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• explicit model checking [ClarkeEmerson’82], [Holzmann’91]

– program presented symbolically (no transition matrix)

– traversed state space represented explicitly

– e.g. reached states are explicitly saved bit for bit in hash table

⇒ State Explosion Problem (state space exponential in program size)

• symbolic model checking [McMillan Thesis’93], [CoudertMadre’89]

– use symbolic representations for sets of states

– originally with Binary Decision Diagrams [Bryant’86]

– Bounded Model Checking using SAT [BiereCimattiClarkeZhu’99]



Forward Fixpoint Algorithm: Bad State Reached
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Forward Fixpoint Algorithm: Termination, No Bad State Reachable
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Forward Least Fixpoint Algorithm for Model Checking Safety
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initial states I , transition relation T, bad states B

model-checkµ
forward (I , T, B)

SC = /0; SN = I ;

while SC 6= SN do
if B∩SN 6= /0 then

return “found error trace to bad states”;

SC = SN;

SN = SC∪ Img(SC) ;

done ;

return “no bad state reachable”;

symbolic model checking represents set of states in this BFS symbolically



Unrolling of Forward Least Fixpoint Algorithm
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0: continue? S0
C 6= S0

N ∃s0[I(s0)]

0: terminate? S0
C = S0

N ∀s0[¬I(s0)]

0: bad state? B∩S0
N 6= /0 ∃s0[I(s0)∧B(s0)]

1: continue? S1
C 6= S1

N ∃s0,s1[I(s0)∧T(s0,s1)∧¬I(s1)]

1: terminate? S1
C = S1

N ∀s0,s1[I(s0)∧T(s0,s1)→ I(s1)]

1: bad state? B∩S1
N 6= /0 ∃s0,s1[I(s0)∧T(s0,s1)∧B(s1)]

2: continue? S2
C 6= S2

N ∃s0,s1,s2[I(s0)∧T(s0,s1)∧T(s1,s2)∧
¬(I(s2)∨∃t0[I(t0)∧T(t0,s2)])]

2: terminate? S2
C = S2

N ∀s0,s1,s2[I(s0)∧T(s0,s1)∧T(s1,s2)→
I(s2)∨∃t0[I(t0)∧T(t0,s2)]]

2: bad state? B∩S1
N 6= /0 ∃s0,s1,s2[I(s0)∧T(s0,s1)∧T(s1,s2)∧B(s2)]



Termination Check = Determine Radius
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∀s0, . . . ,sr+1
[

I(s0)∧T(s0,s1)∧·· ·∧T(sr ,sr+1) →

∃t0, . . . , tr , tr−1[ I(t0)∧T(t0, t1)∧·· ·∧T(tr−1, tr) ∧

(t0 = sr+1 ∨ t1 = sr+1 ∨ ·· · ∨ tr = sr+1)]
]

s1 sr s +1rs −1r sr

0t t1 t −1r tr

s0∀

∃

radius is smallest r for which formula is true
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initial states
unreachable states

states with distance 1 from initial states

single state with distance 2 from initial states
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Quantified Boolean Formulae (QBF)
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• propositional logic (SAT ⊆ QBF)

– constants 0,1

– operators ∧,¬,→,↔, . . .

– variables x,y, . . . over boolean domain IB = {0,1}

• quantifiers over boolean variables

– valid ∀x[∃y[x↔ y]] (read ↔ as =)

– invalid ∃x[∀y[x↔ y]]



QBF Semantics
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• semantics given as expansion of quantifiers

∃x[ f ] ≡ f [0/x]∨ f [1/x] ∀x[ f ] ≡ f [0/x]∧ f [1/x]

• expansion as translation from SAT to QBF is exponential

– SAT problems have only existential quantifiers

– expansion of universal quantifiers doubles formula size

• most likely no polynomial translation from SAT to QBF

– otherwise PSPACE = NP



QBF Application I: Termination Check
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• checking SC = SN in 2nd iteration results in QBF decision problem

∀s0,s1,s2[I(s0)∧T(s0,s1)∧T(s1,s2)→ I(s2)∨∃t0[I(t0)∧T(t0,s2)]]

• not eliminating quantifiers results in QBF with one alternation

– checking whether bad state is reached only needs SAT

– number iterations bounded by radius r = O(2n)

• successfully used in Software Model Checking

[CookKröningSharygina SPIN’05]

• termination check often costly ⇒ Bounded Model Checking (BMC)



BMC Part of Fixpoint Algorithm
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0: continue? S0
C 6= S0

N ∃s0[I(s0)]

