
Circuit versus CNF Reasoning

for Equivalence Checking

Armin Biere

Institute for Formal Models and Verification
Johannes Kepler University Linz, Austria

Equivalence Checking Workshop 2005

Madonna di Campiglio, Italy
July 29, 2005

Example of Tseitin Transformation: Circuit to CNF
[Tseitin’68]

c

b

a

w

v
w

u
o

x

y
o ∧

(x ↔ a∧c) ∧
(y ↔ b∨x) ∧
(u ↔ a∨b) ∧
(v ↔ b∨c) ∧
(w↔ u∧v) ∧
(o ↔ y⊕w)

o∧ (x→ a)∧ (x→ c)∧ (x← a∧c)∧ . . .

o∧ (x∨a)∧ (x∨c)∧ (x∨a∨c)∧ . . .

1

Preprocessing SAT

• general idea:

– simplify CNF before applying complete DPLL algorithm

– heuristic: simpler CNF is easier to solve

– metric for simpler: smaller, e.g. less clauses or literals

• for instance failed literal rule

– assume one literal l by setting it to true

– perform boolean constraint propagation (BCP)

– if BCP generates conflict (empty clause), then permanently add l

– continue until no more literals are added ⇒ saturate

2

Resolution
[Robinson]

• method to derive logically implied clauses

– applicable to resolvees (l1∨ . . .∨ ln∨v) and (¬v∨k1∨ . . .∨km)

– with matching variable v

– implied resolvent (l1∨ . . .∨ ln∨k1∨ . . .∨km) can be added

• special cases

– trivial resolvent: (a∨b∨v)⊗ (v∨a) ≡ (a∨b∨a) ≡ 1

– unit resolution: (l1∨ . . .∨ ln∨v)⊗ (v) ≡ (l1∨ . . .∨ ln)

– resolution of empty clause: (v)⊗ (v)

3

Elimination of Variables by Resolution (Clause Distribution)
[DavisPutnam’60]

original clauses in which v or v occurs:

∨ ∨ ∨
∨∨x y v

∨ vs

∨r v¬

¬

∨v

v¬

¬ r

x y r¬

add non-trivial resolvents:

(s ∨ r), (x ∨ y ∨ r), and (s ∨ ¬x ∨ ¬y ∨ r)

remove original clauses

4

Issues with Clause Distribution

• number of added clauses quadratic in worst case

– solvers using only clause distribution explode in space

• still useful for preprocessing

– resolution may generate trivial clause (a∨b∨a)

– or even better units (a∨v)⊗ (¬v∨a) ≡ a

– empirically generates many subsumed clauses

(a∨b) subsumes (a∨b∨c)

– trivial and subsumed clauses do not have to be added

5

Subsumption

• backward subsumption

– new clause being added to CNF subsumes clause already in CNF

– old subsumed clause can be removed after adding new clause

– search clause in CNF containing all literals of new clause

• forward subsumption

– new clause is subsumed by clause already in CNF

– new clause does not have to be added

– search clause in CNF made of a subset of literals of new clause

6

Signature based Subsumption Techniques for Propositional CNF
[Biere’04,ÉenBiere’05]

• signature bit for each literal h(l) ∈ {0, . . . ,31}

– signature of literal is a 32-bit word: σ(l) = 2h(l) (1<<h(l) in C)

– signature of clause is a 32-bit word: σ(C) =
S

l∈C
σ(l)

– necessary condition: C subsumes D ⇒ σ(C)⊆ σ(D)

• backward subsumption

– traverse clauses of a single literal of new clause

– signature subset check avoids full literal subset check in many cases

7

Signature based Subsumption Techniques for Propositional CNF cont.

• originally implemented in QBF solver Quantor [Biere’04]

– fast subsumption essential for resolution based variable elimination

• SAT Preprocessor Satelite [ÉenBiere’05]

– fast subsumption has similar impact as in QBF

– SateliteGTI = Satelite + Minisat

(new version of Minisat by Sörenssen + Éen)

– SateliteGTI winner of all industrial categories in SAT’05 competition

• forward subsumption: add clauses in reverse order, backward subsume

(faster way: 1-watched literal scheme [Zhang’05])

8

More Features in Satelite

• self subsuming resolution:

– allows to remove single literals from clauses

– beside clause distribution and fw/bw subsumption most effective

– resolvent subsumes one resolvee: (a∨v∨c)⊗ (a∨v) ≡ (a∨c)

• efficient scheduler for clause distribution and self subsumption

• functional substitution of gates (cheaper than clause distribution)

• hyper unary resolution: (a∨b∨c)⊗ (a∨b)⊗ (c∨b) ≡ (b)

9

Second Level Signature based Subsumption Techniques
[Biere’04]

