Reachability Analysis with QBF

Armin Biere
Institute for Formal Models and Verification Johannes Kepler University Linz, Austria

Workshop Designing Correct Circuits

DCC'06

Vienna, Austria, March 25, 2006

- explicit model checking [ClarkeEmerson'82], [Holzmann'91]
- program presented symbolically (no transition matrix)
- traversed state space represented explicitly
- e.g. reached states are explicitly saved bit for bit in hash table
\Rightarrow State Explosion Problem (state space exponential in program size)
- symbolic model checking [McMillan Thesis'93], [CoudertMadre'89]
- use symbolic representations for sets of states
- originally with Binary Decision Diagrams [Bryant'86]
- Bounded Model Checking using SAT [BiereCimattiClarkeZhu'99]

Forward Fixpoint Algorithm: Bad State Reached
DCC'06, Vienna - A. Biere, FMV, JKU Linz

Forward Fixpoint Algorithm: Termination, No Bad State Reachable

Forward Least Fixpoint Algorithm for Model Checking Safety

initial states I, \quad transition relation T, \quad bad states B

$$
\begin{aligned}
& \text { model-check }_{\text {forward }}^{\mu}(I, T, B) \\
& S_{C}=\emptyset ; S_{N}=I ; \\
& \text { while } S_{C} \neq S_{N} \text { do } \\
& \text { if } B \cap S_{N} \neq \emptyset \text { then } \\
& \quad \text { return "found error trace to bad states"; } \\
& S_{C}=S_{N} ; \\
& S_{N}=S_{C} \cup \operatorname{Img}\left(S_{C}\right) ; \\
& \text { done; } \\
& \text { return "no bad state reachable"; }
\end{aligned}
$$

symbolic model checking represents set of states in this BFS symbolically

0: continue? $\quad S_{C}^{0} \neq S_{N}^{0} \quad \exists s_{0}\left[I\left(s_{0}\right)\right]$
0: terminate? $\quad S_{C}^{0}=S_{N}^{0} \quad \forall s_{0}\left[\neg I\left(s_{0}\right)\right]$
0 : bad state? $\quad B \cap S_{N}^{0} \neq \emptyset \quad \exists s_{0}\left[I\left(s_{0}\right) \wedge B\left(s_{0}\right)\right]$
1: continue? $\quad S_{C}^{1} \neq S_{N}^{1} \quad \exists s_{0}, s_{1}\left[I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge \neg I\left(s_{1}\right)\right]$
1: terminate? $\quad S_{C}^{1}=S_{N}^{1} \quad \forall s_{0}, s_{1}\left[I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \rightarrow I\left(s_{1}\right)\right]$
1: bad state? $\quad B \cap S_{N}^{1} \neq \emptyset \quad \exists s_{0}, s_{1}\left[I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge B\left(s_{1}\right)\right]$
2: continue? $\quad S_{C}^{2} \neq S_{N}^{2} \quad \exists s_{0}, s_{1}, s_{2}\left[I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge T\left(s_{1}, s_{2}\right) \wedge\right.$ $\left.\neg\left(I\left(s_{2}\right) \vee \exists t_{0}\left[I\left(t_{0}\right) \wedge T\left(t_{0}, s_{2}\right)\right]\right)\right]$
2: terminate? $\quad S_{C}^{2}=S_{N}^{2} \quad \forall s_{0}, s_{1}, s_{2}\left[I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge T\left(s_{1}, s_{2}\right) \rightarrow\right.$ $\left.I\left(s_{2}\right) \vee \exists t_{0}\left[I\left(t_{0}\right) \wedge T\left(t_{0}, s_{2}\right)\right]\right]$
2: bad state? $B \cap S_{N}^{1} \neq \emptyset \quad \exists s_{0}, s_{1}, s_{2}\left[I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge T\left(s_{1}, s_{2}\right) \wedge B\left(s_{2}\right)\right]$

$$
\forall s_{0}, \ldots, s_{r+1}\left[I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge \cdots \wedge T\left(s_{r}, s_{r+1}\right) \rightarrow\right.
$$

$$
\begin{aligned}
& \exists t_{0}, \ldots, t_{r}, t_{r-1}\left[I\left(t_{0}\right) \wedge T\left(t_{0}, t_{1}\right) \wedge \cdots \wedge T\left(t_{r-1}, t_{r}\right) \wedge\right. \\
& \left.\left.\quad\left(t_{0}=s_{r+1} \vee t_{1}=s_{r+1} \vee \cdots \vee t_{r}=s_{r+1}\right)\right]\right]
\end{aligned}
$$

radius is smallest r for which formula is true

single state with distance 2 from initial states

Quantified Boolean Formulae (QBF)

