
Reachability Analysis with QBF

Armin Biere

Institute for Formal Models and Verification
Johannes Kepler University Linz, Austria

Workshop Designing Correct Circuits

DCC’06

Vienna, Austria, March 25, 2006

Model Checking
DCC’06, Vienna – A. Biere, FMV, JKU Linz

1

• explicit model checking [ClarkeEmerson’82], [Holzmann’91]

– program presented symbolically (no transition matrix)

– traversed state space represented explicitly

– e.g. reached states are explicitly saved bit for bit in hash table

⇒ State Explosion Problem (state space exponential in program size)

• symbolic model checking [McMillan Thesis’93], [CoudertMadre’89]

– use symbolic representations for sets of states

– originally with Binary Decision Diagrams [Bryant’86]

– Bounded Model Checking using SAT [BiereCimattiClarkeZhu’99]

Forward Fixpoint Algorithm: Bad State Reached
DCC’06, Vienna – A. Biere, FMV, JKU Linz

2

I B

Forward Fixpoint Algorithm: Termination, No Bad State Reachable
DCC’06, Vienna – A. Biere, FMV, JKU Linz

3

I B

Forward Least Fixpoint Algorithm for Model Checking Safety
DCC’06, Vienna – A. Biere, FMV, JKU Linz

4

initial states I , transition relation T, bad states B

model-checkµ
forward (I , T, B)

SC = /0; SN = I ;

while SC 6= SN do
if B∩SN 6= /0 then

return “found error trace to bad states”;

SC = SN;

SN = SC∪ Img(SC) ;

done ;

return “no bad state reachable”;

symbolic model checking represents set of states in this BFS symbolically

Unrolling of Forward Least Fixpoint Algorithm
DCC’06, Vienna – A. Biere, FMV, JKU Linz

5

0: continue? S0
C 6= S0

N ∃s0[I(s0)]

0: terminate? S0
C = S0

N ∀s0[¬I(s0)]

0: bad state? B∩S0
N 6= /0 ∃s0[I(s0)∧B(s0)]

1: continue? S1
C 6= S1

N ∃s0,s1[I(s0)∧T(s0,s1)∧¬I(s1)]

1: terminate? S1
C = S1

N ∀s0,s1[I(s0)∧T(s0,s1)→ I(s1)]

1: bad state? B∩S1
N 6= /0 ∃s0,s1[I(s0)∧T(s0,s1)∧B(s1)]

2: continue? S2
C 6= S2

N ∃s0,s1,s2[I(s0)∧T(s0,s1)∧T(s1,s2)∧
¬(I(s2)∨∃t0[I(t0)∧T(t0,s2)])]

2: terminate? S2
C = S2

N ∀s0,s1,s2[I(s0)∧T(s0,s1)∧T(s1,s2)→
I(s2)∨∃t0[I(t0)∧T(t0,s2)]]

2: bad state? B∩S1
N 6= /0 ∃s0,s1,s2[I(s0)∧T(s0,s1)∧T(s1,s2)∧B(s2)]

Termination Check = Determine Radius
DCC’06, Vienna – A. Biere, FMV, JKU Linz

6

∀s0, . . . ,sr+1
[

I(s0)∧T(s0,s1)∧·· ·∧T(sr ,sr+1) →

∃t0, . . . , tr , tr−1[I(t0)∧T(t0, t1)∧·· ·∧T(tr−1, tr) ∧

(t0 = sr+1 ∨ t1 = sr+1 ∨ ·· · ∨ tr = sr+1)]
]

s1 sr s +1rs −1r sr

0t t1 t −1r tr

s0∀

∃

radius is smallest r for which formula is true

Radius
DCC’06, Vienna – A. Biere, FMV, JKU Linz

7

initial states
unreachable states

states with distance 1 from initial states

single state with distance 2 from initial states

0 1

2 3

4

5 6 7 8

9

Quantified Boolean Formulae (QBF)
DCC’06, Vienna – A. Biere, FMV, JKU Linz

8

• propositional logic (SAT ⊆ QBF)

– constants 0,1

– operators ∧,¬,→,↔, . . .