0: terminate? S0
C = S0

N ∀s0[¬I(s0)]

0: bad state? B∩S0
N 6= /0 ∃s0[I(s0)∧B(s0)]

1: continue? S1
C 6= S1

N ∃s0,s1[I(s0)∧T(s0,s1)∧¬I(s1)]

1: terminate? S1
C = S1

N ∀s0,s1[I(s0)∧T(s0,s1)→ I(s1)]

1: bad state? B∩S1
N 6= /0 ∃s0,s1[I(s0)∧T(s0,s1)∧B(s1)]

2: continue? S2
C 6= S2

N ∃s0,s1,s2[I(s0)∧T(s0,s1)∧T(s1,s2)∧
¬(I(s2)∨∃t0[I(t0)∧T(t0,s2)])]

2: terminate? S2
C = S2

N ∀s0,s1,s2[I(s0)∧T(s0,s1)∧T(s1,s2)→
I(s2)∨∃t0[I(t0)∧T(t0,s2)]]

2: bad state? B∩S1
N 6= /0 ∃s0,s1,s2[I(s0)∧T(s0,s1)∧T(s1,s2)∧B(s2)]



Bounded Model Checking (BMC)
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[BiereCimattiClarkeZhu TACAS’99]

• look only for counter example made of k states (the bound)

∨ ∨ ∨ ∨p¬ p¬ p¬ p¬p¬

0s s1 l+1s sksl

or
p¬ p¬ p¬ p¬p¬

0s sls1 l+1s sk

• simple for safety properties Gp (e.g. p = ¬B)

I(s0) ∧ (
k−1̂

i=0

T(si,si+1)) ∧
k_

i=0

¬p(si)

• harder for liveness properties Fp

I(s0) ∧ (
k−1̂

i=0

T(si,si+1)) ∧ (
k_

l=0

T(sk,sl)) ∧
k̂

i=0

¬p(si)



Bounded Model Checking State-of-the-Art
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• increase in efficiency of SAT solvers [ZChaff,MiniSAT,SATelite]

• SAT more robust than BDDs in bug finding

(shallow bugs are easily reached by explicit model checking or testing)

• better unbounded but still SAT based model checking algorithms

– k-induction [SinghSheeranStålmarck’00]

– interpolation [McMillan CAV’03]

• 4th Intl. Workshop on Bounded Model Checking (BMC’06)

• other logics beside LTL and better encodings

e.g. [LatvalaBiereHeljankoJuntilla FMCAD’04]
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[SinghSheeranStålmarck FMCAD’00]

• more specifically k-induction

– does there exist k such that the following formula is unsatisfiable

B(s0)∧·· ·∧B(sk−1)∧T(s0,s1)∧·· ·∧T(sk−1,sk)∧B(sk)∧
^

0≤i< j≤k

si 6= sj

– if unsatisfiable and ¬BMC(k) then bad state unreachable

• backward version of reoccurrence radius

• k = 0 check whether ¬B tautological (propositionally)

• k = 1 check whether ¬B inductive for T



Reoccurrence Radius Explosion
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• radius longest shortest from an initial state to a reachable state

• reoccurrence radius longest simple path

– simple = without reoccurring state

• reoccurrence radius can be exponentially larger than diameter

– n bit register with load signal, initialized with zero

– reoccurrence radius 2n−1

– diameter 1

• applies to backward reoccurrence radius and thus k-induction as well



Reoccurrence Radius Explosion Example
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0

1 2 4 −1n n3

reoccurrence radius O(n)
radius O(1)



QBF Application II: Transitive Closure
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Transitive Closure

T∗ ≡ T2n

(assuming = ⊆ T)

Standard Linear Unfolding Iterative Squaring via Copying

T i+1 (s, t)≡ ∃m[ T i (s,m)∧T(m, t)] T2·i (s, t)≡ ∃m[ T i (s,m)∧ T i (m, t)]

Non-Copying Iterative Squaring

T2·i (s, t) ≡ ∃m[∀c[∃l , r[(c→ (l , r) = (s,m))∧ (c→ (l , r) = (m, t))∧ T i (l , r)]]]



QBF Application III: Hierarchy
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• flat circuit model exponential in size of hierarchical model

– M0 has one register

M
2

M
1

M
1

M
0

M
0

M
0

M
0

– Mi+1 instantiates Mi twice

– Mn has 2n registers

• model hierarchy/repetitions in QBF as in non-copying iterative squaring

– T(s, t) interpreted as combinatorial circuit with inputs s, outputs t

• conjecture: [Savitch70] even applies to hierarchical descriptions



QBF Application IV: BMC of Alternating Path Quantifiers in CTL
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• for counter example to AG(p→ EXq) (deadlock free)
check satisfiability of