• avoids traversing occurrence list in many cases

• signature sum of a literal: Σ(l) =
S
{σ(D) | D ∈ CNF and l ∈ D}

• necessary condition for new clause D to subsume an old clause:

σ(C)⊆ Σ(l) for all l ∈C

• removing clauses

– it is sound to keep old signature

– recalculate accurate signature sums after many removals

• technique can be extended to extract gates and hyper unary resolution

10

Experiments for Second Level Signatures

sec v v′ red c c′ red l l ′ red sub 2nd hit 1st miss

1 1.05 9 2 73% 55 21 61% 149 68 54% 28 76.6% 62.0%

2 0.15 2 0 98% 11 0 97% 28 1 96% 8 70.1% 39.6%

3 1.43 14 4 73% 71 33 54% 187 107 43% 30 81.0% 55.1%

4 2.27 28 3 89% 135 25 81% 352 83 76% 95 72.9% 43.7%

5 0.69 9 0 93% 39 4 89% 100 15 84% 30 69.6% 44.1%

6 8.98 51 5 90% 356 87 76% 972 259 73% 1091 31.5% 16.8%

7 0.59 7 0 100% 40 0 100% 102 0 100% 29 68.9% 43.7%

8 6.22 58 13 76% 277 142 49% 714 453 36% 165 72.8% 69.7%

9 7.04 63 15 76% 307 162 47% 794 520 34% 180 72.7% 70.6%

10 6.40 59 9 84% 322 73 77% 850 240 72% 322 64.6% 33.0%

11 2.78 32 7 76% 149 53 64% 393 179 54% 75 80.5% 56.5%

12 3.95 39 11 70% 193 89 54% 511 302 41% 84 80.5% 55.2%

13 1.34 13 3 74% 65 29 55% 172 97 44% 25 79.8% 68.1%

11

Why Hyper Unary Resolution?

original CNF including clauses modelling an AND gate a = b∧c∧d

(a∨b)∧ (a∨c)∧ (a∨d)∧ (a∨b∨c∨d)︸ ︷︷ ︸
base clause

new clause (b∨c∨d)

backward subsumes base clause of AND gate and prevents gate extraction

however hyper resolution with the binary side clauses of the AND gate

(a∨b)⊗ (a∨c)⊗ (a∨d)⊗ (b∨c∨d) ≡ a

results in unit clause

similar techniques for other subsumptions of base or side clauses

12

Automatic Test Pattern Generation (ATPG)

• need to test chips after manufacturing

– manufacturing process introduces faults (< 100% yield)

– faulty chips can not be sold (should not)

– generate all test patterns from functional logic description

• simplified failure model

– at most one wire has a fault

– fault results in fixing wire to a logic constant:

“stuck at zero fault” (s-a-0) “stuck at one fault” (s-a-1)

13

ATPG with D-Algorithm
[Roth’66]

• adding logic constants D and D allows to work with only one circuit

0 represents 0 in fault free and 0 in faulty circuit

1 represents 1 in fault free and 1 in faulty circuit

D represents 1 in fault free and 0 in faulty circuit

D represents 0 in fault free and 1 in faulty circuit

• otherwise obvious algebraic rules (propagation rules)

1∧D≡ D 0∧D≡ 0 D∧D≡ 0 etc.

• new conflicts: e.g. variable/wire can not be 0 and D at the same time

14

Fault Injection for S-A-0 Fault

assume opposite value 1 before fault

(both for fault free and faulty circuit)

outputinputs
s−a−0

D1

assume difference value D after fault

15

D-Algorithm Example: Fault Injection

c

t

e
o

s−a−0

1 D

16

D-Algorithm Example: Path Sensitation

c

t

e
o

s−a−0

1 D

0

0

17

D-Algorithm Example: Propagation

c

t

e
o

s−a−0

1 D

0

0

D
1

1

0

0

test vector (c, t,e) = (1,1,0)

