
SAT

Armin Biere

CPAIOR’20 Master Class

Online

September 21, 2020

Dress Code of a Speaker at a Master Class as SAT Problem

propositional logic:

variables tie shirt

negation ¬ (not)

disjunction ∨ (or)

conjunction ∧ (and)

clauses (conditions / constraints)

1. clearly one should not wear a tie without a shirt ¬tie∨shirt

2. not wearing a tie nor a shirt is impolite tie∨shirt

3. wearing a tie and a shirt is overkill ¬(tie∧shirt) ≡ ¬tie∨¬shirt

Is this formula in conjunctive normal form (CNF) satisfiable?

(¬tie∨shirt) ∧ (tie∨shirt) ∧ (¬tie∨¬shirt)

0 1,000 2,000 3,000 4,000 5,000
0

50

100

150

200

250

CPU time

so
lv
ed

in
st
an

ce
s

SAT Competition Winners on the SC2020 Benchmark Suite

kissat-2020
maple-lcm-disc-cb-dl-v3-2019
maple-lcm-dist-cb-2018
maple-lcm-dist-2017
maple-comsps-drup-2016
lingeling-2014
abcdsat-2015
lingeling-2013
glucose-2012
glucose-2011
cryptominisat-2010
precosat-2009
minisat-2008
berkmin-2003
minisat-2006
rsat-2007
satelite-gti-2005
zchaff-2004
limmat-2002

data produced by Armin Biere and Marijn Heule

some recent Tweets

SAT Handbook upcoming 2nd Edition
editors Armin Biere, Marijn Heule, Hans van Maaren, Toby Walsh

with many updated chapters and the following 7 new chapters:

Proof Complexity Jakob Nordström and Sam Buss

The SAT problem is evidently a killer
app, because it is key to the solution
of so many other problems. SAT-
solving techniques are among com-
puter science’s best success stories
so far, and these volumes tell that
fascinating tale in the words of the
leading SAT experts.

Donald Knuth

. . . Clearly, efficient SAT solving is
a key technology for 21st century
computer science. I expect this col-
lection of papers on all theoretical
and practical aspects of SAT solv-
ing will be extremely useful to both
students and researchers and will
lead to many further advances in
the field.

Edmund Clarke

Preprocessing Armin Biere, Matti Järvisalo and Benjamin Kiesl

Tuning and Configuration

Holger Hoos, Frank Hutter and Kevin Leyton-Brown

Proofs of Unsatisfiability Marijn Heule

Core-Based MaxSAT
Fahiem Bacchus, Matti Järvisalo and Ruben Martins

Proof Systems for Quantified Boolean Formulas
Olaf Beyersdorff, Mikoláš Janota, Florian Lonsing and Martina Seidl

Approximate Model Counting Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi

What is Practical SAT Solving?

simplifying

encoding

inprocessing

search

reencoding
1st part

2nd part

other talks

Equivalence Checking If-Then-Else Chains

original C code optimized C code

if(!a && !b) h(); if(a) f();
else if(!a) g(); else if(b) g();
else f(); else h();

⇓ ⇑

if(!a) { if(a) f();
if(!b) h(); ⇒ else {
else g(); if(!b) h();
} else f(); else g(); }

How to check that these two versions are equivalent?

Compilation

original ≡ if ¬a∧¬b then h else if ¬a then g else f

≡ (¬a∧¬b)∧h ∨ ¬(¬a∧¬b)∧ if ¬a then g else f

≡ (¬a∧¬b)∧h ∨ ¬(¬a∧¬b)∧ (¬a∧g ∨ a∧ f)

optimized ≡ if a then f else if b then g else h

≡ a∧ f ∨ ¬a∧ if b then g else h

≡ a∧ f ∨ ¬a∧ (b∧g ∨ ¬b∧h)

(¬a∧¬b)∧h ∨ ¬(¬a∧¬b)∧ (¬a∧g ∨ a∧ f) 6⇔ a∧ f ∨ ¬a∧ (b∧g ∨ ¬b∧h)

satisfying assignment gives counter-example to equivalence

Tseitin Transformation: Circuit to CNF

c

b

a

w

v

w

u
o

x

y

o ∧
(x ↔ a∧ c) ∧
(y ↔ b∨ x) ∧
(u ↔ a∨b) ∧
(v ↔ b∨ c) ∧
(w↔ u∧ v) ∧
(o ↔ y⊕w)

o∧ (x→ a)∧ (x→ c)∧ (x← a∧ c)∧ . . .

o∧ (x∨a)∧ (x∨ c)∧ (x∨a∨ c)∧ . . .

