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Functional-Level vs Word-Level vs Bit-Level 1

• functional-level

– high-level descriptions of algorithms assume infinite memory

– for instance infinite tape, integers, functional languages, . . .

• word-level

– 32 or 64 bit systems

– modular arithmetic instead of integer arithmetic

– pointer arithmetic

• bit-level

– HW designs synthesized to bit-level

– processors all work on the bit-level
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Bit-Level Verification 2

• equivalence checking (HW)

– heavy (mostly) automatic optimizations on the bit-level

– comparison with “golden” original implementation

• cryptanalysis (particularly of stream-cyphers)

– described on the word-level

– many bit-level operations, e.g. LFSR, AND-gates, XOR-gates

• verifying modular arithmetic in SW

“Nearly All Binary Searches and Mergesorts are Broken”

int l, r, m; ... m = (l + r)/2; ...
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SAT Solver Technology 3

• DPLL (still!) plus

– learning: GRASP, RelSAT, SATO

– VSIDS decision heuristics: Chaff, MiniSAT, PicoSAT, . . .

– . . . and many more (important) optimizations:

restarts, pre-processing, data structures

• driven by yearly SAT competition / SAT race and many applications

• extensions to satisfiability modulo theories (SMT)

• the formal core technology in industry:

equivalence checking, bounded and unbounded model checking, synthesis

test case generation, coverage, consistency checking, configuration . . .
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Cactus Plot for SAT’06 Race Instances 4
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However . . . 5

• equivalence checking of arithmetic circuits (on the bit-level) is very difficult

– for instance associativity: x * (y * z) vs (x * y) * z

– needs four 32x32 to 32 bit multipliers after “bit-blasting”

– again: we need to reason on the bit-level!!

• breaking a stream cypher also needs bit-level reasoning

– long XOR-chains are bad for standard SAT solvers

– example: compute parity with two structural different circuits

• Why not use algebraic methods for boolean rings?
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Encoding Bit-Level Problems into Algebra 6

• + = XOR · = AND K = Z2 = {0,1}

• SAT usually works on conjunctive normal form (CNF)

– we can either transform CNF into Ideal

(¬a∨b)∧ (¬a∨ c)∧ (a∨¬b∨¬c) satisfiable

iff

1+a(b+1) = 1, 1+a(c+1) = 1, 1+(a+1)bc = 1 solvable

iff

〈ab+a,ac+a,abc+b+ c〉 6= 〈1〉

with

¬a = 1+a, a∨b = ¬(¬a∧¬b) = 1+(a+1)(b+1) = ab+a+b

– or apply similar transformation/encoding of original problem (Tseitin)
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Algebraic Methods for Bit-Level Reasoning 7

• linear algebra

– Gaussian elimination

– provides a generalization of various techniques for “equivalence reasoning”

– can still not be applied blindly (SAT solvers handle million of variables)

– similar integration as in SMT solvers? DPLL (LA(Z2))

• polynomials

– computing Gröbner bases with Buchberger’s algorithm

– brute force too expensive (similar problems as DP algorithm)

– refutational completeness useless in practice

– useful for preprocessing (?!)
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Some Results on Stephen Cook’s SAT’04 Challenge 8

• given two square n×n matrices A, B over Z2, then AB = 1⇒ BA = 1

• algebraic bit-level encoding: n2 polynomials for LHS, n2 polynomials for RHS

– compute Gröbner basis for LHS

– check that each of the RHS polynomials is contained in the generated ideal

• CNF encoding: circuits of size O(n3) for both LHS and RHS

• benchmark in the crafted category of the SAT solver competition (linvrinv)

– SAT solvers: n = 4: seconds n = 5: 800 - 2000 seconds n = 6 : unsolved

– Singular: n = 4: seconds n = 5,6 : unsolved
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Computer Algebra Challenge 9

ring r = 2, (
x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,x19,x20,
x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32,x33,x34,x35,x36,x37,x38,
x39,x40,x41,x42,x43,x44,x45,x46,x47,x48,x49,x50), dp;

ideal I = [
x1*x2+x3*x12+x5*x22+x7*x32+x9*x42+1,x1*x4+x3*x14+x5*x24+x7*x34+x9*x44,
x1*x6+x3*x16+x5*x26+x7*x36+x9*x46,x1*x8+x3*x18+x5*x28+x7*x38+x9*x48,
x1*x10+x3*x20+x5*x30+x7*x40+x9*x50,x11*x2+x13*x12+x15*x22+x17*x32+x19*x42,
x11*x4+x13*x14+x15*x24+x17*x34+x19*x44+1,
x11*x6+x13*x16+x15*x26+x17*x36+x19*x46,
x11*x8+x13*x18+x15*x28+x17*x38+x19*x48,
x11*x10+x13*x20+x15*x30+x17*x40+x19*x50,
x21*x2+x23*x12+x25*x22+x27*x32+x29*x42,x21*x4+x23*x14+x25*x24+x27*x34+x29*x44,
x21*x6+x23*x16+x25*x26+x27*x36+x29*x46+1,
x21*x8+x23*x18+x25*x28+x27*x38+x29*x48,
x21*x10+x23*x20+x25*x30+x27*x40+x29*x50,x31*x2+x33*x12+x35*x22+x37*x32+x39*x42,
x31*x4+x33*x14+x35*x24+x37*x34+x39*x44,x31*x6+x33*x16+x35*x26+x37*x36+x39*x46,
x31*x8+x33*x18+x35*x28+x37*x38+x39*x48+1,
x31*x10+x33*x20+x35*x30+x37*x40+x39*x50,
x41*x2+x43*x12+x45*x22+x47*x32+x49*x42,x41*x4+x43*x14+x45*x24+x47*x34+x49*x44,
x41*x6+x43*x16+x45*x26+x47*x36+x49*x46,x41*x8+x43*x18+x45*x28+x47*x38+x49*x48,
x41*x10+x43*x20+x45*x30+x47*x40+x49*x50+1];

ideal J = groebner (I);
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Gaussian Elimination, BDDs and Extended Resolution 10

• Gaussian Elimination in Z2 can be simulated by (RO)BDD operations

– BDD to store a linear equation is linear in the number n of variables

– XOR operation on BDDs for lin. equations has linear complexity in n

– in general, BDD operations are in O(n2)

• BDD operations can be simulated by extended resolution [SinzBiere-CSR’06]

– extension rule: add literal equation a = b∧ c with fresh a

– extended resolution is the most powerful bit-level proof system

– proof linear in the number of recursive BDD computation steps

– proofs are used in many applications
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Polynomials, BDDs and Extended Resolution 11

• same idea does not lift to polynomials:

– ROBDD size quadratic in the size of the represented polynomial (?)

– complexity of operations totally unclear

• conjecture:

– ROBDDs can not simulate Buchberger’s algorithm linearly

– unclear whether other BDD variants allow linear simulations

• challenge

– directly generate (extended) resolution proofs from polynomial reasoning
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Summary 12

• a case for bit-level reasoning . . .

• SAT solvers made and are still making tremendous progress

• difficult: arithmetic on the bit-level and cryptanalysis

• Stephen Cook’s SAT’04 challenge captures the essence of this problem

• algebraic methods (out of the box) provide no silver bullet

• we need combinations of algebraic methods with SAT on the bit-level

• extensions to word-level (bit-vector) decisions procedures ? ⇒ Boolector
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