
Challenges in Bit-Precise Reasoning

Armin Biere
Johannes Kepler University

Linz, Austria

based on joined work with
Aina Niemetz, Andreas Fröhlich, Gergely Kovásznai, Mathias Preiner

FMCAD 2014

EPFL, Lausanne, Switzerland

Tuesday, 21 October, 2014

Almost All Binary Search Implementations are Broken 3/32

int bsearch (int * a, int n, int e) {

int l = 0, r = n;

if (!n) return 0; int main (void) {

while (l + 1 < r) { int n = INT_MAX;

printf ("l=%d r=%d\n", l, r); int * a = calloc (n, 4);

int m = (l + r) / 2; (void) bsearch (a, n, 1);

if (e < a[m]) r = m; }

else l = m;

} $./bsearch

return a[l] == e; l=0 r=2147483647

} l=1073741823 r=2147483647

Segmentation fault

Challenges in Bit-Precise Reasoning @ FMCAD’14

Syntax 4/32

common “word-level” operators QF BV standard SMTLIB2 format

constants: 0x7fffffff, variables: fixed size bit vectors bool x[32]

predicates: equality “x = y”, inequality “x≤ y” (signed & unsigned)

bit-wise logical ops: negation, conjunction, xor ˜x x & y x ˆ y

word operators: slicing “x[l : r]”, concatenation “x◦ y”

conditional operator or if-then-else operator “c ? t : e”

zero extension and sign extension

shift operators: left shift, arithmetic/logical right shift, rotation

basic arithmetic operators: negation (1-complement), addition, multiplication

overflow checking for addition and multiplication

derived arith. ops: unary minus (2-complement), substraction, division, modulo

extended word-level operators (QF)[A][UF]BV

uninterpreted functions “UF”, arrays “A” with read / write operators

with quantifiers (no “QF ”)

Challenges in Bit-Precise Reasoning @ FMCAD’14

Modelling with Bit-Vectors 5/32

allows to capture bit-precise semantics precisely

RTL-level / word-level for HW

assembler or C level for SW
but beware: int in Java has 2-complement semantics

arrays used to model memories in HW or pointers in SW

low-level (flat) memory model

“writable” extension of uninterpreted functions (UF ⊆ A)

extensional arrays:

check satisfiability assuming equality of (updated) arrays

a = write (b, j, v) ∧ read (a, j) 6= v
in this example extensionality could be removed by substitution

quantifiers (and lambdas) are even more powerful than arrays

typical scenario

symbolic execution of a program

bounded model checking of an RTL model

Challenges in Bit-Precise Reasoning @ FMCAD’14

Bit-Blasting of 4-Bit Addition 6/32

addition of 4-bit numbers x,y with result s also 4-bit: s = x+ y

[s3,s2,s1,s0]4 = [x3,x2,x1,x0]4+[y3,y2,y1,y0]4

[s3, ·]2 = FullAdder(x3,y3,c2)

[s2,c2]2 = FullAdder(x2,y2,c1)

[s1,c1]2 = FullAdder(x1,y1,c0)

[s0,c0]2 = FullAdder(x0,y0,0)

where

[s , o]2 = FullAdder(x,y, i) with

s = x ˆ y ˆ i

o = (x∧ y)∨ (x∧ i)∨ (y∧ i) = ((x+ y+ i)≥ 2)

Challenges in Bit-Precise Reasoning @ FMCAD’14

And-Inverter-Graphs (AIG) 7/32

widely adopted bit-level intermediate representation

see for instance our AIGER format http://fmv.jku.at/aiger

used in Hardware Model Checking Competition (HWMCC)

also used in the structural track in (ancient) SAT competitions

many companies use similar techniques

basic logical operators: conjunction and negation

DAGs: nodes are conjunctions, negation/sign as edge attribute
bit stuffing: signs are compactly stored as LSB in pointer

automatic sharing of isomorphic graphs, constant time (peep hole) simplifications

or even SAT sweeping, full reduction, etc . . . see ABC system from Berkeley

Challenges in Bit-Precise Reasoning @ FMCAD’14

XOR as AIG 8/32

yx

negation/sign are edge attributes
not part of node

x ˆ y ≡ (x∧ y)∨ (x∧ y) ≡ (x∧ y)∧ (x∧ y)