Tseitin Transformation: Gate Constraints

Negation: x↔ y ⇔ (x→ y)∧ (y→ x)
⇔ (x∨ y)∧ (y∨ x)

Disjunction: x↔ (y∨ z) ⇔ (y→ x)∧ (z→ x)∧ (x→ (y∨ z))
⇔ (y∨ x)∧ (z∨ x)∧ (x∨ y∨ z)

Conjunction: x↔ (y∧ z) ⇔ (x→ y)∧ (x→ z)∧ ((y∧ z)→ x)
⇔ (x∨ y)∧ (x∨ z)∧ ((y∧ z)∨ x)
⇔ (x∨ y)∧ (x∨ z)∧ (y∨ z∨ x)

Equivalence: x↔ (y↔ z) ⇔ (x→ (y↔ z))∧ ((y↔ z)→ x)
⇔ (x→ ((y→ z)∧ (z→ y))∧ ((y↔ z)→ x)
⇔ (x→ (y→ z))∧ (x→ (z→ y))∧ ((y↔ z)→ x)
⇔ (x∨ y∨ z)∧ (x∨ z∨ y)∧ ((y↔ z)→ x)
⇔ (x∨ y∨ z)∧ (x∨ z∨ y)∧ (((y∧ z)∨ (y∧ z))→ x)
⇔ (x∨ y∨ z)∧ (x∨ z∨ y)∧ ((y∧ z)→ x)∧ ((y∧ z)→ x)
⇔ (x∨ y∨ z)∧ (x∨ z∨ y)∧ (y∨ z∨ x)∧ (y∨ z∨ x)

Bit-Blasting of Bit-Vector Addition

addition of 4-bit numbers x,y with result s also 4-bit: s = x+ y

[s3,s2,s1,s0]4 = [x3,x2,x1,x0]4+[y3,y2,y1,y0]4

[s3, ·]2 = FullAdder(x3,y3,c2)

[s2,c2]2 = FullAdder(x2,y2,c1)

[s1,c1]2 = FullAdder(x1,y1,c0)

[s0,c0]2 = FullAdder(x0,y0, false)

where

[s , o]2 = FullAdder(x,y, i) with

s = x xor y xor i

o = (x∧ y)∨ (x∧ i)∨ (y∧ i) = ((x+ y+ i)≥ 2)

Boolector Architecture

Expr

SAT Solver CNF

optimize

encode

SMT

BTOR

API

Expr

parse O2

subst

norm

slice

O3

synthesize

O1 = bottom up simplification

O1

rewrite

AIG Vector

AIG

O3 = normalizing (often non−linear) [default]

O2 = global but almost linear

Lingeling / PicoSAT / MiniSAT / CaDiCaL

Intermediate Representations

encoding directly into CNF is hard, so we use intermediate levels:

1. application level

2. bit-precise semantics world-level operations (bit-vectors)

3. bit-level representations such as And-Inverter Graphs (AIGs)

4. conjunctive normal form (CNF)

encoding “logical” constraints is another story

XOR as AIG

yx

negation/sign are edge attributes
not part of node

x xor y ≡ (x∧ y)∨ (x∧ y) ≡ (x∧ y)∧ (x∧ y)

2

1[1]

4

2[1]

6

1[2]

8

2[2]

1 0

1[3]

1 2

2[3]

1 4

1[0]

1 6

2[0]1 8

20

22

24

26

28

30

32

34

36

38

4042

44

46 48

50

52

54

56

58

60

62

O0

O1

O2

O3

��FMX�EHHIV

2

1[1]

4

2[1]

6

1[2]

8

2[2]

1 0

1[3]

1 2

2[3]

1 4

1[4]

1 6

2[4]

1 8

1[5]

2 0

2[5]

2 2

1[6]

2 4

2[6]

2 6

1[7]

2 8

2[7]

3 0

1[0]

3 2

2[0]3 4

36

38

40

42

44

46

48

50

52

54

56

58

60

62

64

66

68

70

72

74

76

78

80

82

84

86

88

90

92

94

9698

100

102 104

106

108

110

112

114

116

118

120

122

124

126

128

130

132

134

O0

O1

O2

O3

O4

O5

O6

O7

��FMX�EHHIV

2

2[0]

4

2[1]

6

2[2]

8

1[0]

1 0

2[3]

1 2

1[1]

1 4

1[2]

1 6

1[3]

1 8

1[4]

2 0

1[5]

2 2

1[6]

2 4

1[7]

2 6

1[8]

2 8

1[9]

3 0

1[10]

32

1[11]

34

1[12]

36

1[13]

38

1[14]

40

1[15]

42 44

46

48

50 52

54

56

58

60

62 64

66

68

7072

74

76

78

80

82

84

86 88

90

92

94 96

98

100

102

104

106 108

110

112

114 116

118

120

122

124

126

128

130

132 134

136

138

140 142

144

146

148

150

152 154

156

158

160 162

164

166

168

170

172

174

176 178

180

182

184 186

188

190

192

194

196 198

200

202

204

206

208

210

212

214

216

218 220

222

224

226 228

230

232

234

236

238 240

242

244

246

248

250

252

254

256 258

260

262

264 266

268

270

272

274

276 278

280

282

284

286

288

290

292

294 296

298

300

302

304

306

308 310

312

314

316

318

320

322 324

326

328

330

332

334

336 338

340

342

344

346

348

350 352 354 356358 360362 364

O0 O1 O2 O3O4 O5O6 O7

O8 O9 O10 O11O12 O13O14 O15

bit-vector of length 16 shifted by bit-vector of length 4

2

1[6]

