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Example of Tseitin Transformation: Circuit to CNF
[Tseitin’68]
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(x ↔ a∧c) ∧
(y ↔ b∨x) ∧
(u ↔ a∨b) ∧
(v ↔ b∨c) ∧
(w↔ u∧v) ∧
(o ↔ y⊕w)

o∧ (x→ a)∧ (x→ c)∧ (x← a∧c)∧ . . .

o∧ (x∨a)∧ (x∨c)∧ (x∨a∨c)∧ . . .
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Preprocessing SAT

• general idea:

– simplify CNF before applying complete DPLL algorithm

– heuristic: simpler CNF is easier to solve

– metric for simpler: smaller, e.g. less clauses or literals

• for instance failed literal rule

– assume one literal l by setting it to true

– perform boolean constraint propagation (BCP)

– if BCP generates conflict (empty clause), then permanently add l

– continue until no more literals are added ⇒ saturate

2



Resolution
[Robinson]

• method to derive logically implied clauses

– applicable to resolvees (l1∨ . . .∨ ln∨v) and (¬v∨k1∨ . . .∨km)

– with matching variable v

– implied resolvent (l1∨ . . .∨ ln∨k1∨ . . .∨km) can be added

• special cases

– trivial resolvent: (a∨b∨v)⊗ (v∨a) ≡ (a∨b∨a) ≡ 1

– unit resolution: (l1∨ . . .∨ ln∨v)⊗ (v) ≡ (l1∨ . . .∨ ln)

– resolution of empty clause: (v)⊗ (v)
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Elimination of Variables by Resolution (Clause Distribution)
[DavisPutnam’60]

original clauses in which v or v occurs:
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add non-trivial resolvents:

(s ∨ r), (x ∨ y ∨ r), and (s ∨ ¬x ∨ ¬y ∨ r)

remove original clauses
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Issues with Clause Distribution

• number of added clauses quadratic in worst case

– solvers using only clause distribution explode in space

• still useful for preprocessing

– resolution may generate trivial clause (a∨b∨a)

– or even better units (a∨v)⊗ (¬v∨a) ≡ a

– empirically generates many subsumed clauses

(a∨b) subsumes (a∨b∨c)

– trivial and subsumed clauses do not have to be added
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Subsumption

• backward subsumption

– new clause being added to CNF subsumes clause already in CNF

– old subsumed clause can be removed after adding new clause

– search clause in CNF containing all literals of new clause

• forward subsumption

– new clause is subsumed by clause already in CNF

– new clause does not have to be added

– search clause in CNF made of a subset of literals of new clause
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Signature based Subsumption Techniques for Propositional CNF
[Biere’04,ÉenBiere’05]

• signature bit for each literal h(l) ∈ {0, . . . ,31}

– signature of literal is a 32-bit word: σ(l) = 2h(l) (1<<h(l) in C)

– signature of clause is a 32-bit word: σ(C) =
S

l∈C
σ(l)

– necessary condition: C subsumes D ⇒ σ(C)⊆ σ(D)

• backward subsumption

– traverse clauses of a single literal of new clause

– signature subset check avoids full literal subset check in many cases
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Signature based Subsumption Techniques for Propositional CNF cont.

• originally implemented in QBF solver Quantor [Biere’04]

– fast subsumption essential for resolution based variable elimination

• SAT Preprocessor Satelite [ÉenBiere’05]

– fast subsumption has similar impact as in QBF

– SateliteGTI = Satelite + Minisat

(new version of Minisat by Sörenssen + Éen)

– SateliteGTI winner of all industrial categories in SAT’05 competition

• forward subsumption: add clauses in reverse order, backward subsume

(faster way: 1-watched literal scheme [Zhang’05])
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More Features in Satelite

• self subsuming resolution:

– allows to remove single literals from clauses

– beside clause distribution and fw/bw subsumption most effective

– resolvent subsumes one resolvee: (a∨v∨c)⊗ (a∨v) ≡ (a∨c)

• efficient scheduler for clause distribution and self subsumption

• functional substitution of gates (cheaper than clause distribution)

• hyper unary resolution: (a∨b∨c)⊗ (a∨b)⊗ (c∨b) ≡ (b)
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Second Level Signature based Subsumption Techniques
[Biere’04]

• avoids traversing occurrence list in many cases

• signature sum of a literal: Σ(l) =
S
{σ(D) | D ∈ CNF and l ∈ D}

• necessary condition for new clause D to subsume an old clause:

σ(C)⊆ Σ(l) for all l ∈C

• removing clauses

– it is sound to keep old signature

– recalculate accurate signature sums after many removals

• technique can be extended to extract gates and hyper unary resolution
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Experiments for Second Level Signatures

sec v v′ red c c′ red l l ′ red sub 2nd hit 1st miss

1 1.05 9 2 73% 55 21 61% 149 68 54% 28 76.6% 62.0%

2 0.15 2 0 98% 11 0 97% 28 1 96% 8 70.1% 39.6%

3 1.43 14 4 73% 71 33 54% 187 107 43% 30 81.0% 55.1%

4 2.27 28 3 89% 135 25 81% 352 83 76% 95 72.9% 43.7%

5 0.69 9 0 93% 39 4 89% 100 15 84% 30 69.6% 44.1%

6 8.98 51 5 90% 356 87 76% 972 259 73% 1091 31.5% 16.8%

7 0.59 7 0 100% 40 0 100% 102 0 100% 29 68.9% 43.7%

8 6.22 58 13 76% 277 142 49% 714 453 36% 165 72.8% 69.7%

9 7.04 63 15 76% 307 162 47% 794 520 34% 180 72.7% 70.6%

10 6.40 59 9 84% 322 73 77% 850 240 72% 322 64.6% 33.0%

11 2.78 32 7 76% 149 53 64% 393 179 54% 75 80.5% 56.5%

12 3.95 39 11 70% 193 89 54% 511 302 41% 84 80.5% 55.2%

13 1.34 13 3 74% 65 29 55% 172 97 44% 25 79.8% 68.1%
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Why Hyper Unary Resolution?

original CNF including clauses modelling an AND gate a = b∧c∧d

(a∨b)∧ (a∨c)∧ (a∨d)∧ (a∨b∨c∨d)︸ ︷︷ ︸
base clause

new clause (b∨c∨d)

backward subsumes base clause of AND gate and prevents gate extraction

however hyper resolution with the binary side clauses of the AND gate

(a∨b)⊗ (a∨c)⊗ (a∨d)⊗ (b∨c∨d) ≡ a

results in unit clause

similar techniques for other subsumptions of base or side clauses
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Automatic Test Pattern Generation (ATPG)

• need to test chips after manufacturing

– manufacturing process introduces faults (< 100% yield)

– faulty chips can not be sold (should not)

– generate all test patterns from functional logic description

• simplified failure model

– at most one wire has a fault

– fault results in fixing wire to a logic constant:

“stuck at zero fault” (s-a-0) “stuck at one fault” (s-a-1)
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ATPG with D-Algorithm
[Roth’66]

• adding logic constants D and D allows to work with only one circuit

0 represents 0 in fault free and 0 in faulty circuit

1 represents 1 in fault free and 1 in faulty circuit

D represents 1 in fault free and 0 in faulty circuit

D represents 0 in fault free and 1 in faulty circuit

• otherwise obvious algebraic rules (propagation rules)

1∧D≡ D 0∧D≡ 0 D∧D≡ 0 etc.

• new conflicts: e.g. variable/wire can not be 0 and D at the same time
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Fault Injection for S-A-0 Fault

assume opposite value 1 before fault

(both for fault free and faulty circuit)

outputinputs
s−a−0

D1

assume difference value D after fault
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D-Algorithm Example: Fault Injection
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D-Algorithm Example: Path Sensitation
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D-Algorithm Example: Propagation

c

t

e
o

s−a−0

1 D

0

0

D
1

1

0

0

test vector (c, t,e) = (1,1,0)
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Justification

generate partial input vector to justify 1

outputinputs
s−a−0

D1
X

0

1
1

1

only backward propagation , remaining unassigned inputs can be arbitrary
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Observation

extend partial input vector to propagate D or D to output

outputinputs
s−a−0

D1
X

0

1
1

1

0

X
1

D
D

0

1

forward propagation of D and D, backward propagation of 0 and 1
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Dominators and Path Sensitation

