A Short History of SAT Based Model Checking:
From Bounded Model Checking to Interpolation

Armin Biere

Brno University of Technology
Seminar Faculty of Information Technology

Brno, Czech Republic

A Personal History of Model Checking

BurchClarkeMcMillanDill[Hwang'90: Symbolic Model Checking
DavisPutnam’60: DP

CoudertMadre’89: Symbolic Reachability McMillan’03: Interpolation

DavisLogemannLoveland'62: DPLL Marques—SilvaSakallah’96: GRASP

Bryant’86: BDDs BiereArthoSchuppan’0l1: Liveness2Safety

Pnueli’77: Temporal Logic MoskewiczMadiganZhaoZhangMalik’'01: CHAFF

McMillan'93: SMV EenSorensson’03: MiniSAT

ClarkeEmerson’82: Model Checking BiereCimattiClarkeZhu'99: Bounded Model Checking
Kurshan’93: Localization EenBiere'05: SatkLite
SheeranSinghStalmarck’00: k-Induction

QuielleSifakis’82: Model Checking BallRajamani’01: SLAM

Holzmann'91: SPIN GrafSaidi'97: Predicate Abstraction
Holzmann’81: On—-The—Fly Reachability ClarkeGrumbergJahLuVeith’'03: CEGAR

Peled’94: Partial-Order—Reduction

Reachability

e set of states S, initial states I, transition relation T

e bad states B reachable from 7 via T?

e symbolic representation of T (ciruit, program, parallel product)
— avoid explicit matrix representations, because of the
— state space explosion problem, e.g. n-bit counter: |T| =0(n), |S|=0(2")

— makes reachability PSPACE complete [Savitch'70]

e on-the-fly [Holzmann’81’] for protocols
— restrict search to reachable states

— simulate and hash reached concrete states

Forward Fixpoint Algorithm: Initial and Bad States

Forward Fixpoint Algorithm: Step 1

Forward Fixpoint Algorithm: Step 2

Forward Fixpoint Algorithm: Bad State Reached

Forward Fixpoint Algorithm: Termination, No Bad State Reachable 8

Forward Least Fixpoint Algorithm for Model Checking Safety

initial states 7, transition relation 7, bad states B

model-check; .
Sc=0; Sy =1,
while So # Sy do

if BN Sy # 0 then

return “found error trace to bad states’;

(I, T, B)

Sc = SN;
Sy =ScU Img(Sc) ;
done;
return “no bad state reachable”;

Model Checking 10

e algorithms to check more general properties [ClarkeEmerson’82], [QuielleSifakis’82]
— uses temporal logic [Pnueli’77] as property specification language

— model checkers are usually fully automatic

linear vs. branching time formalisms (CTL vs LTL) was hotly debated
— either determine that property holds or ...

— ... provide counter example for debugging purposes

e originally explicit (as in SPIN [Holzmann'91])
— search works with concrete states,
— bottle neck: number of states, that have to be stored

— local (on-the-fly) and global algorithms (not on-the-fly)

Symbolic Model Checking

e work with symbolic representations of states
— symbolic representations are potentially exponentially more succinct

— favors BFS: next frontier set of states in BFS is calculated symbolically

e originally “symbolic” meant model checking with BDDs
[CoudertMadre’89/'90,BurchClarkeMcMillanDillHwang'90,McMillan’93]

e Binary Decision Diagrams [Bryant’86]
— canonical representation for boolean functions
— BDDs have fast operations (but image computation is expensive)
— often blow up in space

— restricted to hundreds of variables

11

Unrolling of Forward Least Fixpoint Algorithm

0: continue?
0: terminate?
0: bad state?

1: continue?
1: terminate?

1: bad state?

2: continue?

2: terminate?

2: bad state?

0 4 0
Sc 7 Sn
0 _ 0
Sc =N
BNSY, #0

1 ol
Sc 7 Sy
1 el
S¢=SN

BNS) #0
2, D
S¢ # Sy

)
Sc =Sy

BNS) #0

Iso[1(s0)]
Vso[—I(s0)]
Jso[1(so) A B(so)]

3s0,51(s0) AT (sg,51) A—I(s1)]

V0,51 (s0) AT (s0,51) — 1(s1)]
EISOasl :I(SO) A T(S07S1) /\B<S1)]

AT (sg,81) AT (s1,52) A
s2) V 3olI (o) AT (2o, 52)])]

)
(
Vs0,51,521(s0) AT (sg,51) AT (s1,82) —
I(s2) V 3tp[l(to) AT (29, 52)]]
(50) AT

EISOasleZ[I S0 /\T(S07S1) (S17S2)/\B(S2)]

Els())SleZ[I(S
- (1

12

Falsification Part of Fixpoint Algorithm 13

0-continue? SO / SO = *&Oﬂ—
' ' C N .
O-terminate?2 0 — ¢0 gt 00
' ' C N .
£

. : 1 ¢l -
b-eontinue? —Sc# Sy Isorstt o) AT Sos A
. : 1 _ ¢l -
bterminate? —So =Sy vsos i so A T Sos) — Ao
4

Qe

2
N gl) Y Y

Bounded Model Checking (BMC)

[BiereCimattiClarkeZhu’99]

e look only for counter example made of k states

S0 S S S+ =)

(the bound)