4

2[7]

6

1[7]8

2[6]

1 0

1[5]

1 2

2[5]

1 4

1[4]

1 6

2[4]

1 8

1[3]

2 0

2[3]

2 2

1[2]

2 4

2[2]

2 6

1[1]

2 8

2[1]

3 0

1[0]

3 2

2[0]

3 4

36

38

40 42

44 46

48

50 52

54

56

58

60

62

64

66 68

70

72 74

76 78

80 82

84

86 88

90

92

94

96

98

100

102

104 106

108

110 112

114 116

118 120

122

124 126

128 130

132 134

136

138 140

142

144

146

148

150

152

154

156

158 160

162

164 166

168 170

172 174

176

178 180

182 184

186 188

190

192 194

196 198

200 202

204

206 208

210

212

214

216

218

220

222

224

226

228 230

232

234 236

238 240

242 244

246

248 250

252 254

256 258

260

262 264

266 268

270 272

274

276 278

280 282

284 286

288

290 292

294 296

298

300

302

304

306

308

310 312

314 316

318

320322

324 326

328 330

332

334 336

338340

342344

346

348350

352 354

356 358

360

362 364

366 368

370 372

374

376378

380 382

384386

388

390392

394 396

398400

402

404

406

408

410

412

414

416

418

420

422

424

426

428

O0

O1

O2

O3

O4

O5

O6

O7

Encoding Logical Constraints

Tseitin construction suitable for most kinds of “model constraints”

assuming simple operational semantics: encode an interpreter

small domains: one-hot encoding large domains: binary encoding

harder to encode properties or additional constraints

temporal logic / fix-points

environment constraints

example for fix-points / recursive equations: x = (a∨ y), y = (b∨ x)

has unique least fix-point x = y = (a∨b)

and unique largest fix-point x = y = true but unfortunately . . .

. . . only largest fix-point can be (directly) encoded in SAT
otherwise need stable models / logical programming / ASP

Example of Logical Constraints: Cardinality Constraints

given a set of literals {l1, . . . ln}
constraint the number of literals assigned to true

l1+ · · ·+ ln ≥ k or l1+ · · ·+ ln ≤ k or l1+ · · ·+ ln = k

combined make up exactly all fully symmetric boolean functions

multiple encodings of cardinality constraints

naı̈ve encoding exponential: at-most-one quadratic, at-most-two cubic, etc.

quadratic O(k ·n) encoding goes back to Shannon

linear O(n) parallel counter encoding [Sinz’05]

many variants even for at-most-one constraints

for an O(n · logn) encoding see Prestwich’s chapter in Handbook of SAT

Pseudo-Boolean constraints (PB) or 0/1 ILP constraints have many encodings too

2 ·a+b+ c+d +2 · e ≥ 3

actually used to handle MaxSAT in SAT4J for configuration in Eclipse

BDD-Based Encoding of Cardinality Constraints

2≤ l1+ · · · l9 ≤ 3

l
1

l
2

l
2

l
3

l
3

l
4

l
4

l
5

l
6

l
6

l
5

l
7

l
7

l
8

l
8

l
9

l
9

l
3

l
4

l
5

l
6

l
7

l
8

l
9

l
4

l
5

l
6

l
7

l
8

l
9

1

0

0

0 00 0 0 0

1

If-Then-Else gates (MUX) with “then” edge downward, dashed “else” edge to the right

Tseitin Encoding of If-Then-Else Gate

t

x

1

0e

c

x↔ (c ? t : e) ⇔ (x→ (c→ t)) ∧ (x→ (c̄→ e)) ∧ (x̄→ (c→ t̄)) ∧ (x̄→ (c̄→ ē))

⇔ (x̄∨ c̄∨ t) ∧ (x̄∨ c∨ e) ∧ (x∨ c̄∨ t̄) ∧ (x∨ c∨ ē)

minimal but not arc consistent:

if t and e have the same value then x needs to have that too

possible additional clauses

(t̄ ∧ ē→ x̄) ≡ (t ∨ e∨ x̄) (t ∧ e→ x) ≡ (t̄ ∨ ē∨ x)

but can be learned or derived through preprocessing (ternary resolution)
keeping those clauses redundant is better in practice

