
Weaknesses of CDCL Solvers

Armin Biere
Johannes Kepler University

Linz, Austria

Workshop on

Theoretical Foundations of SAT Solving
The Fields Institute, Toronto, Canada

Tuesday, August 16, 2016

Four Parts 1/45

Evaluating CDCL Variable Scoring Schemes [SAT’15 paper with Andreas Fröhlich]

continued discussion from our Banff and Dagstuhl workshops

shows that VMTF is as good as VSIDS (and explains boths)

Evaluating CDCL Restart Schemes [POS’15 paper with Andreas Fröhlich]

simplifies Glucose style restart schemes

evaluation shows clear benefits but also weaknesses

Weaknesses of CDCL for Equivalence Checking (miters)

CDCL has a hard time to learn the right clauses

fast restarts important for miters

Arithmetic Reasoning Hard for CDCL

Weaknesses of CDCL Solvers

Part I Evaluating CDCL Variable Scoring Schemes 2/45

Evaluating CDCL Variable Scoring Schemes [SAT’15 paper with Andreas Fröhlich]

continued discussion from our Banff and Dagstuhl workshops

shows that VMTF is as good as VSIDS (and explains boths)

Evaluating CDCL Restart Schemes [POS’15 paper with Andreas Fröhlich]

simplifies Glucose style restart schemes

evaluation shows clear benefits but also weaknesses

Weaknesses of CDCL for Equivalence Checking (miters)

CDCL has a hard time to learn the right clauses

fast restarts important for miters

Arithmetic Reasoning Hard for CDCL

Weaknesses of CDCL Solvers

Motivation Part I Evaluating CDCL Variable Scoring Schemes 3/45

(E)VSIDS decision heuristic

(Exponential) Variable State Independent Decaying Sum (VSIDS)

empirically one of the most important features of state-of-the-art solvers

no formal argument “why it works”

reconsider simpler alternatives

particularly variable move to front schemes (VMTF)

requires careful data structure design

formalization of these heuristics

empirical evaluation

so a step towards “Trying to Understand the Power of VSIDS”

. . . and thus “Why CDCL Works”

original longer slide set at http://fmv.jku.at/biere/talks/Biere-SAT15-talk.pdf

Weaknesses of CDCL Solvers

http://fmv.jku.at/biere/talks/Biere-SAT15-talk.pdf

Decision Heuristics Evaluating CDCL Variable Scoring Schemes 4/45

decision heuristics consist of

variable selection: which variable to assign next?

phase selection: assign variable to which phase (true or false)?

phase saving [PipatsrisawatDarwiche’07]

select phase to which variable was assigned before

initialized by static one-side heuristics [JeroslowWang’90]

very effective and thus default in state-of-the-art solvers

we consider only variable selection as decision heuristic here

clause based heuristics less effective (BerkMin, CMTF)

same applies to literal based heuristics (using literal scores)

variable selection and decision heuristic boils down to

compute and maintain heuristic scores for variables

select variable with highest score

Weaknesses of CDCL Solvers

Variable Scoring Schemes Evaluating CDCL Variable Scoring Schemes 5/45

how to compute scores

static or dynamic

bump variables: when to increase scores and by how much

rescore variables: when to decrease scores and by how much

state-of-the-art: VSIDS (from Chaff)

more precisely the exponential variant (EVSIDS) of MiniSAT!

data structures for finding decision variables

eager or lazy update of “order”

state-of-the-art: priority queue of variables ordered by score (MiniSAT)

data structure depends on how scores are computed and vice versa

Weaknesses of CDCL Solvers

Variable Scoring Schemes Evaluating CDCL Variable Scoring Schemes 6/45

zero order scheme = static scores

computed for instance once during preprocessing

still needs search for “best” unassinged variable

only total orders considered so far

first order schemes = dynamic but state less

for instance: score = pos occs × neg occs

independent of how search reached current branch / search node

might be quite expensive to compute / update (linear in CNF size)

second order schemes: variable score depends on history of search

first order + learning ⇒ second order

but can also be used to speed up search for “best” variable

goal is logarithmic or even constant algorithm for variable selection

Weaknesses of CDCL Solvers

VSIDS Evaluating CDCL Variable Scoring Schemes 7/45

VSIDS appeared in seminal Chaff paper from Princeton (2001)

bump variables occurring in learned clauses

bumping means incrementing an integer VSIDS score
current state-of-the-art: bump all variables used to derive learned clause

