

SAT Based Model Checking

● BMC
● k-induction
● Abstractions / CEGAR
● Interpolation
● IC3

Armin Biere, Daniel Kröning

SAT Based Model Checking

Handbook of Model Checking

Symbolic Model Checking without BDDs?

Armin Biere1, Alessandro Cimatti2, Edmund Clarke1, and Yunshan Zhu1

1 Computer Science Department, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213, U.S.A

fArmin.Biere,Edmund.Clarke,Yunshan.Zhu g@cs.cmu.edu
2 Istituto per la Ricerca Scientifica e Tecnologica (IRST)

via Sommarive 18, 38055 Povo (TN), Italy
cimatti@irst.itc.it

Abstract. Symbolic Model Checking [3, 14] has proven to be a powerful tech-
nique for the verification of reactive systems. BDDs [2] have traditionally been
used as a symbolic representation of the system. In this paper we show how
boolean decision procedures, like St˚almarck’s Method [16] or the Davis & Put-
nam Procedure [7], can replace BDDs. This new technique avoids the space blow
up of BDDs, generates counterexamples much faster, and sometimes speeds up
the verification. In addition, it produces counterexamples of minimal length. We
introduce abounded model checkingprocedure for LTL which reduces model
checking to propositional satisfiability. We show that bounded LTL model check-
ing can be done without a tableau construction. We have implemented a model
checkerBMC , based on bounded model checking, and preliminary results are
presented.

1 Introduction

Model checking [4] is a powerful technique for verifying reactive systems. Able to find
subtle errors in real commercial designs, it is gaining wide industrial acceptance. Com-
pared to other formal verification techniques (e.g. theorem proving) model checking is
largely automatic.

In model checking, the specification is expressed in temporal logic and the sys-
tem is modeled as a finite state machine. For realistic designs, the number of states of
the system can be very large and the explicit traversal of the state space becomes in-
feasible. Symbolic model checking [3, 14], with boolean encoding of the finite state
machine, can handle more than 1020 states. BDDs [2], a canonical form for boolean
expressions, have traditionally been used as the underlying representation for symbolic
model checkers [14]. Model checkers based on BDDs are usually able to handle sys-
tems with hundreds of state variables. However, for larger systems the BDDs generated
during model checking become too large for currently available computers. In addition,

? This research is sponsored by the Semiconductor Research Corporation (SRC) under Contract
No. 97-DJ-294 and the National Science Foundation (NSF) under Grant No. CCR-9505472.
Any opinions, findings and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of SRC, NSF, or the United States
Government.

Bounded Model Checking [BiereCimattiClarkeZhu-TACAS’99]

• look only for counter example made of k states “k” = bound

∨ ∨ ∨ ∨p¬ p¬ p¬ p¬p¬

0s s1 l+1s sksl

or
p¬ p¬ p¬ p¬p¬

0s sls1 l+1s sk

• simple for safety properties p invariantly true

I(s0) ∧ T (s0,s1))∧·· ·∧T (sk−1,sk) ∧
k∨

i=0
¬p(si)

• harder for liveness properties p eventually true

I(s0) ∧ T (s0,s1))∧·· ·∧T (sk−1,sk) ∧
k∧

i=0
¬p(si) ∧

k∨
l=0

T (sk,sl)

• compute and bound k by diameter

Replacing Testing with Formal Verification in
Intel� CoreTM i7 Processor Execution Engine Validation

Roope Kaivola, Rajnish Ghughal, Naren Narasimhan, Amber Telfer,
Jesse Whittemore, Sudhindra Pandav, Anna Slobodová, Christopher Taylor,

Vladimir Frolov, Erik Reeber, and Armaghan Naik

Intel Corporation, JF4-451, 2111 NE 25th Avenue, Hillsboro, OR 97124, USA

Abstract. Formal verification of arithmetic datapaths has been part of the estab-
lished methodology for most Intel processor designs over the last years, usually
in the role of supplementing more traditional coverage oriented testing activities.
For the recent Intel� CoreTM i7 design we took a step further and used formal
verification as the primary validation vehicle for the core execution cluster, the
component responsible for the functional behaviour of all microinstructions. We
applied symbolic simulation based formal verification techniques for full data-
path, control and state validation for the cluster, and dropped coverage driven
testing entirely. The project, involving some twenty person years of verification
work, is one of the most ambitious formal verification efforts in the hardware
industry to date. Our experiences show that under the right circumstances, full
formal verification of a design component is a feasible, industrially viable and
competitive validation approach.

1 Introduction

Most Intel processors launched over the last ten years have contained formally verified
components. This is hardly surprising, as their reliability is crucial, and the cost of cor-
recting problems can be very high. Formal verification has been applied to a range of
design components or features: low-level protocols, register renaming, arithmetic units,
microarchitecture descriptions etc. [19,4]. In an industrial product development setting,
formal verification is a tool, one among others, and it competes with traditional test-
ing and simulation. Usually testing can produce initial results much faster than formal
verification, and in our view the value of formal verification primarily comes from its
ability to cover every possible behaviour. In most of the cases where formal verification
has been applied, its role has been that of a supplementary verification method on top
of a full-fledged simulation based dynamic validation effort.