Challenges in Bit-Precise Reasoning @ FMCAD’14

Bit-Stuffing Techniques for AIGs in C 9/32

typedef struct AIG AIG;

struct AIG

{

 enum Tag tag; /* AND, VAR */

 void *data[2];

 int mark, level; /* traversal */

 AIG *next; /* hash collision chain */

};

#define sign_aig(aig) (1 & (unsigned) aig)

#define not_aig(aig) ((AIG*)(1 ^ (unsigned) aig))

#define strip_aig(aig) ((AIG*)(~1 & (unsigned) aig))

#define false_aig ((AIG*) 0)

#define true_aig ((AIG*) 1)

assumption for correctness:
sizeof(unsigned) == sizeof(void*)

Challenges in Bit-Precise Reasoning @ FMCAD’14

2

1[1]

4

2[1]

6

1[2]

8

2[2]

1 0

1[3]

1 2

2[3]

1 4

1[0]

1 6

2[0]1 8

20

22

24

26

28

30

32

34

36

38

4042

44

46 48

50

52

54

56

58

60

62

O0

O1

O2

O3

��FMX�EHHIV

2

1[1]

4

2[1]

6

1[2]

8

2[2]

1 0

1[3]

1 2

2[3]

1 4

1[4]

1 6

2[4]

1 8

1[5]

2 0

2[5]

2 2

1[6]

2 4

2[6]

2 6

1[7]

2 8

2[7]

3 0

1[0]

3 2

2[0]3 4

36

38

40

42

44

46

48

50

52

54

56

58

60

62

64

66

68

70

72

74

76

78

80

82

84

86

88

90

92

94

9698

100

102 104

106

108

110

112

114

116

118

120

122

124

126

128

130

132

134

O0

O1

O2

O3

O4

O5

O6

O7

��FMX�EHHIV

2

2[0]

4

2[1]

6

2[2]

8

1[0]

1 0

2[3]

1 2

1[1]

1 4

1[2]

1 6

1[3]

1 8

1[4]

2 0

1[5]

2 2

1[6]

2 4

1[7]

2 6

1[8]

2 8

1[9]

3 0

1[10]

32

1[11]

34

1[12]

36

1[13]

38

1[14]

40

1[15]

42 44

46

48

50 52

54

56

58

60

62 64

66

68

7072

74

76

78

80

82

84

86 88

90

92

94 96

98

100

102

104

106 108

110

112

114 116

118

120

122

124

126

128

130

132 134

136

138

140 142

144

146

148

150

152 154

156

158

160 162

164

166

168

170

172

174

176 178

180

182

184 186

188

190

192

194

196 198

200

202

204

206

208

210

212

214

216

218 220

222

224

226 228

230

232

234

236

238 240

242

244

246

248

250

252

254

256 258

260

262

264 266

268

270

272

274

276 278

280

282

284

286

288

290

292

294 296

298

300

302

304

306

308 310

312

314

316

318

320

322 324

326

328

330

332

334

336 338

340

342

344

346

348

350 352 354 356358 360362 364

O0 O1 O2 O3O4 O5O6 O7

O8 O9 O10 O11O12 O13O14 O15

bit-vector of length 16 shifted by bit-vector of length 4

2

1[6]

4

2[7]

6

1[7]8

2[6]

1 0

1[5]

1 2

2[5]

1 4

1[4]

1 6

2[4]

1 8

1[3]

2 0

2[3]

2 2

1[2]

2 4

2[2]

2 6

1[1]

2 8

2[1]

3 0

1[0]

3 2

2[0]

3 4

36

38

40 42

44 46

48

50 52

54

56

58

60

62

64

66 68

70

72 74

76 78

80 82

84

86 88

90

92

94

96

98

100

102

104 106

108

110 112

114 116

118 120

122

124 126

128 130

132 134

136

138 140

142

144

146

148

150

152

154

156

158 160

162

164 166

168 170

172 174

176

178 180

182 184

186 188

190

192 194

196 198

200 202

204

206 208

210

212

214

216

218

220

222

224

226

228 230

232

234 236

238 240

242 244

246

248 250

252 254

256 258

260

262 264

266 268

270 272

274

276 278

280 282

284 286

288

290 292

294 296

298

300

302

304

306

308

310 312

314 316

318

320322

324 326

328 330

332

334 336

338340

342344

346

348350

352 354

356 358

360

362 364

366 368

370 372

374

376378

380 382

384386

388

390392

394 396

398400

402

404

406

408

410

412

414

416

418

420

422

424

426

428

O0

O1

O2

O3

O4

O5

O6

O7

Tseitin Transformation: Encode Circuit to CNF 13/32

CNF

c

b

a

w

v

w

u
o

x

y

o ∧
(x ↔ a∧ c) ∧
(y ↔ b∨ x) ∧
(u ↔ a∨b) ∧
(v ↔ b∨ c) ∧
(w↔ u∧ v) ∧
(o ↔ y⊕w)

o∧ (x→ a)∧ (x→ c)∧ (x← a∧ c)∧ . . .