independent of state of clauses (satisfied or not)

rescoring gives focus on recently used variables

scores are “decayed”, e.g., originally divided by two every 256th conflict

“low pass filter” on “use frequency” of variables
video http://youtu.be/MOjhFywLre8

search for next unassigned variable with largest score

keeps an array of variables sorted by score

only re-sorts it w.r.t. score during rescoring (every 256th conflict)

uses right-most unassigned variable, thus original implementation imprecise

Weaknesses of CDCL Solvers

http://youtu.be/MOjhFywLre8

Variable Move To Front Evaluating CDCL Variable Scoring Schemes 8/45

Siege SAT solver [Ryan’04] used variable move to front (VMTF)

bumped variables moved to head of doubly linked list

search for unassigned variable starts at head

variable selection is an online sorting algorithm of scores

classic “move-to-front” strategy achieves good amortized complexity

original implementation severely restricted

only moved a subset of bumped variables

details about caching the search not described
no source code published either

not exactly the same as VSIDS

as consequence VMTF not used in state-of-the-art solvers

Weaknesses of CDCL Solvers

MiniSAT’s Exponential VSIDS (EVSIDS) Evaluating CDCL Variable Scoring Schemes 9/45

floating point scores

allows fine grained rescore at every conflict

consider multiplying by f = 0.9 every score at each conflict

actually, instead of updating scores of all variables (at every conflict)

only increase score of bumped variables by gi

with i the conflict-index, and g = 1/ f

non-bumped variables not touched

priority queue of variables ordered by score

implemented as binary heap with update (bump and bubble up)

lazy assigned variable removal

remove largest score variable from heap until unassigned one found

put unassigned variables not on the heap back (logarithmic complexity)

normalized VSIDS (NVSIDS) ∈ [0,1] as (theoretical) model [Biere’08] + video

Weaknesses of CDCL Solvers

Summary Variable Scoring Schemes Evaluating CDCL Variable Scoring Schemes 10/45

s old score s′ new score

variable score s′ after i conflicts

bumped not-bumped

STATIC s s static decision order
INC s+1 s increment scores
SUM s+ i s sum of conflict-indices

VSIDS h256
i · s+1 h256

i · s original implementation in Chaff

NVSIDS f · s+(1− f) f · s normalized variant of VSIDS
EVSIDS s+gi s exponential MiniSAT dual of NVSIDS

ACIDS (s+ i)/2 s average conflict-index decision scheme
VMTF i s variable move-to-front
VMTF’ b s variable move-to-front variant

0 < f < 1 g = 1/ f hm
i = 0.5 if m divides i hm

i = 1 otherwise

i conflict index b bumped counter

Weaknesses of CDCL Solvers

Fast VMTF Implementation Evaluating CDCL Variable Scoring Schemes 11/45

fast simple implementation for caching searches in VMTF [Biere’15]

doubly linked list does not have positions as an ordered array

bump = move-to-front = dequeue then insertion at the head

time-stamp list entries with insertion time

maintained invariant: all variables right of next-search are assigned

requires update to next-search while unassigning variables

idx: 5

val: x

time: 6

idx: 3

val: 1

time: 8

idx: 4

val: 0

time: 9

next−search next−search’unassign 9

val: 1

time: 12

idx: 9 idx: 7

val: 0

time: 15

idx: 5

val: x

time: 6

idx: 3

val: 1

time: 8

val: 0

next−search

bump 4

idx: 4

time: 16

idx: 9

time: 12

val: x

idx: 7

time: 15

val: 0

Weaknesses of CDCL Solvers

●●●●●●●
●●●●

●
●●

●●●●
●●●

●●●●
●●●●●●●●

●●●●●●●
●●●●●●●●

●●●●●●●●●
●●●●●●●●

●●●
●
●●●●●

●●●
●●

●●●●●●●●●
●●

●●●
●●●●●

●●
●●

●●
●●●●

●
●
●
●●

●
●●

●
●●

●●●
●

●●
●●

●●
●●●

●●●●
●
●●

●
●●

●●
●

●
●●

●
●
●●●●

●●
●

0 50 100 150

0
20

0
40

0
60

0
80

0
10

00

solved SAT competition 2014 application track instances (ordered by time)

tim
e

(s
ec

)