18

Justification

generate partial input vector to justify 1

outputinputs
s−a−0

D1
X

0

1
1

1

only backward propagation , remaining unassigned inputs can be arbitrary

19

Observation

extend partial input vector to propagate D or D to output

outputinputs
s−a−0

D1
X

0

1
1

1

0

X
1

D
D

0

1

forward propagation of D and D, backward propagation of 0 and 1

20

Dominators and Path Sensitation

• idea: use circuit topology for additional necessary conditions

– assign and propagate these conditions after fault injection

• gate dominates fault iff every path from fault to output goes through it

– more exactly we determine wires (input to gates) that dominate a fault

• if input dominates a fault assign other inputs to non-controlling value

s−a−0 dominator
1 D

D

1

implied

implied non−controlling value

only path to ouput

21

Redundancy Removal with D-Algorithm: Fault Injection

s−a−0

1 D

c

t

e
o

22

Redundancy Removal with D-Algorithm: Path Sensitation

c

t

e
o

s−a−0

1 D

0

0

23

Redundancy Removal with D-Algorithm: 1st Propagation

c

t

e
o

s−a−0

1 D

0

0

D
1

1

24

Redundancy Removal with D-Algorithm: 2nd Propagation

c

t

e
o

s−a−0

1 D

0

0

D
1

1

0

0

25

Redundancy Removal with D-Algorithm: Untestable

c

t

e
o

s−a−0

1 D

0

0

D
1

1

0

00
1 conflict

26

Redundancy Removal with D-Algorithm: Assume Fault

c

t

e
o0

27

Redundancy Removal with D-Algorithm: Simplified Circuit

c

t

e
o

28

Redundancy Removal for SAT

• assume CNF is generated via Tseitin transformation from formula/circuit

– formula = model constraints + negation of property

– CNF consists of gate input/output consistency constraints

– plus additional unit forcing output o of whole formula to be 1

• remove redundancy in formula under assumption o = 1

• propagation of D or D to o does not make much sense

– not interested in o = 0

– check simply for unsatisfiability ⇒ no need for D, D (!?)

29

Variable Instantiation
[AnderssonBjesseCookHanna DAC’02] and Oepir SAT solver

• satisfiability preserving transformation

• motivated by original pure literal rule :

– if a literal l does not occur negatively in CNF f

– then replace l by 1 in f (continue with f [l 7→ 1])

• generalization to variable instantiation :

– if f [l 7→ 0]→ f [l 7→ 1] is valid

– then replace l by 1 in f (continue with f [l 7→ 1])

30

Why is Variable Instantiation a Generalization of the Pure Literal Rule?

Let f ≡ f ′∧ f0∧ f1 with

f ′ l does not occur

f0 l occurs negatively

f1 l occurs positively

further assume (assumption of pure literal rule)

f0≡ 1

then

f [l 7→ 0] ⇔ f ′∧ f1[l 7→ 0]
!⇒ f ′ ⇔ f [l 7→ 1]

31

Variable Instantiation Implementation

We have

f [l 7→ 1] ⇔ f ′ ∧ f1[l 7→ 1]︸ ︷︷ ︸
1

∧ f0[l 7→ 1] ⇔ f ′∧ f0[l 7→ 1] ⇔ f ′∧

f0[l 7→1]︷ ︸︸ ︷
n̂

i=1

Ci

and since f [l 7→ 0]⇒ f ′ we only need show the validity of

f [l 7→ 0] →
n̂

i=1

Ci

which is equivalent to the unsatisfiability of

f [l 7→ 0] ∧ Ci for i = 1. . .n

which again is equivalent to the unsatisfiability of

f ∧ l ∧ Ci for i = 1. . .n

This can be done directly on the CNF and needs n unsatisfiability checks.

32

Variable Instantiation for Tseitin Encodings

(a∨c)

(b∨c)

(a∨b∨c)

(c∨e)

(d∨e)

(c∨d∨e)

a

b
d

c
e

6|= f ∧ c ∧ (a∨b)

6|= f ∧ c ∧ (d∨e)

 ⇒ add c as unit

requires two satisfiability checks while ATPG for c s-a-1 needs just one run

33

Stålmarck’s Method and Recursive Learning

• orginally Stålmarck’s Method works on “sea of triplets” [Stålmarck’89]

x = x1@. . .@xn with @ boolean operator

– equivalence reasoning + structural hashing + test rule

– test rule translated to CNF f : f ⇒ (BCP(f ∧x)∩BCP(f ∧x))

add to f units that are implied by both cases x and x

• Recursive Learning [KunzPradhan 90ties]

– originally works on circuit structure

– idea is to analyze all ways to justify a value, intersection is implied

– translated to CNF f which contains clause (l1∨ . . .∨ ln)

BCP on all l i separately and add intersection of derived units

34

Further CNF Simplification Techniques

• failed literals, various forms of equivalence reasoning

• hyper binary resolution [BacchusWinter’03,GershmanStrichman’05]

– add binary clauses obtained through hyper resolution

– avoid adding full transitive closure of implication chains

– equivalence reasoning through SCC detection in binary clause graph

– as Stålmarck’s procedure subsumes structural hashing

• variable and clause elimination

– autarkies and blocked clauses [Kullman]

35

Circuit based Simplification vs. CNF simplification

• circuit reasoning/simplification can use structure of circuit

– graph structure (dominators)

– notion of direction (forward and backward propagation)

– partial models (some inputs do not need to be assigned)

• CNF simplification does not rely on circuit structure

– orthogonal: can for instance remove individual clauses

• adapt ideas from circuit reasoning to SAT

(e.g. avoid multiple SAT checks for redundancy removal in CNF)

36