DIMACS Format

$ cat example.cnf

c comments start with ’c’ and extend until the end of the line

c

c variables are encoded as integers:

c

c ’tie’ becomes ’1’

c ’shirt’ becomes ’2’

c

c header ’p cnf <variables> <clauses>’

c

p cnf 2 3

-1 2 0 c !tie or shirt

1 2 0 c tie or shirt

-1 -2 0 c !tie or !shirt

$ picosat example.cnf

s SATISFIABLE

v -1 2 0

SAT Application Programmatic Interface (API)

incremental usage of SAT solvers

add facts such as clauses incrementally

call SAT solver and get satisfying assignments

optionally retract facts

retracting facts

remove clauses explicitly: complex to implement

push / pop: stack like activation, no sharing of learned facts

MiniSAT assumptions [EénSörensson’03]

assumptions

unit assumptions: assumed for the next SAT call

easy to implement: force SAT solver to decide on assumptions first

shares learned clauses across SAT calls

IPASIR: Reentrant Incremental SAT API

used in the SAT competition / race since 2015 [BalyoBiereIserSinz’16]

IPASIR Model

#include "ipasir.h"

#include <assert.h>

#include <stdio.h>

#define ADD(LIT) ipasir_add (solver, LIT)

#define PRINT(LIT) \

 printf (ipasir_val (solver, LIT) < 0 ? " -" #LIT : " " #LIT)

int main () {

 void * solver = ipasir_init ();

 enum { tie = 1, shirt = 2 };

 ADD (-tie); ADD (shirt); ADD (0);

 ADD (tie); ADD (shirt); ADD (0);

 ADD (-tie); ADD (-shirt); ADD (0);

 int res = ipasir_solve (solver);

 assert (res == 10);

 printf ("satisfiable:"); PRINT (shirt); PRINT (tie); printf ("\n");

 printf ("assuming now: tie shirt\n");

 ipasir_assume (solver, tie); ipasir_assume (solver, shirt);

 res = ipasir_solve (solver);

 assert (res == 20);

 printf ("unsatisfiable, failed:");

 if (ipasir_failed (solver, tie)) printf (" tie");

 if (ipasir_failed (solver, shirt)) printf (" shirt");

 printf ("\n");

 ipasir_release (solver);

 return res;

}

$./example

satisfiable: shirt -tie

assuming now: tie shirt

unsatisfiable, failed: tie

IPASIR Functions

const char * ipasir_signature ();

void * ipasir_init ();

void ipasir_release (void * solver);

void ipasir_add (void * solver, int lit_or_zero);

void ipasir_assume (void * solver, int lit);

int ipasir_solve (void * solver);

int ipasir_val (void * solver, int lit);

int ipasir_failed (void * solver, int lit);

void ipasir_set_terminate (void * solver, void * state,

 int (*terminate)(void * state));

#include "cadical.hpp"

#include <cassert>

#include <iostream>

using namespace std;

#define ADD(LIT) solver.add (LIT)

#define PRINT(LIT) \

 (solver.val (LIT) < 0 ? " -" #LIT : " " #LIT)

int main () {

 CaDiCaL::Solver solver; solver.set ("quiet", 1);

 enum { tie = 1, shirt = 2 };

 ADD (-tie), ADD (shirt), ADD (0);

 ADD (tie), ADD (shirt), ADD (0);

 ADD (-tie), ADD (-shirt), ADD (0);

 int res = solver.solve ();

 assert (res == 10);

 cout << "satisfiable:" << PRINT (shirt) << PRINT (tie) << endl;

 cout << "assuming now: tie shirt" << endl;

 solver.assume (tie), solver.assume (shirt);

 res = solver.solve ();

 assert (res == 20);

 cout << "unsatisfiable, failed:";

 if (solver.failed (tie)) cout << " tie";

 if (solver.failed (shirt)) cout << " shirt";

 cout << endl;

 return res;

}

$./example

satisfiable: shirt -tie

assuming now: tie shirt

unsatisfiable, failed: tie

DP / DPLL

dates back to the 50’ies:

1st version DP is resolution based ⇒ preprocessing

2nd version D(P)LL splits space for time ⇒ CDCL

ideas:

1st version: eliminate the two cases of assigning a variable in space or

2nd version: case analysis in time, e.g. try x = 0,1 in turn and recurse

most successful SAT solvers are based on variant (CDCL) of the second version

works for very large instances

recent (≤ 25 years) optimizations:

backjumping, learning, UIPs, dynamic splitting heuristics, fast data structures

DP Procedure

forever

if F => return satisfiable

if ⊥ ∈ F return unsatisfiable

pick remaining variable x

add all resolvents on x

remove all clauses with x and ¬x

⇒ Bounded Variable Elimination

D(P)LL Procedure

DPLL(F)

F := BCP(F) boolean constraint propagation

if F => return satisfiable

if ⊥ ∈ F return unsatisfiable

pick remaining variable x and literal l ∈ {x,¬x}

if DPLL(F ∧{l}) returns satisfiable return satisfiable

return DPLL(F ∧{¬l})