●●●●●●●
●●●●

●
●●

●●●●
●●●

●●●●
●●●●●●●●

●●●●●●●
●●●●●●●●

●●●●●●●●●
●●●●●●●●

●●●
●
●●●●●

●●●
●●

●●●●●●●●●
●●

●●●
●●●●●

●●
●●

●●
●●●●

●
●
●
●●

●
●●

●
●●

●●●
●

●●
●●

●●
●●●

●●●●
●
●●

●
●●

●●
●

●
●●

●
●
●●●●

●●
●

●

static
inc
sum
vsids
acids
vmtf
evsids

●●●●●●●
●●●●

●
●●

●●●●
●●●

●●●●
●●●●●●●●

●●●●●●●
●●●●●●●●

●●●●●●●●●
●●●●●●●●

●●●
●
●●●●●

●●●
●●

●●●●●●●●●
●●

●●●
●●●●●

●●
●●

●●
●●●●

●
●
●
●●

●
●●

●
●●

●●●
●

●●
●●

●●
●●●

●●●●
●
●●

●
●●

●●
●

●
●●

●
●
●●●●

●●
●

0 50 100 150

0
20

0
40

0
60

0
80

0
10

00

solved SAT competition 2014 application track instances (ordered by time)

tim
e

(s
ec

)

●●●●●●●
●●●●

●
●●

●●●●
●●●

●●●●
●●●●●●●●

●●●●●●●
●●●●●●●●

●●●●●●●●●
●●●●●●●●

●●●
●
●●●●●

●●●
●●

●●●●●●●●●
●●

●●●
●●●●●

●●
●●

●●
●●●●

●
●
●
●●

●
●●

●
●●

●●●
●

●●
●●

●●
●●●

●●●●
●
●●

●
●●

●●
●

●
●●

●
●
●●●●

●●
●

●●●●●●●●
●
●●●●

●●●●●
●●●●●●●

●●●
●●●

●●●●●
●●

●●
●
●●●

●●

●

●
●●

●●

●●●●

●●●
●●

●●●

●●

●●
●

●●
●●●

●
●
●
●●●

●●
●
●●

●●
●
●

●
●

●
●●

●●
●

●
●

●●
●

●●●●●●●
●●●

●●●
●●●●●

●●●●●●●
●●●●●●

●●●
●●●●●

●●●●●●
●●●●●●●●

●●●●
●●●●

●●●●●●●●
●●

●●
●●●●

●●●●●
●●●●

●●●
●●●●

●●●
●●

●●●
●●●

●●●
●
●●

●●●
●●

●
●
●

●
●●

●●
●
●●

●
●●

●
●●●

●●
●●

●●●

●

●

●
●
●●

●●
●●

●

●
●

●

static
inc
sum
vsids
acids
vmtf
evsids

●

●

minisat
sc14ayv
glucose.2.3
swdia5bya26
queue
heap

●●●
●●●

●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●

●●●●●
●●●●●●●●

●●●●
●●●●●

●●●●●●
●●●
●●●●●●●

●●●●●●●●●●●●
●●●●●

●●●●●
●●●
●●●●

●●●●
●●●
●
●●
●●

●

●

0 50 100 150 200 250 300

0
5

10
15

20
25

30

SAT'16 Competition Application Benchmarks (sorted by percentage run−time)

pe
rc

en
ta

ge
 r

un
−

tim
e

● VMTF bumping run−time percentage
EVSIDS bumping run−time percentage
EVSIDS deciding run−time percentage
VMTF deciding run−time percentage

Conclusion Part I Evaluating CDCL Variable Scoring Schemes 15/45

surveyed and classified variable selection / scoring schemes

came up with a new one ACIDS (as well as SUM)

EVSIDS, VMTF, ACIDS comparable in performance

with a generic fast queue implementation

VMTF was considered to be obsolete

can be made effective (with less code than EVSIDS)

needs proper optimized implementation: time-stamping with insertion-time

VMTF might be easier to reason about in proof complexity

threads to validity

unclear whether VMTF only works in combination with Glucose restarts
see also our POS’15 paper and talk in Part II of this talk

benchmark selection in recent SAT competitions highly controversial

Splatz: SAT solver only based on VMTF
http://fmv.jku.at/splatz

Weaknesses of CDCL Solvers

http://fmv.jku.at/splatz

Part II Evaluating CDCL Restart Schemes 16/45

Evaluating CDCL Variable Scoring Schemes [SAT’15 paper with Andreas Fröhlich]

continued discussion from our Banff and Dagstuhl workshops

shows that VMTF is as good as VSIDS (and explains boths)