- propositional logic
$(S A T \subseteq$ QBF)
- constants 0,1
- operators $\quad \wedge, \neg, \rightarrow, \leftrightarrow, \ldots$
- variables $\quad x, y, \ldots \quad$ over boolean domain $\mathbb{B}=\{0,1\}$
- quantifiers over boolean variables
- valid $\quad \forall x[\exists y[x \leftrightarrow y]] \quad$ (read \leftrightarrow as $=)$
- invalid $\quad \exists x[\forall y[x \leftrightarrow y]]$
- semantics given as expansion of quantifiers

$$
\exists x[f] \equiv f[0 / x] \vee f[1 / x] \quad \forall x[f] \equiv f[0 / x] \wedge f[1 / x]
$$

- expansion as translation from SAT to QBF is exponential
- SAT problems have only existential quantifiers
- expansion of universal quantifiers doubles formula size
- most likely no polynomial translation from SAT to QBF
- otherwise PSPACE = NP

QBF Application I: Termination Check

- checking $S_{C}=S_{N}$ in 2nd iteration results in QBF decision problem

$$
\forall s_{0}, s_{1}, s_{2}\left[I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge T\left(s_{1}, s_{2}\right) \rightarrow I\left(s_{2}\right) \vee \exists t_{0}\left[I\left(t_{0}\right) \wedge T\left(t_{0}, s_{2}\right)\right]\right]
$$

- not eliminating quantifiers results in QBF with one alternation
- checking whether bad state is reached only needs SAT
- number iterations bounded by radius $\quad r=O\left(2^{n}\right)$
- successfully used in Software Model Checking
[CookKröningSharygina SPIN'05]
- termination check often costly $\quad \Rightarrow$ Bounded Model Checking (BMC)

0: continue? $\quad S_{C}^{0} \neq S_{N}^{0} \quad \exists s_{0}\left[I\left(s_{0}\right)\right]$
0: terminate? $\quad S_{C}^{0}=S_{N}^{0} \quad \forall s_{0}\left[\neg I\left(s_{0}\right)\right]$
0: bad state? $\quad B \cap S_{N}^{0} \neq \emptyset \quad \exists s_{0}\left[I\left(s_{0}\right) \wedge B\left(s_{0}\right)\right]$
1: continue? $\quad S_{C}^{1} \neq S_{N}^{1} \quad \exists s_{0}, s_{1}\left[I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge \neg I\left(s_{1}\right)\right]$
1: terminate? $\quad S_{C}^{1}=S_{N}^{1} \quad \forall s_{0}, s_{1}\left[I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \rightarrow I\left(s_{1}\right)\right]$
1: bad state? $\quad B \cap S_{N}^{1} \neq \emptyset \quad \exists s_{0}, s_{1}\left[I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge B\left(s_{1}\right)\right]$

2: continue? $\quad S_{C}^{2} \neq S_{N}^{2} \quad \exists s_{0}, s_{1}, s_{2}\left[I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge T\left(s_{1}, s_{2}\right) \wedge\right.$

$$
\left.\neg\left(I\left(s_{2}\right) \vee \exists t_{0}\left[I\left(t_{0}\right) \wedge T\left(t_{0}, s_{2}\right)\right]\right)\right]
$$

2: terminate? $\quad S_{C}^{2}=S_{N}^{2} \quad \forall s_{0}, s_{1}, s_{2}\left[I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge T\left(s_{1}, s_{2}\right) \rightarrow\right.$ $\left.I\left(s_{2}\right) \vee \exists t_{0}\left[I\left(t_{0}\right) \wedge T\left(t_{0}, s_{2}\right)\right]\right]$

2: bad state? $B \cap S_{N}^{1} \neq \emptyset \quad \exists s_{0}, s_{1}, s_{2}\left[I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge T\left(s_{1}, s_{2}\right) \wedge B\left(s_{2}\right)\right]$
[BiereCimattiClarkeZhu TACAS'99]

- look only for counter example made of k states (the bound)

- simple for safety properties $\quad \mathbf{G} p \quad$ (e.g. $p=\neg B$)

$$
I\left(s_{0}\right) \wedge\left(\bigwedge_{i=0}^{k-1} T\left(s_{i}, s_{i+1}\right)\right) \wedge \bigvee_{i=0}^{k} \neg p\left(s_{i}\right)
$$