– variables x,y, . . . over boolean domain IB = {0,1}

• quantifiers over boolean variables

– valid ∀x[∃y[x↔ y]] (read ↔ as =)

– invalid ∃x[∀y[x↔ y]]

QBF Semantics
DCC’06, Vienna – A. Biere, FMV, JKU Linz

9

• semantics given as expansion of quantifiers

∃x[f] ≡ f [0/x]∨ f [1/x] ∀x[f] ≡ f [0/x]∧ f [1/x]

• expansion as translation from SAT to QBF is exponential

– SAT problems have only existential quantifiers

– expansion of universal quantifiers doubles formula size

• most likely no polynomial translation from SAT to QBF

– otherwise PSPACE = NP

QBF Application I: Termination Check
DCC’06, Vienna – A. Biere, FMV, JKU Linz

10

• checking SC = SN in 2nd iteration results in QBF decision problem

∀s0,s1,s2[I(s0)∧T(s0,s1)∧T(s1,s2)→ I(s2)∨∃t0[I(t0)∧T(t0,s2)]]

• not eliminating quantifiers results in QBF with one alternation

– checking whether bad state is reached only needs SAT

– number iterations bounded by radius r = O(2n)

• successfully used in Software Model Checking

[CookKröningSharygina SPIN’05]

• termination check often costly ⇒ Bounded Model Checking (BMC)

BMC Part of Fixpoint Algorithm
DCC’06, Vienna – A. Biere, FMV, JKU Linz

11

0: continue? S0
C 6= S0

N ∃s0[I(s0)]

0: terminate? S0
C = S0

N ∀s0[¬I(s0)]

0: bad state? B∩S0
N 6= /0 ∃s0[I(s0)∧B(s0)]

1: continue? S1
C 6= S1

N ∃s0,s1[I(s0)∧T(s0,s1)∧¬I(s1)]

1: terminate? S1
C = S1

N ∀s0,s1[I(s0)∧T(s0,s1)→ I(s1)]

1: bad state? B∩S1
N 6= /0 ∃s0,s1[I(s0)∧T(s0,s1)∧B(s1)]

2: continue? S2
C 6= S2

N ∃s0,s1,s2[I(s0)∧T(s0,s1)∧T(s1,s2)∧
¬(I(s2)∨∃t0[I(t0)∧T(t0,s2)])]

2: terminate? S2
C = S2

N ∀s0,s1,s2[I(s0)∧T(s0,s1)∧T(s1,s2)→
I(s2)∨∃t0[I(t0)∧T(t0,s2)]]

2: bad state? B∩S1
N 6= /0 ∃s0,s1,s2[I(s0)∧T(s0,s1)∧T(s1,s2)∧B(s2)]

Bounded Model Checking (BMC)
DCC’06, Vienna – A. Biere, FMV, JKU Linz

12

[BiereCimattiClarkeZhu TACAS’99]

• look only for counter example made of k states (the bound)

∨ ∨ ∨ ∨p¬ p¬ p¬ p¬p¬

0s s1 l+1s sksl

or
p¬ p¬ p¬ p¬p¬

0s sls1 l+1s sk

• simple for safety properties Gp (e.g. p = ¬B)

I(s0) ∧ (
k−1̂

i=0

T(si,si+1)) ∧
k_

i=0

¬p(si)

• harder for liveness properties Fp

I(s0) ∧ (
k−1̂

i=0

T(si,si+1)) ∧ (
k_

l=0

T(sk,sl)) ∧
k̂

i=0

¬p(si)

Bounded Model Checking State-of-the-Art
DCC’06, Vienna – A. Biere, FMV, JKU Linz

13

• increase in efficiency of SAT solvers [ZChaff,MiniSAT,SATelite]

• SAT more robust than BDDs in bug finding

(shallow bugs are easily reached by explicit model checking or testing)

• better unbounded but still SAT based model checking algorithms

– k-induction [SinghSheeranStålmarck’00]