∃s0,s1[I(s0)∧T(s0,s1)∧ p(s1)∧∀s2[T(s1,s2)→¬q(s2)]]

• for counter example to AG(p→ EFq) (livelock free)
check satisfiability of

∃s0,s1[I(s0)∧T(s0,s1)∧ p(s1)∧∀s2[T(s1,s2)→¬q(s1)∧¬q(s2)]

(assume (¬q)-predicated diameter ≤ 2)

• similarly sequential equivalence checking EFAG(o1 = o2)



QBF Application V: Sharing of Transition Relation
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[DershowitzHannaKatz SAT’05]

• transition logic of industrial circuits can be very large

• use QBF to share transition relation T among time frames

∃s0,s1,s2,s3[

∀i = 0,1,2[

∃l , r [ (i = 0→ (l = s0∧ r = s1)∧

(i = 1→ (l = s1∧ r = s2)∧

(i = 2→ (l = s2∧ r = s3)∧

T(l , r) ∧

(B(s0)∨B(s1)∨B(s2)∨B(s3))]]]

• constant formula size reduction (only)

• experiments show space vs. time trade off



QBF Application VI: Rectification
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• rectification problem

∃p[∀i[g(i, p) = s(i)]]

– parameters p

– inputs i

– generic circuit g

– specification s

• QBF solver can find parameters p

• black box equivalence checking [SchollBecker DAC’01]

• FPGA synthesis [LingSinghBrown SAT’05]



QBF Application VII: Linear Simple Path Constraints
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• original SAT formulation of simple path constraints quadratic in bound k

|
^

0≤i< j≤k

si 6= sj | = O(k2)

• can be reduced to O(k · log k) [KröningShtrichman VMCAI’03]

• with QBF becomes linear O(k) :

^
0≤i< j≤k

si 6= sj ≡ ∀ j = 0, . . . ,k
[
∃s[

^
0≤i≤k

(
j = i ↔ s= si

)
]
]



Reachability with QBF: Experiments
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still work in progress

• bounded model checker for flat circuits with k induction smv2qbf

• can also produce forward/backward diameter checking problems in QBF

• so far instances have been quite challenging for current QBF solvers

• found some toy examples which can be checked much faster with QBF

– for instance the n bit register with load signal discussed before

• non-copying iterative squaring does not give any benefits (yet)



DPLL for SAT and QBF
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dpll-sat(Assignment S) [DavisLogemannLoveland62]
boolean-constraint-propagation()
if contains-empty-clause() then return false
if no-clause-left() then return true
v := next-unassigned-variable()
return dpll-sat(S∪{v 7→ false}) ∨ dpll-sat(S∪{v 7→ true})

dpll-qbf(Assignment S) [CadoliGiovanardiSchaerf98]
boolean-constraint-propagation()
if contains-empty-clause() then return false
if no-clause-left() then return true
v := next- outermost -unassigned-variable()

@ := is-existential(v) ? ∨ : ∧

return dpll-sat(S∪{v 7→ false}) @ dpll-sat(S∪{v 7→ true})



The Crux of QBF
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Why is QBF harder than SAT?

|= ∀x . ∃y . (x↔ y)

6|= ∃y . ∀x . (x↔ y)

Decision order matters!



State-of-the-Art in QBF Solvers
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• most implementations DPLL alike: [Cadoli. . .98][Rintanen01]

– learning was added [Giunchiglia. . .01] [Letz01] [ZhangMalik02]

– top-down: split on variables from the outside to the inside

• multiple quantifier elimination procedures:

– enumeration [PlaistedBiereZhu03] [McMillan02]

– expansion [Aziz-Abdulla. . .00] [WilliamsBiere. . .00] [AyariBasin02]

– bottom-up: eliminate variables from the inside to the outside

• q-resolution [KleineBüning. . .95], with expansion [Biere04]

• symbolic representations [PanVardi04] [Benedetti05] BDDs



Summary
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• applications fuel interest in SAT

– incredible capacity increase (last year: MiniSAT, SATelite)

– SAT Solver Competition resp. SAT Race affiliated to SAT conference

– SAT is becoming a core verification technology

• QBF is catching up and is exponentially more succinct

– solvers are getting better (first competitive QBF Evaluation 2006)

– new applications:

CTL, Termination, Trans. Closure, Hierarchy/Sharing, Simple Paths

– richer structure than SAT ⇒ many opportunities for optimizations