- harder for liveness properties $\mathbf{F} p$

$$
I\left(s_{0}\right) \wedge\left(\bigwedge_{i=0}^{k-1} T\left(s_{i}, s_{i+1}\right)\right) \wedge\left(\bigvee_{l=0}^{k} T\left(s_{k}, s_{l}\right)\right) \wedge \bigwedge_{i=0}^{k} \neg p\left(s_{i}\right)
$$

- increase in efficiency of SAT solvers [ZChaff,MiniSAT,SATelite]
- SAT more robust than BDDs in bug finding (shallow bugs are easily reached by explicit model checking or testing)
- better unbounded but still SAT based model checking algorithms
- k-induction [SinghSheeranStålmarck'00]
- interpolation [McMillan CAV'03]
- 4th Intl. Workshop on Bounded Model Checking (BMC'06)
- other logics beside LTL and better encodings
e.g. [LatvalaBiereHeljankoJuntilla FMCAD'04]

[SinghSheeranStålmarck FMCAD'00]

- more specifically k-induction
- does there exist k such that the following formula is unsatisfiable

$$
\overline{B\left(s_{0}\right)} \wedge \cdots \wedge \overline{B\left(s_{k-1}\right)} \wedge T\left(s_{0}, s_{1}\right) \wedge \cdots \wedge T\left(s_{k-1}, s_{k}\right) \wedge B\left(s_{k}\right) \wedge \bigwedge_{0 \leq i<j \leq k} s_{i} \neq s_{j}
$$

- if unsatisfiable and $\neg \mathrm{BMC}(k)$ then bad state unreachable
- backward version of reoccurrence radius
- $k=0$ check whether $\neg B$ tautological (propositionally)
- $k=1$ check whether $\neg B$ inductive for T
- radius longest shortest from an initial state to a reachable state
- reoccurrence radius longest simple path
- simple $=$ without reoccurring state
- reoccurrence radius can be exponentially larger than diameter
- n bit register with load signal, initialized with zero
- reoccurrence radius $2^{n}-1$
- diameter 1
- applies to backward reoccurrence radius and thus k-induction as well

Reoccurrence Radius Explosion Example

reoccurrence radius $O(n)$
radius $O(1)$

Transitive Closure

$$
\begin{gathered}
T^{*} \equiv T^{2^{n}} \\
\text { (assuming } \quad=\subseteq T \text {) }
\end{gathered}
$$

Standard Linear Unfolding

$$
T^{i+1}(s, t) \equiv \exists m\left[T^{i}(s, m) \wedge T(m, t)\right] \quad T^{2 \cdot i}(s, t) \equiv \exists m\left[T^{i}(s, m) \wedge T^{i}(m, t)\right]
$$

Non-Copying Iterative Squaring

$T^{2 \cdot i}(s, t) \equiv \exists m\left[\forall c\left[\exists l, r\left[(c \rightarrow(l, r)=(s, m)) \wedge(\bar{c} \rightarrow(l, r)=(m, t)) \wedge T^{i}(l, r)\right]\right]\right]$

- flat circuit model exponential in size of hierarchical model
- M_{0} has one register
- M_{i+1} instantiates M_{i} twice
- M_{n} has 2^{n} registers

- model hierarchy/repetitions in QBF as in non-copying iterative squaring
- $T(s, t)$ interpreted as combinatorial circuit with inputs s, outputs t
- conjecture: [Savitch70] even applies to hierarchical descriptions
- for counter example to

$$
\mathbf{A G}(p \rightarrow \mathbf{E X} q) \quad \text { (deadlock free) }
$$ check satisfiability of

$$
\exists s 0, s 1\left[I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge p\left(s_{1}\right) \wedge \forall s_{2}\left[T\left(s_{1}, s_{2}\right) \rightarrow \neg q\left(s_{2}\right)\right]\right]
$$

- for counter example to $\quad \mathbf{A G}(p \rightarrow \mathbf{E F} q) \quad$ (livelock free) check satisfiability of

$$
\begin{aligned}
& \exists s 0, s 1\left[I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge p\left(s_{1}\right) \wedge \forall s_{2}\left[T\left(s_{1}, s_{2}\right) \rightarrow \neg q\left(s_{1}\right) \wedge \neg q\left(s_{2}\right)\right]\right. \\
& (\text { assume }(\neg q) \text {-predicated diameter } \leq 2)
\end{aligned}
$$

- similarly sequential equivalence checking $\quad \operatorname{EFAG}\left(o_{1}=o_{2}\right)$

QBF Application V: Sharing of Transition Relation

[DershowitzHannaKatz SAT'05]