The single most sustained formal verification effort has been made in the area of
arithmetic, in particular floating point datapaths. In this area verification methods have
reached sufficient maturity that they have now been routinely applied for a series of
design projects [17,3,13,21,6], and expanded to cover the full datapath functionality
of the Execution Cluster EXE, a top-level component of a core responsible for the
functional behaviour of all microinstructions. In the current paper we discuss further
expansion of this work on Intel� CoreTM i7 design [1]. For this project, we used formal
verification as the primary validation vehicle for the execution cluster, including full

A. Bouajjani and O. Maler (Eds.): CAV 2009, LNCS 5643, pp. 414–429, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Replacing Testing with Formal Verification 421

the projects, and the second by the fact that the control verification work that would
have identified the unintended interference between the operations had not been done
yet at the time. To summarize, out of the five misses, three could be attributed to an
incorrect formal specification, and two to formal verification work not being completed
early enough. The positive side of this is that there were no issues that would have fallen
through the cracks because of failures in our methodology.

6 Formal Verification Value Proposition

The conventional wisdom about formal verification in industrial context is easy to spell
out. Simulation yields partial results quickly and progresses reliably in a linear fashion,
although reaching full coverage is very hard, and completeness unattainable. Formal
verification, on the other hand, while in principle holding the promise of completeness,
is in practice woefully capacity constrained and either slow or downright unable to
produce meaningful results. Although a caricature, we feel this view is not altogether
unjustified. To better understand the barriers of more wide-spread application of formal
verification in industry, at least from an Intel perspective, let us look briefly at some
possible application models for formal verification:

– FV may be applied to the fundamental algorithms,
– FV may be applied as an extra layer of protection,
– FV may be mixed with dynamic simulation on the same design, or
– FV may replace simulation as the primary validation approach.

In the first usage model, formal and dynamic validation do not directly overlap. Usually,
dynamic validation cannot start until an implementation has been coded, and validation
of the underlying algorithms is done only by inspection and reviews. Recent forays into
such early microarchitecture validation in Intel [4] have been very encouraging.

As discussed above, much of Intel’s formal verification work has historically fol-
lowed the second usage model, where formal verification is done on top of a full dy-
namic validation effort. There are several pragmatic problems in this approach. First,
if dynamic validation is done diligently, it will find most of the bugs, and thereby get
most of the credit. Secondly, the few remaining bugs are likely to be in extreme cor-
ners of the design, and formal verification will look at these only if a very thorough
and costly effort is made to cover all aspects of the design. This means that doing a
little formal verification will not find any new issues, and doing a thorough effort only
a few, in both cases leading to a perceived low return on investment. The areas where
projects have routinely chosen to do formal verification have then been limited to those
where an uncaught problem would be so visible and costly that the extra effort of doing
formal verification can be justified. As a positive exception, SAT-based bounded model
checking has been very successfully used as a bug-hunting tool in targeted areas.

The third usage model, mixing formal and dynamic techniques on validating a sin-
gle design area, sounds appealing at face value. However, the following fundamental
problem makes it hard to offset the dynamic validation effort by formal verification.
The coverage-based validation paradigm is based on the identification of all interesting
aspects of the design and the sets of interesting cases for all these aspects, with the

Impact
● widespread use in industry (EDA)

– industry embraced bounding part immediately

– original industrial reservations: using SAT vs ATPG

– original academic reservations: incompleteness?

● BMC relies on efficient SAT (SMT) solving
– breakthroughs in SAT: CDCL '96, VSIDS '01, ...

– encouraged investment in SAT / SMT research

● extensions to non-boolean domains
– bounding reduces complexity / decidability

● extensions to completeness
– diameter checking, k-induction, interpolation

– SAT based model checking without unrolling: IC3

A Short Story on 15 years of
Bounded Model Checking

Armin Biere, Alessandro Cimatti, Edmund Clarke, Yunshan Zhu

TACAS'99 - TACAS'14
●1997: interest and capacity of BDDs stalled

but there were success stories of other techniques
● Ed Clarke hired Yunshan Zhu and AB as Post-Docs:

Use SAT for Symbolic Model Checking!
●struggled for 10 months to come up with something that
could replace / improve BDDs (mainly looked at QBF then)
●Alessandro Cimatti went to an AI conference in Pittsburgh
and at lunch (at an Indian Restaurant) we realized, that in
AI Planing they do not care about completeness

 What if we apply this to model checking?
 How to handle temporal logic?

● After one afternoon for the theory and 3 months of
implementation and benchmarking later: TACAS submission

Lessons

● simple but useful ideas are very controversial
– hard to get accepted (literally)

– many comments of the sort: we did this before …

– main points: make it work, show that it works!

● in retrospective
– classification considerations might have been useful since

we tried to use SAT for symbolic model checking without
taking Savitch's theorem into account

– but might have prevented us going along that route ...