⇒ CDCL

DPLL Example

a

clauses

v b v ca

a v b v c

a v b v c

a v b v c

a v b v c

a v b v c

a v b v c

a v b v c

b

c

c

c b b

a

b c

b =

a =

c =

1

0

1 BCP

decision

decision

Conflict Driven Clause Learning (CDCL)
[MarqueSilvaSakallah’96]

first implemented in the context of GRASP SAT solver

name given later to distinguish it from DPLL

not recursive anymore

essential for SMT

learning clauses as no-goods

notion of implication graph

(first) unique implication points

Conflict Driven Clause Learning (CDCL)

c

a v b

a v blearn

a

b

b =

a =

c =

1

0

1 BCP

decision

decision

clauses

v b v ca

a v b v c

a v b v c

v c

a v b v c

a v b v c

a v b v c

a v b v c

Conflict Driven Clause Learning (CDCL)

a v b

b
c

b

a

a

b =

a =

c =

1

0

clauses

v b v ca

a v b v c

a v b v c

v c

a v v c

a v b v c

a v b v c

a v b v c

v b

0

BCP

BCP

decision a

learn

Conflict Driven Clause Learning (CDCL)

a v b

b

a

a

c

b

a

a v b v c

b =

a =

c =

1

0

clauses

v b v ca

a v b v c

a v b v c

v c

a v v c

a v b v c

a v b v c

v b

0

BCP

decision

BCP

clearn

Conflict Driven Clause Learning (CDCL)

a v b

b

a

a

a

b =

a =

c =

1

0

clauses

v b v ca

a v b v c

a v b v c

v c

a v v c

a v b v c

a v b v c

v b

0

a BCP

BCP

c

c BCP

b

a v b v c

learn

empty clause

Implication Graph

d = 1 @ 1 e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f g = 1 @ 2 h = 1 @ 2 i = 1 @ 2

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4 s = 1 @ 4 t = 1 @ 4 y = 1 @ 4

= 1 @ 4x z = 1 @ 4 κ

top−level

decision

decision

decision

unit unit

conflict

decision

Antecedents / Reasons

e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f h = 1 @ 2 i = 1 @ 2

= 1 @ 1c

r = 1 @ 4 y = 1 @ 4

= 1 @ 4x z = 1 @ 4 κ

top−level

decision

decision

decision

unit unit

conflict

decision

d

g

s t

= 1 @ 2

= 1 @ 1

= 1 @ 4= 1 @ 4

k = 1 @ 3 = 1 @ 3l

d∧g∧ s → t ≡ (d∨g∨ s∨ t)

Conflicting Clauses

d = 1 @ 1 e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f g = 1 @ 2 i = 1 @ 2

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4 s = 1 @ 4

= 1 @ 4x

top−level

decision

decision

decision

unit unit

= 1 @ 4

= 1 @ 4y

z conflictκ

h = 1 @ 2

t = 1 @ 4decision

¬(y∧ z) ≡ (y∨ z)

Resolving Antecedents 1st Time

d = 1 @ 1 e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f g = 1 @ 2

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4 s = 1 @ 4

= 1 @ 4x

top−level

decision

decision

decision

unit unit

= 1 @ 4

= 1 @ 4y

z conflictκ

decision

h i

t

= 1 @ 2 = 1 @ 2

= 1 @ 4

(h∨ i∨ t ∨ y) (y∨ z)

Resolving Antecedents 1st Time

d = 1 @ 1 e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f g = 1 @ 2

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4 s = 1 @ 4

= 1 @ 4x

top−level

decision

decision

decision

unit unit

= 1 @ 4

= 1 @ 4y

z conflictκ

decision

h i

t

= 1 @ 2 = 1 @ 2

= 1 @ 4

(h∨ i∨ t ∨ y) (y∨ z)

(h∨ i∨ t ∨ z)

Resolvents = Cuts = Potential Learned Clauses

d = 1 @ 1 e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f g = 1 @ 2

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4 s = 1 @ 4

= 1 @ 4x

d = 1 @ 1 e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f g = 1 @ 2

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4 s = 1 @ 4

= 1 @ 4x

top−level

decision

decision

decision

unit unit

= 1 @ 4

= 1 @ 4y

z conflictκ

decision

h i

t

= 1 @ 2 = 1 @ 2

= 1 @ 4

top−level

decision

decision

decision

unit unit

= 1 @ 4

= 1 @ 4y

z conflictκ

decision

h i

t

= 1 @ 2 = 1 @ 2

= 1 @ 4

(h∨ i∨ t ∨ y) (y∨ z)

(h∨ i∨ t ∨ z)

Potential Learned Clause After 1 Resolution

d = 1 @ 1 e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f g = 1 @ 2

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

= 1 @ 4x

top−level

decision

decision

decision

unit unit

z

decision

h i

t

= 1 @ 2 = 1 @ 2

= 1 @ 4s = 1 @ 4 = 1 @ 4

= 1 @ 4 κ conflict

y

(h∨ i∨ t ∨ z)