- transition logic of industrial circuits can be very large
- use QBF to share transition relation T among time frames

$$
\begin{aligned}
& \exists s_{0}, s_{1}, s_{2}, s_{3}[\\
& \forall i=0,1,2[\\
& \qquad \begin{aligned}
& \exists l, r {\left[\left(i=0 \rightarrow\left(l=s_{0} \wedge r=s_{1}\right) \wedge\right.\right.} \\
&\left(i=1 \rightarrow\left(l=s_{1} \wedge r=s_{2}\right) \wedge\right. \\
&\left(i=2 \rightarrow\left(l=s_{2} \wedge r=s_{3}\right) \wedge\right. \\
& T(l, r) \wedge \\
&\left.\left.\left.\left(B\left(s_{0}\right) \vee B\left(s_{1}\right) \vee B\left(s_{2}\right) \vee B\left(s_{3}\right)\right)\right]\right]\right]
\end{aligned}
\end{aligned}
$$

- constant formula size reduction (only)
- experiments show space vs. time trade off

QBF Application VI: Rectification

- rectification problem
- parameters p
- inputs i

$$
\exists p[\forall i[g(i, p)=s(i)]]
$$

- generic circuit g
- specification s
- QBF solver can find parameters p
- black box equivalence checking [SchollBecker DAC'01]
- FPGA synthesis [LingSinghBrown SAT'05]

QBF Application VII: Linear Simple Path Constraints

- original SAT formulation of simple path constraints quadratic in bound k

$$
\left|\bigwedge_{0 \leq i<j \leq k} s_{i} \neq s_{j}\right|=O\left(k^{2}\right)
$$

- can be reduced to $O(k \cdot \log k)$ [KröningShtrichman VMCAl'03]
- with QBF becomes linear $O(k)$:

$$
\bigwedge_{0 \leq i<j \leq k} s_{i} \neq s_{j} \equiv \forall j=0, \ldots, k\left[\exists s\left[\bigwedge_{0 \leq i \leq k}\left(j=i \leftrightarrow s=s_{i}\right)\right]\right]
$$

still work in progress

- bounded model checker for flat circuits with k induction smv2qbf
- can also produce forward/backward diameter checking problems in QBF
- so far instances have been quite challenging for current QBF solvers
- found some toy examples which can be checked much faster with QBF
- for instance the n bit register with load signal discussed before
- non-copying iterative squaring does not give any benefits (yet)

```
dpll-sat(Assignment S) [DavisLogemannLoveland62]
    boolean-constraint-propagation()
    if contains-empty-clause() then return false
    if no-clause-left() then return true
    v := next-unassigned-variable()
    return dpll-sat(S }\cup{v\mapstofalse}) \vee dpll-sat(S \cup {v\mapsto true}
```

dpll-qbf(Assignment S) [CadoliGiovanardiSchaerf98]
boolean-constraint-propagation()
if contains-empty-clause() then return false
if no-clause-left() then return true
v := next- outermost -unassigned-variable()
@ := is-existential $(v) ? \vee: \wedge$
return dpll-sat $(S \cup\{v \mapsto f a l s e\})$ @ $\operatorname{dpll}-s a t(S \cup\{v \mapsto t r u e\})$

Why is QBF harder than SAT?

$$
\vDash \quad \forall x . \exists y .(x \leftrightarrow y)
$$

$$
\not \models \quad \exists y \cdot \forall x \cdot(x \leftrightarrow y)
$$

Decision order matters!

- most implementations DPLL alike: [Cadoli...98][Rintanen01]
- learning was added [Giunchiglia...01] [Letz01] [ZhangMalik02]
- top-down: split on variables from the outside to the inside
- multiple quantifier elimination procedures:
- enumeration [PlaistedBiereZhu03] [McMillan02]
- expansion [Aziz-Abdulla...00] [WilliamsBiere...00] [AyariBasin02]
- bottom-up: eliminate variables from the inside to the outside
- q-resolution [KleineBüning...95], with expansion [Biere04]
- symbolic representations [PanVardi04] [Benedetti05] BDDs
- applications fuel interest in SAT
- incredible capacity increase (last year: MiniSAT, SATelite)
- SAT Solver Competition resp. SAT Race affiliated to SAT conference
- SAT is becoming a core verification technology
- QBF is catching up and is exponentially more succinct
- solvers are getting better (first competitive QBF Evaluation 2006)
- new applications:

CTL, Termination, Trans. Closure, Hierarchy/Sharing, Simple Paths

- richer structure than SAT \Rightarrow many opportunities for optimizations

