, (
x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19,x20,
x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36,x37,x38,
x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50), dp;

ideal I = [
x1*x2+x3*x12+x5*x22+x7*x32+x9*x42+1,x1*x4+x3*x14+x5*x24+x7*x34+x9*x44,
x1*x6+x3*x16+x5*x26+x7*x36+x9*x46,x1*x8+x3*x18+x5*x28+x7*x38+x9*x48,
x1*x10+x3*x20+x5*x30+x7*x40+x9*x50,x11*x2+x13*x12+x15*x22+x17*x32+x19*x42,
x11*x4+x13*x14+x15*x24+x17*x34+x19*x44+1,
x11*x6+x13*x16+x15*x26+x17*x36+x19*x46,
x11*x8+x13*x18+x15*x28+x17*x38+x19*x48,
x11*x10+x13*x20+x15*x30+x17*x40+x19*x50,
x21*x2+x23*x12+x25*x22+x27*x32+x29*x42,x21*x4+x23*x14+x25*x24+x27*x34+x29*x44,
x21*x6+x23*x16+x25*x26+x27*x36+x29*x46+1,
x21*x8+x23*x18+x25*x28+x27*x38+x29*x48,
x21*x10+x23*x20+x25*x30+x27*x40+x29*x50,x31*x2+x33*x12+x35*x22+x37*x32+x39*x42,
x31*x4+x33*x14+x35*x24+x37*x34+x39*x44,x31*x6+x33*x16+x35*x26+x37*x36+x39*x46,
x31*x8+x33*x18+x35*x28+x37*x38+x39*x48+1,
x31*x10+x33*x20+x35*x30+x37*x40+x39*x50,
x41*x2+x43*x12+x45*x22+x47*x32+x49*x42,x41*x4+x43*x14+x45*x24+x47*x34+x49*x44,
x41*x6+x43*x16+x45*x26+x47*x36+x49*x46,x41*x8+x43*x18+x45*x28+x47*x38+x49*x48,
x41*x10+x43*x20+x45*x30+x47*x40+x49*x50+1];

ideal J = groebner (I);

Applications of Computer Algebra (ACA’08) Armin Biere – FMV – JKU Linz

Gaussian Elimination, BDDs and Extended Resolution 10

• Gaussian Elimination in Z2 can be simulated by (RO)BDD operations

– BDD to store a linear equation is linear in the number n of variables

– XOR operation on BDDs for lin. equations has linear complexity in n

– in general, BDD operations are in O(n2)

• BDD operations can be simulated by extended resolution [SinzBiere-CSR’06]

– extension rule: add literal equation a = b∧ c with fresh a

– extended resolution is the most powerful bit-level proof system

– proof linear in the number of recursive BDD computation steps

– proofs are used in many applications

Applications of Computer Algebra (ACA’08) Armin Biere – FMV – JKU Linz

Polynomials, BDDs and Extended Resolution 11

• same idea does not lift to polynomials:

– ROBDD size quadratic in the size of the represented polynomial (?)

– complexity of operations totally unclear

• conjecture:

– ROBDDs can not simulate Buchberger’s algorithm linearly

– unclear whether other BDD variants allow linear simulations

• challenge

– directly generate (extended) resolution proofs from polynomial reasoning

Applications of Computer Algebra (ACA’08) Armin Biere – FMV – JKU Linz

Summary 12

• a case for bit-level reasoning . . .

• SAT solvers made and are still making tremendous progress

• difficult: arithmetic on the bit-level and cryptanalysis

• Stephen Cook’s SAT’04 challenge captures the essence of this problem

• algebraic methods (out of the box) provide no silver bullet

• we need combinations of algebraic methods with SAT on the bit-level

• extensions to word-level (bit-vector) decisions procedures ? ⇒ Boolector

Applications of Computer Algebra (ACA’08) Armin Biere – FMV – JKU Linz