Resolving Antecedents 2nd Time

e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

= 1 @ 4x

top−level

decision

decision

decision

unit unit

z

decision

h i

t

= 1 @ 2 = 1 @ 2

= 1 @ 4 = 1 @ 4

= 1 @ 4 κ conflict

ys

g

d = 1 @ 1

= 1 @ 2

= 1 @ 4

(d∨g∨ s∨ t) (h∨ i∨ t ∨ z)

(d∨g∨ s∨h∨ i∨ z)

Resolving Antecedents 3rd Time

e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit unit

z

decision

h i= 1 @ 2 = 1 @ 2

= 1 @ 4

= 1 @ 4 κ conflict

y= 1 @ 4t= 1 @ 4

= 1 @ 2

= 1 @ 1d

g

s

= 1 @ 4x

(x∨ z) (d∨g∨ s∨h∨ i∨ z)

(x∨d∨g∨ s∨h∨ i)

Resolving Antecedents 4th Time

e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit unit

decision

h i= 1 @ 2 = 1 @ 2

= 1 @ 4

κ conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

x = 1 @ 4

= 1 @ 4

= 1 @ 4

t

z

(s∨ x) (x∨d∨g∨ s∨h∨ i)

(d∨g∨ s∨h∨ i)
self subsuming resolution

1st UIP Clause after 4 Resolutions

e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit unit

decision

h i= 1 @ 2 = 1 @ 2

= 1 @ 4

κ conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

1st UIP

backjump level

(d∨g∨ s∨h∨ i)

UIP = unique implication point dominates conflict on the last level

Backjumping

x

y

xx

y

If y has never been used to derive a conflict, then skip y case.

Immediately jump back to the x case – assuming x was used.

Resolving Antecedents 5th Time

e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

= 1 @ 1c

k = 1 @ 3

top−level

decision

decision

decision

unit unit

decision

h i= 1 @ 2 = 1 @ 2

= 1 @ 4

κ conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

l = 1 @ 3

= 1 @ 4r

(l∨ r∨ s) (d∨g∨ s∨h∨ i)

(l∨ r∨d∨g∨h∨ i)

Decision Learned Clause

e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

= 1 @ 1c

top−level

decision

decision

decision

unit unit

decision

h i= 1 @ 2 = 1 @ 2

= 1 @ 4

κ conflict

y

g

d

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

r = 1 @ 4 = 1 @ 4s

l = 1 @ 3= 1 @ 3k
backtrack

level

last UIP

(d∨g∨ l∨ r∨h∨ i)

1st UIP Clause after 4 Resolutions

e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit unit

decision

h i= 1 @ 2 = 1 @ 2

= 1 @ 4

κ conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

(d∨g∨ s∨h∨ i)

Locally Minimizing 1st UIP Clause

e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit unit

decision

i = 1 @ 2

= 1 @ 4

κ conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

h = 1 @ 2

(h∨ i) (d∨g∨ s∨h∨ i)

(d∨g∨ s∨h)
self subsuming resolution

Locally Minimized Learned Clause

e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit unit

decision = 1 @ 4

κ conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

= 1 @ 2i= 1 @ 2h

(d∨g∨ s∨h)

Minimizing Locally Minimized Learned Clause Further?

e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit unit

decision = 1 @ 4

κ conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

= 1 @ 2i

Remove ?

h = 1 @ 2

(d∨g∨ s∨6 h)

Recursively Minimizing Learned Clause

a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit

decision = 1 @ 4

κ conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

= 1 @ 2i= 1 @ 2h

unit b

e

= 1 @ 0

= 1 @ 1

(b)
(d∨b∨ e)

(e∨g∨h) (d∨g∨ s∨h)
(e∨d∨g∨ s)

(b∨d∨g∨ s)

(d∨g∨ s)

Recursively Minimized Learned Clause

a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit

decision = 1 @ 4

κ conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

= 1 @ 2i

unit

= 1 @ 2

= 1 @ 1

= 1 @ 0

h

e

b

(d∨g∨ s)

Decision Heuristics

number of variable occurrences in (remaining unsatisfied) clauses (LIS)

eagerly satisfy many clauses with many variations studied in the 90ies

actually expensive to compute

dynamic heuristics

focus on variables which were usefull recently in deriving learned clauses

can be interpreted as reinforcement learning

started with the VSIDS heuristic [MoskewiczMadiganZhaoZhangMalik’01]

most solvers rely on the exponential variant in MiniSAT (EVSIDS)

recently showed VMTF as effective as VSIDS [BiereFröhlich-SAT’15] survey

look-ahead

spent more time in selecting good variables (and simplification)

related to our Cube & Conquer paper [HeuleKullmanWieringaBiere-HVC’11]