Evaluating CDCL Restart Schemes [POS’15 paper with Andreas Fröhlich]

simplifies Glucose style restart schemes

evaluation shows clear benefits but also weaknesses

Weaknesses of CDCL for Equivalence Checking (miters)

CDCL has a hard time to learn the right clauses

fast restarts important for miters

Arithmetic Reasoning Hard for CDCL

Weaknesses of CDCL Solvers

Post SAT Competition 2014 Analysis Evaluating CDCL Restart Schemes 17/45

Lingeling actually barely won

only for long time limit of 5000 seconds

for 900 seconds: no chance

two main reasons

selected benchmark biased towards decendants of Glucose / MiniSAT

but Glucose restarts are important for many (selected) benchmarks

the POS’15 paper is about lessons learned while

porting the Glucose restart scheme to Lingeling

and simplifying by

using exponential moving averages (EMA)

original longer slide set at http://fmv.jku.at/biere/talks/Biere-POS15-talk.pdf

Weaknesses of CDCL Solvers

http://fmv.jku.at/biere/talks/Biere-POS15-talk.pdf

Buckets Evaluating CDCL Restart Schemes 18/45

application track instances clustered in buckets (by the organizers):

2d-strip-packing (4), argumentation (20), bio (11),

crypto-aes (8), crypto-des (7), crypto-gos (9),
crypto-md5 (21), crypto-sha (29) , crypto-vpmc (4),

diagnosis (28), fpga-routing (1),

hardware-bmc (4), hardware-bmc-ibm (18), hardware-cec (30),
hardware-manolios (6), hardware-velev (27),

planning (19), scheduling (30), scheduling-pesp (3),

software-bit-verif (9), software-bmc (6), symbolic-simulation (1), termination (5)

in total 300 instances clustered in 23 buckets

Weaknesses of CDCL Solvers

●

●

●

●

0 200 400 600 800 1000

0
20

0
40

0
60

0
80

0
10

00

lingeling−sc2014 versus SWDiA5BY

lingeling−sc2014

S
W

D
iA

5B
Y

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

● ● ●

●

●

●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●●●●

●

●
●●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

2d−strip−packing
argumentation
bio
crypto−aes
crypto−des
crypto−gos
crypto−md5
crypto−sha
crypto−vpmc
diagnosis
fpga−routing
hardware−bmc
hardware−bmc−ibm
hardware−cec
hardware−manolios
hardware−velev
planning
scheduling
scheduling−pesp
software−bit−verif
software−bmc
symbolic−simulation
termination

●

●

●

●

0 200 400 600 800 1000

0
20

0
40

0
60

0
80

0
10

00

lingeling−ema−14 versus SWDiA5BY

lingeling−ema−14

S
W

D
iA

5B
Y

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●● ●

●

●

●● ●●● ●●●●●●●●●●●●●●●

●
●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●●●●

●

●
●●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

2d−strip−packing
argumentation
bio
crypto−aes
crypto−des
crypto−gos
crypto−md5
crypto−sha
crypto−vpmc
diagnosis
fpga−routing
hardware−bmc
hardware−bmc−ibm
hardware−cec
hardware−manolios
hardware−velev
planning
scheduling
scheduling−pesp
software−bit−verif
software−bmc
symbolic−simulation
termination

Restarts in CDCL Evaluating CDCL Restart Schemes 21/45

Status run_CDCL_loop_with_restarts () {

for (;;) {

if (bcp ()) {

if (restarting ()) restart ();

else if (!decide ()) return SATISFIABLE;

} else {

conflicts++;

if (!analyze ()) return UNSATISFIABLE;

}

}

}

run BCP and conflict analysis (including learning) until completion

restart if restart policy implemented in restarting says so

usually based on a global conflicts counter

otherwise pick next decision (unless all are assigned)

Weaknesses of CDCL Solvers

Restart Scheme Examples Evaluating CDCL Restart Schemes 22/45

bool restarting () {
return conflicts >= limit;

}

void static_uniform_restart () {
restarts++;
limit = conflicts + interval;
backtrack (0);

}

void static_geometric_restart () {
limit = conflicts + interval * pow (1.5, ++restarts);
backtrack (0);

}

void luby_restart () {
limit = conflicts + interval * luby (++restarts);
backtrack (0);