– interpolation [McMillan CAV’03]

• 4th Intl. Workshop on Bounded Model Checking (BMC’06)

• other logics beside LTL and better encodings

e.g. [LatvalaBiereHeljankoJuntilla FMCAD’04]

Induction with SAT
DCC’06, Vienna – A. Biere, FMV, JKU Linz

14

[SinghSheeranStålmarck FMCAD’00]

• more specifically k-induction

– does there exist k such that the following formula is unsatisfiable

B(s0)∧·· ·∧B(sk−1)∧T(s0,s1)∧·· ·∧T(sk−1,sk)∧B(sk)∧
^

0≤i< j≤k

si 6= sj

– if unsatisfiable and ¬BMC(k) then bad state unreachable

• backward version of reoccurrence radius

• k = 0 check whether ¬B tautological (propositionally)

• k = 1 check whether ¬B inductive for T

Reoccurrence Radius Explosion
DCC’06, Vienna – A. Biere, FMV, JKU Linz

15

• radius longest shortest from an initial state to a reachable state

• reoccurrence radius longest simple path

– simple = without reoccurring state

• reoccurrence radius can be exponentially larger than diameter

– n bit register with load signal, initialized with zero

– reoccurrence radius 2n−1

– diameter 1

• applies to backward reoccurrence radius and thus k-induction as well

Reoccurrence Radius Explosion Example
DCC’06, Vienna – A. Biere, FMV, JKU Linz

16

0

1 2 4 −1n n3

reoccurrence radius O(n)
radius O(1)

QBF Application II: Transitive Closure
DCC’06, Vienna – A. Biere, FMV, JKU Linz

17

Transitive Closure

T∗ ≡ T2n

(assuming = ⊆ T)

Standard Linear Unfolding Iterative Squaring via Copying

T i+1 (s, t)≡ ∃m[T i (s,m)∧T(m, t)] T2·i (s, t)≡ ∃m[T i (s,m)∧ T i (m, t)]

Non-Copying Iterative Squaring

T2·i (s, t) ≡ ∃m[∀c[∃l , r[(c→ (l , r) = (s,m))∧ (c→ (l , r) = (m, t))∧ T i (l , r)]]]

QBF Application III: Hierarchy
DCC’06, Vienna – A. Biere, FMV, JKU Linz

18

• flat circuit model exponential in size of hierarchical model

– M0 has one register

M
2

M
1

M
1

M
0

M
0

M
0

M
0

– Mi+1 instantiates Mi twice

– Mn has 2n registers

• model hierarchy/repetitions in QBF as in non-copying iterative squaring

– T(s, t) interpreted as combinatorial circuit with inputs s, outputs t

• conjecture: [Savitch70] even applies to hierarchical descriptions

QBF Application IV: BMC of Alternating Path Quantifiers in CTL
DCC’06, Vienna – A. Biere, FMV, JKU Linz

19

• for counter example to AG(p→ EXq) (deadlock free)
check satisfiability of

∃s0,s1[I(s0)∧T(s0,s1)∧ p(s1)∧∀s2[T(s1,s2)→¬q(s2)]]

• for counter example to AG(p→ EFq) (livelock free)
check satisfiability of

∃s0,s1[I(s0)∧T(s0,s1)∧ p(s1)∧∀s2[T(s1,s2)→¬q(s1)∧¬q(s2)]

(assume (¬q)-predicated diameter ≤ 2)

• similarly sequential equivalence checking EFAG(o1 = o2)

QBF Application V: Sharing of Transition Relation
DCC’06, Vienna – A. Biere, FMV, JKU Linz

20

[DershowitzHannaKatz SAT’05]

• transition logic of industrial circuits can be very large

• use QBF to share transition relation T among time frames

∃s0,s1,s2,s3[

∀i = 0,1,2[

∃l , r [(i = 0→ (l = s0∧ r = s1)∧

(i = 1→ (l = s1∧ r = s2)∧

(i = 2→ (l = s2∧ r = s3)∧

T(l , r) ∧

(B(s0)∨B(s1)∨B(s2)∨B(s3))]]]