“The Science of Brute Force” [Heule & Kullman CACM August 2017]

EVSIDS during stabilization VMTF otherwise [Biere-SAT-Race-2019]

Fast VMTF Implementation

Siege SAT solver [Ryan Thesis 2004] used variable move to front (VMTF)

bumped variables moved to head of doubly linked list

search for unassigned variable starts at head

variable selection is an online sorting algorithm of scores

classic “move-to-front” strategy achieves good amortized complexity

fast simple implementation for caching searches in VMTF [BiereFröhlich’SAT15]

doubly linked list does not have positions as an ordered array

bump = move-to-front = dequeue then insertion at the head

time-stamp list entries with “insertion-time”

maintained invariant: all variables right of next-search are assigned

requires (constant time) update to next-search while unassigning variables

occassionally (32-bit) time-stamps will overflow: update all time stamps

idx: 5

val: x

time: 6

idx: 3

val: 1

time: 8

idx: 4

val: 0

time: 9

next−search next−search’unassign 9

val: 1

time: 12

idx: 9 idx: 7

val: 0

time: 15

idx: 5

val: x

time: 6

idx: 3

val: 1

time: 8

val: 0

next−search

bump 4

idx: 4

time: 16

idx: 9

time: 12

val: x

idx: 7

time: 15

val: 0

Variable Scoring Schemes
[BiereFröhlich-SAT’15]

s old score s′ new score

variable score s′ after i conflicts

bumped not-bumped

STATIC s s static decision order
INC s+1 s increment scores
SUM s+ i s sum of conflict-indices

VSIDS h256
i · s+1 h256

i · s original implementation in Chaff

NVSIDS f · s+(1− f) f · s normalized variant of VSIDS
EVSIDS s+gi s exponential MiniSAT dual of NVSIDS

ACIDS (s+ i)/2 s average conflict-index decision scheme
VMTF1 i s variable move-to-front
VMTF2 b s variable move-to-front variant

0 < f < 1 g = 1/ f hm
i = 0.5 if m divides i hm

i = 1 otherwise

i conflict index b bumped counter

Basic CDCL Loop

int basic_cdcl_loop () {

 int res = 0;

 while (!res)

 if (unsat) res = 20;

 else if (!propagate ()) analyze (); // analyze propagated conflict

 else if (satisfied ()) res = 10; // all variables satisfied

 else decide (); // otherwise pick next decision

 return res;

}

Reducing Learned Clauses

keeping all learned clauses slows down BCP kind of quadratically

so SATO and RelSAT just kept only “short” clauses

better periodically delete “useless” learned clauses

keep a certain number of learned clauses “search cache”

if this number is reached MiniSAT reduces (deletes) half of the clauses

then maximum number kept learned clauses is increased geometrically

LBD (glucose level / glue) prediction for usefulness [AudemardSimon-IJCAI’09]

LBD = number of decision-levels in the learned clause

allows arithmetic increase of number of kept learned clauses

keep clauses with small LBD forever (≤ 2 . . .5)

three Tier system by [Chanseok Oh]

eagerly reduce hyper-binary resolvents derived in inprocessing

Restarts

often it is a good strategy to abandon what you do and restart

for satisfiable instances the solver may get stuck in the unsatisfiable part

for unsatisfiable instances focusing on one part might miss short proofs

restart after the number of conflicts reached a restart limit

avoid to run into the same dead end

by randomization (either on the decision variable or its phase)

and/or just keep all the learned clauses during restart

for completeness dynamically increase restart limit

arithmetically, geometrically, Luby, Inner/Outer

Glucose restarts [AudemardSimon-CP’12]

short vs. large window exponential moving average (EMA) over LBD

if recent LBD values are larger than long time average then restart

interleave “stabilizing” (no restarts) and “non-stabilizing” phases [Chanseok Oh]

call it now “stabilizing mode” and “focused mode”

Luby’s Restart Intervals
70 restarts in 104448 conflicts

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70

Luby Restart Scheduling

unsigned

luby (unsigned i)

{

unsigned k;

for (k = 1; k < 32; k++)

if (i == (1 << k) - 1)

return 1 << (k - 1);

for (k = 1;; k++)

if ((1 << (k - 1)) <= i && i < (1 << k) - 1)

return luby (i - (1 << (k-1)) + 1);

}

limit = 512 * luby (++restarts);

... // run SAT core loop for ’limit’ conflicts

Reluctant Doubling Sequence
[Knuth’12]

(u1,v1) = (1,1)

(un+1,vn+1) = ((un &−un == vn) ? (un+1,1) : (un,2vn))

(1,1), (2,1), (2,2), (3,1), (4,1), (4,2), (4,4), (5,1), . . .