S
O or O
P

O @ @)
-p L] -p] -0 :@ - p -

e simple for safety properties p is invariantly true

I(s0) N T(s0,81)) A=+ AT (sg—1

S 3+1
O »Q
P . p
(e.g. p =—B)
k
ssk) A\ —p(si)
i=0

e harder for liveness properties p is eventually true

I(so) N T(s0,51)) A+ AT (sg—1,5) A

k

N —p(si) A T (sg,59)
i=0

P

14

Bounded Model Checking (BMC)

[BiereCimattiClarkeZhu’99]

e look only for counter example made of k states (the bound)

S S S S S S S s@;/sﬂ\)s(
O >0 >0 >0 or O O >0 O
- O -v0 1] Ao A %

2P - 2P 2P 2P

e simple for safety properties p is invariantly true (e.g. p = —B)
k
I(SO) A T(S()asl>) ASERRA T(Sk_l,Sk) A\ \/ _'p(Si)
i=0

e harder for liveness properties p is eventually true

k k

I(so) A T(s0,s1)) A=+ AT (se—1,50) A\ —p(si) AN T(sg,s1)
i=0 1=0

15

BMC with SAT

e satisfiability checking (SAT)
— of propositional/combinational problems (only boolean variables)
— actually restricted to conjunctive normal form (CNF)

— classical NP hard problem [Cook’71]

e key motivation of BMC
— leverage capacity of SAT solvers
— SAT solvers could handle 10000 variables in late 90’ties

— compared to hundreds of variables with BDDs

e key insight: trade capacity for completeness

16

Bounded Model Checking State-of-the-Art

e increase in efficiency of SAT solvers [ZChaff,MiniSAT,SatELite]

e SAT more robust than BDDs in bug finding

(shallow bugs are easily reached by explicit model checking or testing)

better unbounded but still SAT based model checking algorithms

— k-induction [SinghSheeranStalmarck’00]

— interpolation [McMillan’03]

4th Intl. Workshop on Bounded Model Checking (BMC’06)

other logics beside LTL, better encodings, e.g. [LatvalaBiereHeljankoJuntilla’04]

e other system models, such as hybrid automata

17

Induction with SAT

[SinghSheeranStalmarck’00]

e more specifically k-induction

— does there exist k such that the following formula is unsatisfiable

B(so) A+ AB(sg—1) AT (s0,51) A+ AT (sg—1,5) AB(s) A\
0<i<j<k
— if unsatisfiable and -BMC(k) then bad state unreachable
e bound on k: length of longest cycle free path

e k=0 check whether —B tautological (propositionally)

e k=1 check whether —B inductive for T

Si S

18

A Short SAT Solver History

e Davis and Putnam procedure
— DP: elimination procedure [DavisPutnam’60]

— DPLL: splitting [DavisLogemannLoveland’'62]

e modern SAT solvers are mostly based on DPLL
— learning: GRASP [MarquesSilvaSakallah’96], RelSAT [BayardoSchrag’'97]
— watched literals, VSIDS: CHAFF [MoskewiczMadiganZhaoZhangMalik’01]

— improved heuristics: MiniSAT [EenSorensson’03] actually Version from 2005

preprocessing is a hot topic:

— currently fastest solvers use SatELite style preprocessing [EenBiere’05] DP

e Wwww.satcompetition.org since 2002

19

Cactus Plot for SAT’06 Race Instances

900

800

700

600

500

400

300

200

100

| | | .I
([
M A
++++ v ‘.AA |
+
V.....AA
ey v§® -
e N
A A
) vv'.. LA .
] v A
(J
] vvvvv () N A .
++ N R
% v o A
O va ... —
>|2|< [Eﬂjj AA N
K vV o" At | t
o A R imma + .
A e &8 .. nanosat
. = A o st funex x
o I~ s compsat © .
® AN A
X O AV st booleforce
o “angAAM at minisat2007 v
o aakasst picosat2007 e -
o picosat2008 ~
| plcoprep2008 A
60 80 100

20

Interpolation

[McMillan’03]

e SAT based technique to overapproximate frontiers Img(Sc)
— currently most effective technique to show that bad states are unreachable

— better than BDDs and k-induction in most cases [HWMCC’07]

e starts from a resolution proof refutation of a BMC problem with bound £+ 1
Sc(so) AT (sg,51) AT (s1,82) A=+ AT (SgySga-1) AB(Sga1)
— result is a characteristic function f(s;) over variables of the second state s,

— these states do not reach the bad state s, | in k steps

— any state reachable from S satisfies f: Sc(so) AT (sg,51) = f(s1)

e kis bounded by the diameter (exponentially smaller than longest cycle free path)

21

Longest Shortest Path vs Diameter

= O O O

length of longest shortest path O(n)

diameter O(1)

22

Challenges | 23

e further convergence between theorem proving and model checking

— as pioneered by SLAM [BallRajamani’01] using

x predicate abstraction [GrafSaidi'97] and
x counter example guided abstraction refinement [ClarkeGrumbergJahLuVeith’03]
— handle large software and hardware systems precisely

— automate compositional reasoning, e.g. alias analysis

e improve Satisfiability Modulo Theory (SMT) procedures
— What is the right way to handle bit-vectors, arrays?

— Quantifiers, interpolation for bit-vectors and arrays?

Challenges |l

e Satisfiability Solver (SAT) (standard NP hard problem)
— Iimprove heuristics, remove magic constants
— more aggresive incremental preprocessing

— effective incorporation of more powerful reasoning engines

e Quantified Boolean Formulas (QBF) (standard PSPACE hard problem)
— new paradigms?

— improve capacity and effectively apply QBF to real problems

e and do not forget testing, debugging, simulation

24