}

Weaknesses of CDCL Solvers

Restart Scheme Classification Evaluating CDCL Restart Schemes 23/45

static schemes

fixed schedule of restarts only based on conflicts counter

uniform intervals: wait a fixed number of conflicts after each restart

non-uniform restart intervals

number of performed restarts determines next interval (in terms of conflicts)

arithmetically or geometrically increasing actual interval

Luby scheme (also known as reluctant doubling)

inner-outer scheme

dynamic schemes

agility based restart blocking

local restarts (not discussed in the paper nor the talk)

reusing the trail implicitly also blocks restarts (even partially)

Glucose restart scheme (focus here)

Weaknesses of CDCL Solvers

Comparing Static Uniform Restart Schemes Evaluating CDCL Restart Schemes 24/45

r 002 004 008 016 032 064 128 256 512
tot 122 127 139 144 144 161 163 168 158
sat 40 41 49 56 56 73 76 83 79
uns 82 86 90 88 88 88 87 85 79

r 002 004 008 016 032 064 128 256 512
2d-strip-packing 0/2 0/2 0/2 0/2 0/2 1/2 1/2 1/2 2/2

crypto-sha 0/0 0/0 0/0 0/0 1/0 7/0 11/0 13/0 10/0
hardware-cec 0/22 0/23 0/24 0/22 0/22 0/23 0/22 0/21 0/21

hardware-manolios 0/4 0/5 0/5 0/5 0/6 0/6 0/6 0/6 0/6
hardware-velev 5/9 6/10 8/11 8/12 8/12 8/13 8/12 8/11 8/6

planning 6/3 6/5 7/4 7/4 8/4 9/3 9/4 11/4 10/4
scheduling 1/7 0/7 1/7 4/7 6/7 9/7 9/7 11/7 12/7

SAT / UNSAT

underlined best

Weaknesses of CDCL Solvers

●

●

●

●

0 200 400 600 800 1000

0
20

0
40

0
60

0
80

0
10

00

static−008 versus static−256

static−008

st
at

ic
−

25
6

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●●

●
●

●

●

● ●

●

●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

2d−strip−packing
argumentation
bio
crypto−aes
crypto−des
crypto−gos
crypto−md5
crypto−sha
crypto−vpmc
diagnosis
fpga−routing
hardware−bmc
hardware−bmc−ibm
hardware−cec
hardware−manolios
hardware−velev
planning
scheduling
scheduling−pesp
software−bit−verif
software−bmc
symbolic−simulation
termination

●

●

●

●

0 200 400 600 800 1000

0
20

0
40

0
60

0
80

0
10

00

static−064 versus static−512

static−064

st
at

ic
−

51
2

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●● ●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●● ●● ●●● ● ●●●●●

●

●

●●

●
●●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

2d−strip−packing
argumentation
bio
crypto−aes
crypto−des
crypto−gos
crypto−md5
crypto−sha
crypto−vpmc
diagnosis
fpga−routing
hardware−bmc
hardware−bmc−ibm
hardware−cec
hardware−manolios
hardware−velev
planning
scheduling
scheduling−pesp
software−bit−verif
software−bmc
symbolic−simulation
termination

Glucose Restarts in a Nutshell Evaluating CDCL Restart Schemes 27/45

bool restarting () {

return conflicts >= limit &&

average_RECENT_lbds () > 1.25 * average_ALL_lbds ();

}

void glucose_restart () { // same as static_uniform_restart

restarts++;

limit = conflicts + 50;

backtrack (0);

}

glucose level (LBD) of learned clause:

number of different decision levels in a learned clauses

calculated at the point the clause is learned during conflict analysis

last 50 LBDs are stored and considered recent (explicit LBD queue)

total average of all LBDs is simply sum lbd / conflicts

for discussion of blocking restarts since Glucose 2.1 see the paper

Weaknesses of CDCL Solvers

Simple and Cumulative Moving Averages Evaluating CDCL Restart Schemes 28/45

Glucose uses simple moving average (SMA) for the average of recent LBDs and
cumulative moving average (CMA) for the the average of all LBDs and

SMA(n,w)simple =
1
w
· (tn+ tn−1+ . . .+ tn−w+1) with n≥ w≥ 1

CMA(n)cumulative = SMA(n,n)