Restart Scheduling with Exponential Moving Averages
[BiereFröhlich-POS’15]

◦ LBD — fast EMA of LBD with α = 2−5

| restart — slow EMA of LBD with α = 2−14 (ema-14)

| inprocessing — CMA of LBD (average)

Phase Saving and Rapid Restarts

phase assignment:

assign decision variable to 0 or 1?

“Only thing that matters in satisfiable instances” [Hans van Maaren]

“phase saving” as in RSat [PipatsrisawatDarwiche’07]

pick phase of last assignment (if not forced to, do not toggle assignment)

initially use statically computed phase (typically LIS)

so can be seen to maintain a global full assignment

rapid restarts

varying restart interval with bursts of restarts

not only theoretically avoids local minima

works nicely together with phase saving

reusing the trail can reduce the cost of restarts [RamosVanDerTakHeule-JSAT’11]

target phases of largest conflict free trail / assignment
[Biere-SAT-Race-2019] [BiereFleury-POS-2020]

CDCL Loop with Reduce and Restart

int basic_cdcl_loop_with_reduce_and_restart () {

 int res = 0;

 while (!res)

 if (unsat) res = 20;

 else if (!propagate ()) analyze (); // analyze propagated conflict

 else if (satisfied ()) res = 10; // all variables satisfied

 else if (restarting ()) restart (); // restart by backtracking

 else if (reducing ()) reduce (); // collect useless learned clauses

 else decide (); // otherwise pick next decision

 return res;

}

Code from our SAT Solver CaDiCaL newest Version 1.3.1 from June 18

while (!res) {

 if (unsat) res = 20;

 else if (!propagate ()) analyze (); // propagate and analyze

 else if (iterating) iterate (); // report learned unit

 else if (satisfied ()) res = 10; // found model

 else if (search_limits_hit ()) break; // decision or conflict limit

 else if (terminated_asynchronously ()) // externally terminated

 break;

 else if (restarting ()) restart (); // restart by backtracking

 else if (rephasing ()) rephase (); // reset variable phases

 else if (reducing ()) reduce (); // collect useless clauses

 else if (probing ()) probe (); // failed literal probing

 else if (subsuming ()) subsume (); // subsumption algorithm

 else if (eliminating ()) elim (); // variable elimination

 else if (compacting ()) compact (); // collect variables

 else if (conditioning ()) condition (); // globally blocked clauses

 else res = decide (); // next decision

}

https://github.com/arminbiere/cadical

https://fmv.jku.at/cadical

https://github.com/arminbiere/cadical
https://fmv.jku.at/cadical

Two-Watched Literal Schemes

original idea from SATO [ZhangStickel’00]

invariant: always watch two non-false literals

if a watched literal becomes false replace it

if no replacement can be found clause is either unit or empty

original version used head and tail pointers on Tries

improved variant from Chaff [MoskewiczMadiganZhaoZhangMalik’01]

watch pointers can move arbitrarily SATO: head forward, tail backward

no update needed during backtracking

one watch is enough to ensure correctness but looses arc consistency

reduces visiting clauses by 10x

particularly useful for large and many learned clauses

blocking literals [ChuHarwoodStuckey’09]

special treatment of short clauses (binary [PilarskiHu’02] or ternary [Ryan’04])

cache start of search for replacement [Gent-JAIR’13]

Things we did not discuss . . .

advanced preprocessing and inprocessing
IJCAI-JAIR 2019 award for [HeuleJärvisaloLonsingSeidlBiere-JAIR-2015]

(many) best papers with Marijn Heule and Benjamin Kiesl

[PhD thesis of Bejamin Kiesl 2019]

proofs (Marijn Heule), certificates for UNSAT, interpolation

relation to proof complexity Banff, Fields, Dagstuhl seminars

extensions formalisms: QBF, Pseudo-Boolean, #SAT, . . .

local search this year’s best solvers have all local search in it

challenges: arithmetic reasoning (and proofs)
best paper [KaufmannBiereKauers-FMCAD’17] [PhD thesis Daniela Kaufmann 2020]

chronological backtracking [RyvchinNadel-SAT’18] [MöhleBiere-SAT’19]

incremental SAT solving
best student paper [FazekasBiereScholl-SAT’19] [PhD thesis of Katalin Fazekas in 2020]

parallel and distributed SAT solving Handbook of Parallel Constraint Reasoning, . . .

Personal SAT Solver History

19801960 2000 20101970 1990

Look Ahead

GSAT

WalkSAT
DP

Portfolio Phase
Saving

LBD

Planning

QBF
working

Massively
Parallel

Arithmetic
SAT for

Handbook of SAT

Cube & Conquer

Inprocessing

Bounded
Variable

Elimination

Proofs

SAT Chapter
Donald Knuth

Avatar

NP complete
SAT VSIDSCDCL

ProbSAT

1st SAT
competition

Tseitin
Encoding

SAT & SMT
everywhere

Solvers

SMT

DPLL

BMC

*