o∧ (x∨a)∧ (x∨ c)∧ (x∨a∨ c)∧ . . .

Challenges in Bit-Precise Reasoning @ FMCAD’14

Boolector Architecture 14/32

Expr

SAT Solver

BTOR

SMT2 Expr

parse O2

subst

norm

slice

O3

synthesize

AIG(Vec)

CNF

O1 = bottom up simplification

O3 = normalizing (often non−linear) [default]

O1

rewrite

encode

Lingeling / PicoSAT / MiniSAT

SMT1

O2 = global but almost linear

Challenges in Bit-Precise Reasoning @ FMCAD’14

Internal Expression Types 15/32

enum BtorNodeKind

{

BTOR_BV_CONST_NODE = 1, BTOR_SLL_NODE = 11,

BTOR_BV_VAR_NODE = 2, BTOR_SRL_NODE = 12,

BTOR_PARAM_NODE = 3, BTOR_UDIV_NODE = 13,

BTOR_SLICE_NODE = 4, BTOR_UREM_NODE = 14,

BTOR_AND_NODE = 5, BTOR_CONCAT_NODE = 15,

BTOR_BEQ_NODE = 6, BTOR_APPLY_NODE = 16,

BTOR_FEQ_NODE = 7, BTOR_LAMBDA_NODE = 17,

BTOR_ADD_NODE = 8, BTOR_BCOND_NODE = 18,

BTOR_MUL_NODE = 9, BTOR_ARGS_NODE = 19,

BTOR_ULT_NODE = 10, BTOR_UF_NODE = 20,

BTOR_PROXY_NODE = 21

};

Challenges in Bit-Precise Reasoning @ FMCAD’14

Further Boolector Rewriting Internals 16/32

fast parallel substitution
collects top-level variable assignments (equalities)

collects boolean (bit-width 1) top-level constraints (embedded constraints)

normalize arithmetic equalities and try to isolate variables (Gauss)

one pass substitution restricted to output-cone of substituted variables

needs occurrence check, equalities between non-variable terms not used

so only partially simulates congruence closure

but works nice for typical SSA form encodings

boolean skeleton preprocessing
encode boolean (bit-width 1) part into SAT solver

use SAT preprocessing to extract forced units (backbone)

replace sliced variables by new variables

eliminate unconstrained sub-expressions

optionally perform full beta reduction

these expensive global rewriting steps iterated until completion
Challenges in Bit-Precise Reasoning @ FMCAD’14

Inprocessing 17/32

preprocessing interleaved with search or between incremental calls

Boolector inprocessing only in each incremental SAT call

Lingeling explicitly interleaves preprocessing with CDCL search

incremental word-level solving

through Boolector API only (currently)

requires user to specify incremental usage initially

disables unconstrained optimization and slice elimination

preprocessing/inprocessing in SAT solver

quite powerful

need to maintain mapping of AIG nodes to CNF variables

CNF variables eliminated by SAT solver can not be reused

Challenges in Bit-Precise Reasoning @ FMCAD’14

Make Use of Inprocessing/Preprocessing SAT Solving 18/32

don’t do it

our solution: clone SAT solver

triggered after (fixed) conflict limit is reached

cloned SAT solver can make full use of preprocessing

except that it can not propagate back learned clauses to parent

various papers by Nadel, Ryvchin, Strichman SAT’12, SAT’14:

bring back clauses with eliminated but reused variables

only works for bounded variable elimination (DP, BVE, SateLite)

needs support from SAT solver (best version requires to maintain proofs)

actually cloning useful for many other things: Treengeling

Challenges in Bit-Precise Reasoning @ FMCAD’14

Bit-Blasting Explodes 19/32

show commutativity of bit-vector addition for bit-width 1 million:

(set-logic QF_BV)
(declare-fun x () (_ BitVec 1000000))
(declare-fun y () (_ BitVec 1000000))
(assert (distinct (bvadd x y) (bvadd y x)))

size of SMT2 file: 138 bytes

bit-blasting with our SMT solver Boolector

rewriting turned off

except structural hashing

produces AIGER circuits of file size 103 MB

Tseitin transformation leads to CNF in DIMACS format of size 1 GB

Challenges in Bit-Precise Reasoning @ FMCAD’14

Complexity of Bit-Vector Logics 20/32

SMT2 bit-vector logic QF BV

quantifier free bit-vector logic

all common operators (incl. multiplication, division etc.)

without uninterpreted functions nor arrays nor with macros (define-fun)

classical bogus argument

bit-blast formula (polynomially in bit-width)

check with SAT solver, thus in NP

any CNF is a bit-vector formula, thus NP hard

however bit-blasting is really exponential

since bit-width is encoded logarithmically:
(declare-fun x () (BitVec 1000000))

same for constants: 0x7fffffff

we claim this is a fundamental difference: word-level vs. bit-level

Challenges in Bit-Precise Reasoning @ FMCAD’14

Complexity Results Overview 21/32

from our SMT’12 paper (extended journal version submitted):

quantifiers
no yes

uninterpreted functions uninterpreted functions
no yes no yes

encoding unary

NP

QF BV1
obvious

NP

QF UFBV1
Ackermann

PSPACE

BV1
[TACAS’10]

NEXPTIME
UFB1

[FMCAD’10]

binary

NEXPTIME
QF BV2

[SMT’12]

NEXPTIME

QF UFBV2
[SMT’12]

?

2NEXPTIME
UFBV2
[SMT’12]

QF = “quantifier free” UF = “uninterpreted functions” BV = “bit-vector logic”

BV1 = “unary encoded bit-vectors” BV2 = “binary encoded bit-vectors”

Challenges in Bit-Precise Reasoning @ FMCAD’14

Some Complexity Classes 22/32

P
problems with polynonmially time-bounded algorithms

bounds measured in terms of input (file) size

NP
same as P but with non-determininistic choice

needs a SAT solver

PSPACE
as P but space-bounded

QBF falls in this class, but also model checking (bit-level)

NEXPTIME
same as NP but with exponential time

P ⊆ NP ⊆ PSPACE ⊆ NEXPTIME
usually it is assumed: P 6= NP

it is further known: NP 6= NEXPTIME

P

NEXPTIME

PSPACE

NP

Challenges in Bit-Precise Reasoning @ FMCAD’14

Complexity Concretely 23/32

NP problems

anything which can be (polynomially) encoded into SAT

combinational equivalence checking, bounded model checking

PSPACE problems

anything which can be encoded (polynomially) into QBF

or into (bit-level) symbolic model checking

sequential equivalence checking, combinational synthesis or bounded games

NEXPTIME problems

anything which can be encoded exponentially into SAT

first-order logic Bernays-Schönfinkel class (EPR): no functions, ∃∗∀∗ prefix

QBF with explicit dependencies (Henkin Quantifiers): DQBF

partial observation games, black-box bounded model checking

bit-vector logics: QF BV2

Challenges in Bit-Precise Reasoning @ FMCAD’14

NEXPTIME Completeness 24/32

QF BV2 contained in NEXPTIME

bit-blast (single exponentially)

give resulting formula to SAT solver

show QF B2 NEXPTIME hardness by reducing DQBF to QF BV2

∀x0,x1,x2,x3,x4 ∃e0(x0,x1,x2,x3),e1(x1,x2,x3,x4) ϕ

1. replace DQBF variables by 32 bit-vector variables X [32]
i ,E [32]

j

2. replace conjunction, disjunction, negation, by bit-wise operations

3. add independence constraints, e.g., e0 independent from x4: “e0|x4 = e0|x4”

4. enumerate all combinations of universal variables (function-table):

these combinations are called binary magic numbers M[32]
i = X [32]

i

used for “cofactoring” too: (E [32]
0 & M[32]

4) = (E [32]
0 & ˜M[32]

