QBF in Formal Verification

Armin Biere

Institute for Formal Models and Verification Johannes Kepler University Linz, Austria

Alpine Verification Meeting 2005

Laussanne, Switzerland
6. October 2006

Quantified Boolean Formulae (QBF)

- propositional logic
$(S A T \subseteq Q B F)$
- constants 0,1
- operators $\quad \wedge, \neg, \rightarrow, \leftrightarrow, \ldots$
- variables $\quad x, y, \ldots \quad$ over boolean domain $\mathbb{B}=\{0,1\}$
- quantifiers over boolean variables
- valid $\quad \forall x[\exists y[x \leftrightarrow y]] \quad$ (read \leftrightarrow as $=)$
- invalid $\quad \exists x[\forall y[x \leftrightarrow y]]$
- semantics given as expansion of quantifiers

$$
\exists x[f] \equiv f[0 / x] \vee f[1 / x] \quad \forall x[f] \equiv f[0 / x] \wedge f[1 / x]
$$

- expansion as translation from SAT to QBF is exponential
- SAT problems have only existential quantifiers
- expansion of universal quantifiers doubles formula size
- most likely no polynomial translation from SAT to QBF
- otherwise PSPACE = NP

s_{6}

s_{7}

s_{8}

S_{4}

S_{9}


```
\(\nLeftarrow \quad \forall s_{0}\left[\operatorname{empty}\left(s_{0}\right) \rightarrow\right.\)
    \(\exists x_{1}\left[\operatorname{circle}\left(s_{0}, x_{1}, s_{1}\right) \wedge\right.\)
                            \(x_{i}, y_{i}\) plays (4 bits each)
        \(\forall y_{2}\left[\operatorname{cross}\left(s_{1}, y_{2}, s_{2}\right) \rightarrow\right.\)
            \(\exists x_{3}\left[\operatorname{circle}\left(s_{2}, x_{3}, s_{3}\right) \wedge\right.\)
            \(\forall y_{4}\left[\operatorname{cross}\left(s_{3}, y_{4}, s_{4}\right) \rightarrow\right.\)
            \(\exists x_{5}\left[\operatorname{circle}\left(s_{4}, x_{5}, s_{5}\right) \wedge\right.\)
                        \(\forall y_{6}\left[\operatorname{cross}\left(s_{5}, y_{6}, s_{6}\right) \rightarrow\right.\)
\(s_{i}\) configurations
                    \(\exists x_{7}\left[\operatorname{circle}\left(s_{6}, x_{7}, s_{7}\right) \wedge\right.\)
( \(9 \times 3\) bits each)
                                \(\forall y_{8}\left[\operatorname{cross}\left(s_{7}, y_{8}, s_{8}\right) \rightarrow\right.\)
                                \(\left.\left.\left.\left.\left.\left.\left.\left.\exists x_{9}\left[\operatorname{circle}\left(s_{8}, x_{9}, s_{9}\right) \wedge \operatorname{win}_{\operatorname{circle}}\left(s_{9}\right)\right]\right]\right]\right]\right]\right]\right]\right]\right]\)
```

- explicit model checking [ClarkeEmerson'82], [Holzmann'91]
- program presented symbolically (no transition matrix)
- traversed state space represented explicitly
- e.g. reached states are explicitly saved bit for bit in hash table
\Rightarrow State Explosion Problem (state space exponential in program size)
- symbolic model checking [McMillan Thesis'93], [CoudertMadre'89]
- use symbolic representations for sets of states
- originally with Binary Decision Diagrams [Bryant'86]
- Bounded Model Checking using SAT [BiereCimattiClarkeZhu'99]

Forward Fixpoint Algorithm: Initial and Bad States

Forward Fixpoint Algorithm: Step 1
A. Biere, FMV, JKU Linz

Forward Fixpoint Algorithm: Step 2

A. Biere, FMV, JKU Linz

Forward Fixpoint Algorithm: Step 3

Forward Fixpoint Algorithm: Bad State Reached

Forward Fixpoint Algorithm: Termination, No Bad State Reachable $\underset{\text { A. Biere, FMV, JKU Linz }}{11}$

Forward Least Fixpoint Algorithm for Model Checking Safety

initial states I, \quad transition relation T, \quad bad states B

$$
\begin{aligned}
& \text { model-check }_{\text {forward }}^{\mu}(I, T, B) \\
& S_{C}=\emptyset ; S_{N}=I ; \\
& \text { while } S_{C} \neq S_{N} \text { do } \\
& \text { if } B \cap S_{N} \neq \emptyset \text { then } \\
& \quad \text { return "found error trace to bad states"; } \\
& S_{C}=S_{N} ; \\
& S_{N}=S_{C} \cup \operatorname{Img}\left(S_{C}\right) ; \\
& \text { done; } \\
& \text { return "no bad state reachable"; }
\end{aligned}
$$