• idea: use circuit topology for additional necessary conditions

– assign and propagate these conditions after fault injection

• gate dominates fault iff every path from fault to output goes through it

– more exactly we determine wires (input to gates) that dominate a fault

• if input dominates a fault assign other inputs to non-controlling value

s−a−0 dominator
1 D

D

1

implied

implied non−controlling value

only path to ouput
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Redundancy Removal with D-Algorithm: Fault Injection
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Redundancy Removal with D-Algorithm: Path Sensitation

c

t

e
o

s−a−0

1 D

0

0

23



Redundancy Removal with D-Algorithm: 1st Propagation
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Redundancy Removal with D-Algorithm: 2nd Propagation
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Redundancy Removal with D-Algorithm: Untestable
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Redundancy Removal with D-Algorithm: Assume Fault

c

t

e
o0

27



Redundancy Removal with D-Algorithm: Simplified Circuit

c

t

e
o

28



Redundancy Removal for SAT

• assume CNF is generated via Tseitin transformation from formula/circuit

– formula = model constraints + negation of property

– CNF consists of gate input/output consistency constraints

– plus additional unit forcing output o of whole formula to be 1

• remove redundancy in formula under assumption o = 1

• propagation of D or D to o does not make much sense

– not interested in o = 0

– check simply for unsatisfiability ⇒ no need for D, D (!?)
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Variable Instantiation
[AnderssonBjesseCookHanna DAC’02] and Oepir SAT solver

• satisfiability preserving transformation

• motivated by original pure literal rule :

– if a literal l does not occur negatively in CNF f

– then replace l by 1 in f (continue with f [l 7→ 1])

• generalization to variable instantiation :

– if f [l 7→ 0]→ f [l 7→ 1] is valid

– then replace l by 1 in f (continue with f [l 7→ 1])
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Why is Variable Instantiation a Generalization of the Pure Literal Rule?

Let f ≡ f ′∧ f0∧ f1 with

f ′ l does not occur

f0 l occurs negatively

f1 l occurs positively

further assume (assumption of pure literal rule)

f0≡ 1

then

f [l 7→ 0] ⇔ f ′∧ f1[l 7→ 0]
!⇒ f ′ ⇔ f [l 7→ 1]
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Variable Instantiation Implementation

We have

f [l 7→ 1] ⇔ f ′ ∧ f1[l 7→ 1]︸ ︷︷ ︸
1

∧ f0[l 7→ 1] ⇔ f ′∧ f0[l 7→ 1] ⇔ f ′∧

f0[l 7→1]︷ ︸︸ ︷
n̂

i=1

Ci

and since f [l 7→ 0]⇒ f ′ we only need show the validity of

f [l 7→ 0] →
n̂

i=1

Ci

which is equivalent to the unsatisfiability of

f [l 7→ 0] ∧ Ci for i = 1. . .n

which again is equivalent to the unsatisfiability of

f ∧ l ∧ Ci for i = 1. . .n

This can be done directly on the CNF and needs n unsatisfiability checks.
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Variable Instantiation for Tseitin Encodings

(a∨c)

(b∨c)

(a∨b∨c)

(c∨e)

(d∨e)

(c∨d∨e)

a

b
d

c
e

6|= f ∧ c ∧ (a∨b)

6|= f ∧ c ∧ (d∨e)

 ⇒ add c as unit

requires two satisfiability checks while ATPG for c s-a-1 needs just one run
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Stålmarck’s Method and Recursive Learning

• orginally Stålmarck’s Method works on “sea of triplets” [Stålmarck’89]

x = x1@. . .@xn with @ boolean operator

– equivalence reasoning + structural hashing + test rule

– test rule translated to CNF f : f ⇒ (BCP( f ∧x)∩BCP( f ∧x))

add to f units that are implied by both cases x and x

• Recursive Learning [KunzPradhan 90ties]

– originally works on circuit structure

– idea is to analyze all ways to justify a value, intersection is implied

– translated to CNF f which contains clause (l1∨ . . .∨ ln)

BCP on all l i separately and add intersection of derived units
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Further CNF Simplification Techniques

• failed literals, various forms of equivalence reasoning

• hyper binary resolution [BacchusWinter’03,GershmanStrichman’05]

– add binary clauses obtained through hyper resolution

– avoid adding full transitive closure of implication chains

– equivalence reasoning through SCC detection in binary clause graph

– as Stålmarck’s procedure subsumes structural hashing

• variable and clause elimination

– autarkies and blocked clauses [Kullman]
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Circuit based Simplification vs. CNF simplification

• circuit reasoning/simplification can use structure of circuit

– graph structure (dominators)

– notion of direction (forward and backward propagation)

– partial models (some inputs do not need to be assigned)

• CNF simplification does not rely on circuit structure

– orthogonal: can for instance remove individual clauses

• adapt ideas from circuit reasoning to SAT

(e.g. avoid multiple SAT checks for redundancy removal in CNF)
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