4)>>1

binary magic numbers can be generated polynomially

Challenges in Bit-Precise Reasoning @ FMCAD’14

Bit-Wise Operators and Shifting Neighbouring Bits Only 25/32

NP complete: QF BV2bw

equality and all bit-wise operators

similar to well-known Ackermann reduction:

domain can be restricted to be the same size as the number of variables

thus bit-vector sizes can be reduced to logarithm of number of variables

adapted from Johannsen [PhD Thesis ’02] to binary encoding

PSPACE complete: QF BV2bw,<<1

only allow operators which relate neighbouring bits:

base operators: equality, inequality, bit-wise ops, shift-by-one

extended operators: addition, multiplication by constants, single-bit-slices etc.

encode in symbolic model checking logarithmically in bit-width

adapted from Spielmann, Kuncak [IJCAR’12] to fixed size bit-vectors
related to early work by Bernard Boigelot

extensions to a larger sub-set

see our CSR’12, SMT’13 papers (as well as our journal draft)

Challenges in Bit-Precise Reasoning @ FMCAD’14

Commutativity of Bit-Vector Addition in SMV 26/32

MODULE main

VAR

c : boolean; -- carry ’bvadd x y’

d : boolean; -- carry ’bvadd y x’

x : boolean; -- x0, x1, ...

y : boolean; -- y0, y1, ...

ASSIGN

init (c) := FALSE;

init (d) := FALSE;

ASSIGN

next (c) := c & x | c & y | x & y;

next (d) := d & y | d & x | y & x;

DEFINE

o := c != (x != y);

p := d != (y != x);

SPEC

AG (o = p)

Challenges in Bit-Precise Reasoning @ FMCAD’14

Commutativity of Bit-Vector Addition in AIGER 27/32

2

x

4

y

10

6

12 14

16

18

20

8

22

24

26

2830

32

34 36

38

40 42

44

4648

50

AIGER_NEVER_0

c d

Challenges in Bit-Precise Reasoning @ FMCAD’14

Model Checking 28/32

companies reluctant to publish word-level models

thus we do not really have benchmarks

also need properties

no publically available flow from HDL to word-level models

front-ends do not give us proper word-level models

originally designed with bit-blasting in mind

much more choices on word-level modelling languages

sequential extension of BTOR (see our BPR’08 paper)

we are working on a new sequential version of BTOR

AIGER style

Challenges in Bit-Precise Reasoning @ FMCAD’14

Lambdas 29/32

lambda’s can be used to represent array updates (e.g. UCLID)

our DIFTS’13 paper: lemmas-on-demand for lambdas

various applications:

write(a, i,e):
λ j . ite(i = j,e,read(a, j))

memset(a, i,n,e):
λ j . ite(i≤ j∧ j < i+n,e,read(a, j))

memcpy(a,b, i,k,n):
λ j . ite(k ≤ j∧ j < k+n,read(a, i+ j− k),read(b, j))

equivalence checking of different address logic in HW

. . .

Challenges in Bit-Precise Reasoning @ FMCAD’14

Dual Propagation 30/32

lemmas-on-demand

originally proposed by [DeMoura’03]

implements a CEGAR loop: extremely lazy CDCL(T) / DPLL (T)

checks model guessed by SAT solver for theory consistency

used in Boolector for arrays and lambdas

use dont’care reasoning to obtain partial models

shorter lemmas

related to generalization in IC3

future work: online version

see our FMCAD’14 paper

Challenges in Bit-Precise Reasoning @ FMCAD’14

Boolector 31/32

new 2.0 release for FMCAD’14: http://fmv.jku.at/boolector

support for lambdas [DIFTS’13] and uninterpreted functions

had to remove support for extensional arrays

way faster model generation

C and Python interface

model based tester

latest Lingeling

cloning

FMCAD’14, Thursday, 16:15 - 16:45

Aina Niemetz, Mathias Preiner and Armin Biere.
Turbo-Charging Lemmas on Demand with Don’t Care Reasoning.

Challenges in Bit-Precise Reasoning @ FMCAD’14

Boolector 32/32

new 2.0 release for FMCAD’14: http://fmv.jku.at/boolector

support for lambdas [DIFTS’13] and uninterpreted functions

had to remove support for extensional arrays

way faster model generation

C and Python interface

model based tester

latest Lingeling Thank You!
cloning

FMCAD’14, Thursday, 16:15 - 16:45

Aina Niemetz, Mathias Preiner and Armin Biere.
Turbo-Charging Lemmas on Demand with Don’t Care Reasoning.

Challenges in Bit-Precise Reasoning @ FMCAD’14