symbolic model checking represents set of states in this BFS symbolically

0: continue? $\quad S_{C}^{0} \neq S_{N}^{0} \quad \exists s_{0}\left[I\left(s_{0}\right)\right]$
0: terminate? $\quad S_{C}^{0}=S_{N}^{0} \quad \forall s_{0}\left[\neg I\left(s_{0}\right)\right]$
0 : bad state? $\quad B \cap S_{N}^{0} \neq \emptyset \quad \exists s_{0}\left[I\left(s_{0}\right) \wedge B\left(s_{0}\right)\right]$
1: continue? $\quad S_{C}^{1} \neq S_{N}^{1} \quad \exists s_{0}, s_{1}\left[I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge \neg I\left(s_{1}\right)\right]$
1: terminate? $\quad S_{C}^{1}=S_{N}^{1} \quad \forall s_{0}, s_{1}\left[I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \rightarrow I\left(s_{1}\right)\right]$
1: bad state? $B \cap S_{N}^{1} \neq \emptyset \quad \exists s_{0}, s_{1}\left[I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge B\left(s_{1}\right)\right]$
2: continue? $\quad S_{C}^{2} \neq S_{N}^{2} \quad \exists s_{0}, s_{1}, s 2\left[I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge T\left(s_{1}, s_{2}\right) \wedge\right.$ $\left.\neg\left(I\left(s_{2}\right) \vee \exists t_{0}\left[I\left(t_{0}\right) \wedge T\left(t_{0}, s_{2}\right)\right]\right)\right]$
2: terminate? $\quad S_{C}^{2}=S_{N}^{2} \quad \forall s_{0}, s_{1}, s 2\left[I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge T\left(s_{1}, s_{2}\right) \rightarrow\right.$ $\left.I\left(s_{2}\right) \vee \exists t_{0}\left[I\left(t_{0}\right) \wedge T\left(t_{0}, s_{2}\right)\right]\right]$
2: bad state? $B \cap S_{N}^{1} \neq \emptyset \quad \exists s_{0}, s_{1}, s_{2}\left[I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge T\left(s_{1}, s_{2}\right) \wedge B\left(s_{2}\right)\right]$

$$
\begin{aligned}
\forall s_{0}, \ldots, s_{r+1}\left[I\left(s_{0}\right) \wedge \bigwedge_{i=0}^{r} T\left(s_{i}, s_{i+1}\right)\right. & \rightarrow \\
\exists t_{0}, \ldots, t_{r}\left[I\left(t_{0}\right) \wedge s_{r+1}=t_{r}\right. & \left.\left.\wedge \bigwedge_{i=0}^{r-1}\left(t_{i}=t_{i+1} \vee T\left(t_{i}, t_{i+1}\right)\right)\right]\right]
\end{aligned}
$$

initial states

(we allow t_{i+1} to be identical to t_{i} in the lower path)
radius is smallest r for which formula is true

single state with distance 2 from initial states

- checking $S_{C}=S_{N}$ in 2nd iteration results in QBF decision problem

$$
\forall s_{0}, s_{1}, s 2\left[I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge T\left(s_{1}, s_{2}\right) \rightarrow I\left(s_{2}\right) \vee \exists t_{0}\left[I\left(t_{0}\right) \wedge T\left(t_{0}, s_{2}\right)\right]\right]
$$

- not eliminating quantifiers results in QBF with one alternation
- checking whether bad state is reached only needs SAT
- number iterations bounded by radius $\quad r=O\left(2^{n}\right)$
- so why not forget about termination and concentrate on bug finding?
$\Rightarrow \quad$ Bounded Model Checking (BMC)

0: continue? $\quad S_{C}^{0} \neq S_{N}^{0} \quad \exists s_{0}\left[I\left(s_{0}\right)\right]$
0: terminate? $\quad S_{C}^{0}=S_{N}^{0} \quad \forall s_{0}\left[\neg I\left(s_{0}\right)\right]$
0: bad state? $\quad B \cap S_{N}^{0} \neq \emptyset \quad \exists s_{0}\left[I\left(s_{0}\right) \wedge B\left(s_{0}\right)\right]$
1: continue? $\quad S_{C}^{1} \neq S_{N}^{1} \quad \exists s_{0, s_{1}}\left[I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge \neg I\left(s_{1}\right)\right]$
1: terminate? $\quad S_{C}^{1}=S_{N}^{1} \quad \forall s_{0}, s_{1}\left[I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \rightarrow I\left(s_{1}\right)\right]$
1: bad state? $B \cap S_{N}^{1} \neq \emptyset \quad \exists s_{0}, s_{1}\left[I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge B\left(s_{1}\right)\right]$

2: continue? $\quad S_{C}^{2} \neq S_{N}^{2} \quad \exists s_{0}, s_{1}, s 2\left[I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge T\left(s_{1}, s_{2}\right) \wedge\right.$

$$
\left.\neg\left(I\left(s_{2}\right) \vee \exists t_{0}\left[I\left(t_{0}\right) \wedge T\left(t_{0}, s_{2}\right)\right]\right)\right]
$$