• constant formula size reduction (only)

• experiments show space vs. time trade off

QBF Application VI: Rectification
DCC’06, Vienna – A. Biere, FMV, JKU Linz

21

• rectification problem

∃p[∀i[g(i, p) = s(i)]]

– parameters p

– inputs i

– generic circuit g

– specification s

• QBF solver can find parameters p

• black box equivalence checking [SchollBecker DAC’01]

• FPGA synthesis [LingSinghBrown SAT’05]

QBF Application VII: Linear Simple Path Constraints
DCC’06, Vienna – A. Biere, FMV, JKU Linz

22

• original SAT formulation of simple path constraints quadratic in bound k

|
^

0≤i< j≤k

si 6= sj | = O(k2)

• can be reduced to O(k · log k) [KröningShtrichman VMCAI’03]

• with QBF becomes linear O(k) :

^
0≤i< j≤k

si 6= sj ≡ ∀ j = 0, . . . ,k
[
∃s[

^
0≤i≤k

(
j = i ↔ s= si

)
]
]

Reachability with QBF: Experiments
DCC’06, Vienna – A. Biere, FMV, JKU Linz

23

still work in progress

• bounded model checker for flat circuits with k induction smv2qbf

• can also produce forward/backward diameter checking problems in QBF

• so far instances have been quite challenging for current QBF solvers

• found some toy examples which can be checked much faster with QBF

– for instance the n bit register with load signal discussed before

• non-copying iterative squaring does not give any benefits (yet)

DPLL for SAT and QBF
DCC’06, Vienna – A. Biere, FMV, JKU Linz

24

dpll-sat(Assignment S) [DavisLogemannLoveland62]
boolean-constraint-propagation()
if contains-empty-clause() then return false
if no-clause-left() then return true
v := next-unassigned-variable()
return dpll-sat(S∪{v 7→ false}) ∨ dpll-sat(S∪{v 7→ true})

dpll-qbf(Assignment S) [CadoliGiovanardiSchaerf98]
boolean-constraint-propagation()
if contains-empty-clause() then return false
if no-clause-left() then return true
v := next- outermost -unassigned-variable()

@ := is-existential(v) ? ∨ : ∧

return dpll-sat(S∪{v 7→ false}) @ dpll-sat(S∪{v 7→ true})

The Crux of QBF
DCC’06, Vienna – A. Biere, FMV, JKU Linz

25

Why is QBF harder than SAT?

|= ∀x . ∃y . (x↔ y)

6|= ∃y . ∀x . (x↔ y)

Decision order matters!

State-of-the-Art in QBF Solvers
DCC’06, Vienna – A. Biere, FMV, JKU Linz

26

• most implementations DPLL alike: [Cadoli. . .98][Rintanen01]

– learning was added [Giunchiglia. . .01] [Letz01] [ZhangMalik02]

– top-down: split on variables from the outside to the inside

• multiple quantifier elimination procedures:

– enumeration [PlaistedBiereZhu03] [McMillan02]

– expansion [Aziz-Abdulla. . .00] [WilliamsBiere. . .00] [AyariBasin02]

– bottom-up: eliminate variables from the inside to the outside

• q-resolution [KleineBüning. . .95], with expansion [Biere04]

• symbolic representations [PanVardi04] [Benedetti05] BDDs

Summary
DCC’06, Vienna – A. Biere, FMV, JKU Linz

27

• applications fuel interest in SAT

– incredible capacity increase (last year: MiniSAT, SATelite)

– SAT Solver Competition resp. SAT Race affiliated to SAT conference

– SAT is becoming a core verification technology

• QBF is catching up and is exponentially more succinct

– solvers are getting better (first competitive QBF Evaluation 2006)

– new applications:

CTL, Termination, Trans. Closure, Hierarchy/Sharing, Simple Paths

– richer structure than SAT ⇒ many opportunities for optimizations