2: terminate? $\quad S_{C}^{2}=S_{N}^{2} \quad \forall s_{0}, s_{1}, s 2\left[I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge T\left(s_{1}, s_{2}\right) \rightarrow\right.$ $\left.I\left(s_{2}\right) \vee \exists t_{0}\left[I\left(t_{0}\right) \wedge T\left(t_{0}, s_{2}\right)\right]\right]$

2: bad state? $B \cap S_{N}^{1} \neq \emptyset \quad \exists s_{0}, s_{1}, s_{2}\left[I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge T\left(s_{1}, s_{2}\right) \wedge B\left(s_{2}\right)\right]$

[BiereCimattiClarkeZhu TACAS'99]

A. Biere, FMV, JKU Linz

- look only for counter example made of k states (the bound)

- simple for safety properties $\quad \mathbf{G} p \quad$ (e.g. $p=\neg B$)

$$
I\left(s_{0}\right) \wedge\left(\bigwedge_{i=0}^{k-1} T\left(s_{i}, s_{i+1}\right)\right) \wedge \bigvee_{i=0}^{k} \neg p\left(s_{i}\right)
$$

- harder for liveness properties $\mathbf{F} p$

$$
I\left(s_{0}\right) \wedge\left(\bigwedge_{i=0}^{k-1} T\left(s_{i}, s_{i+1}\right)\right) \wedge\left(\bigvee_{l=0}^{k} T\left(s_{k}, s_{l}\right)\right) \wedge \bigwedge_{i=0}^{k} \neg p\left(s_{i}\right)
$$

- increase in efficiency of SAT solvers [ZChaff,MiniSAT,SATelite]
- SAT more robust than BDDs in bug finding (shallow bugs are easily reached by explicit model checking or testing)
- better unbounded but still SAT based model checking algorithms
- k-induction [SinghSheeranStålmarck'00]
- interpolation [McMillan'03]
- 3rd Intl. Workshop on Bounded Model Checking (BMC'05)
- other logics beside LTL and better encodings
e.g. [LatvalaBiereHeljankoJuntilla'04]

Transitive Closure

$$
\begin{gathered}
T^{*} \equiv T^{2^{n}} \\
\text { (assuming } \quad=\subseteq T \text {) }
\end{gathered}
$$

Standard Linear Unfolding

$$
T^{i+1}(s, t) \equiv \exists m\left[T^{i}(s, m) \wedge T(m, t)\right] \quad T^{2 \cdot i}(s, t) \equiv \exists m\left[T^{i}(s, m) \wedge T^{i}(m, t)\right]
$$

Non Copying Iterative Squaring
$T^{2 \cdot i}(s, t) \equiv \exists m\left[\forall c\left[\exists l, r\left[(c \rightarrow(l, r)=(s, m)) \wedge(\bar{c} \rightarrow(l, r)=(m, t)) \wedge T^{i}(l, r)\right]\right]\right]$

```
dpll-sat(Assignment S) [DavisLogemannLoveland62]
    boolean-constraint-propagation()
    if contains-empty-clause() then return false
    if no-clause-left() then return true
    v := next-unassigned-variable()
    return dpll-sat(S }\cup{v\mapstofalse}) \vee dpll-sat(S \cup {v\mapsto true}
```

dpll-qbf(Assignment S) [CadoliGiovanardiSchaerf98]
boolean-constraint-propagation()
if contains-empty-clause() then return false
if no-clause-left() then return true
v := next- outermost -unassigned-variable()
@ := is-existential $(v) ? \vee: \wedge$
return dpll-sat $(S \cup\{v \mapsto f a l s e\})$ @ $\operatorname{dpll}-s a t(S \cup\{v \mapsto t r u e\})$

Why is QBF harder than SAT?

$$
\vDash \quad \forall x . \exists y .(x \leftrightarrow y)
$$

```
|F\quad\existsy.\forallx.(x\leftrightarrowy)
```

Decision order matters!

- most implementations DPLL alike: [Cadoli...98][Rintanen01]
- learning was added [Giunchiglia...01] [Letz01] [ZhangMalik02]
- top-down: split on variables from the outside to the inside
- multiple quantifier elimination procedures:
- enumeration [PlaistedBiereZhu03] [McMillan02]
- expansion [Aziz-Abdulla...00] [WilliamsBiere...00] [AyariBasin02]
- bottom-up: eliminate variables from the inside to the outside
- q-resolution [KleineBüning...95], with expansion [Biere04]
- symbolic representations [PanVardi04] [Benedetti05] BDDs
- applications fuel interest in SAT
- incredible capacity increase
(this year: MiniSAT, SATelite)
- SAT solver competition affiliated to SAT conference
- SAT is becoming a core verification technology
- QBF is catching up
- solvers are getting better
- new applications
- richer structure