CMA(n) = CMA(n−1)+
tn−CMA(n−1)

n

SMA(n,w) = SMA(n−1,w)+
tn
w
− tn−w

w

requires SMA(n,50)> 1.25 ·CMA(n) to restart
and 50 conflicts have passed

Weaknesses of CDCL Solvers

Exponential Moving Average Evaluating CDCL Restart Schemes 29/45

we suggest to use EMAs instead of the “fast” SMA and/or “slow” CMA

EMA(n,α)exponential = α · tn+(1−α) ·EMA(n−1,α) with 0 < α < 1 a≈ 2
1+w

EMA(n,α)
next estimate

alternative =

current estimate

EMA(n−1,α)+α · (tn−EMA(n−1,α)
difference/error

)

to restart version average requires EMA(n,2−5)> 1.25 ·CMA(n)

to restart version ema-14 requires EMA(n,2−5)> 1.25 ·EMA(n,2−14)

and again in both cases that a certain number of conflicts say 50 have passed

Weaknesses of CDCL Solvers

◦ LBD — fast EMA of LBD with α = 2−5

| restart — slow EMA of LBD with α = 2−14 (ema-14)

| inprocessing — CMA of LBD (average)

Comparing EMAs with SMA and CMA Evaluating CDCL Restart Schemes 31/45

solver Glucose 4.0 Lingeling ba2
restarts ss es ee avg e8 e10 e12 e14 e16 e18 e20

tot 163 163 165 178 167 170 180 181 180 177 171
sat 72 73 76 83 80 78 86 86 86 82 77
uns 91 90 89 95 87 92 94 95 94 95 94
avgc 192 166 167 145 230 204 195 186 172 147 108

Glucose 4.0 column ss correspond to the original Glucose version

column es to adding EMAs for only forcing restarts

column ee includes using EMA for blocking restarts too

column avg is Lingeling version average of Glucose version ee

columns eX correspond to Lingeling versions ema-X
using a slow EMA with α = 2−X instead of CMA

Weaknesses of CDCL Solvers

Floating Point Implementation Evaluating CDCL Restart Schemes 32/45

double fast, slow;

...

bool analyze () {

int lbd;

...

slow += (lbd - slow)/(double)(1<<14);

fast += (lbd - fast)/(double)(1<<5);

...

}

bool restarting () {

return conflicts > limit && fast > 1.25 * slow;

}

Weaknesses of CDCL Solvers

Conclusion Part II Evaluating CDCL Restart Schemes 33/45

data and source: http://fmv.jku.at/evalrestart/evalrestart.7z

optimal restart interval varies with benchmark bucket

for miters fast restarts essential

for crypto benchmarks longer intervals necessary

disabling restarts completely is bad

Glucose restarts superior to Luby style

presented an EMA variant of the Glucose restart scheme

simpler model, simpler to implement

similar performance (slightly faster)

future work

how to improve blocking of restarts

restart intervals still not optimal: really need machine learning?

combined SAT and Stock Market Analysis
originally proposed title for the POS’15 paper

or SAT and Reinforcement Learning

Weaknesses of CDCL Solvers

http://fmv.jku.at/evalrestart/evalrestart.7z

0 50 100 150

0
20

0
40

0
60

0
80

0
10

00

solved SAT competition 2014 application instances (ordered by solving time)

tim
e

(s
ec

)

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●●●●●
●●

●●
●●●●

●●
●●

●●●●
●●

●●●
●●

●●
●●

●●
●●

●●●
●
●●●

●●
●●●

●●
●●●

●
●●

●
●●●●

●●

●
●●●

●
●●

●●
●●

●●
●●

●●
●●●

●

●
●●

●
●

●●●
●●

●●
●

●
●

●●
●

●

● new lingeling norestarts
old lingeling sc2014−ayv
glucose 4.0
glucose 4.0 ema
new lingeling inout−002
new lingeling luby−02
new lingeling static−256
new lingeling average
new lingeling ema−14

Part III Equivalence Checking 35/45

Evaluating CDCL Variable Scoring Schemes [SAT’15 paper with Andreas Fröhlich]

continued discussion from our Banff and Dagstuhl workshops

shows that VMTF is as good as VSIDS (and explains boths)

Evaluating CDCL Restart Schemes [POS’15 paper with Andreas Fröhlich]

simplifies Glucose style restart schemes

evaluation shows clear benefits but also weaknesses

Weaknesses of CDCL for Equivalence Checking (miters)

CDCL has a hard time to learn the right clauses

fast restarts important for miters

Arithmetic Reasoning Hard for CDCL

Weaknesses of CDCL Solvers

Miter Equivalence Checking 36/45

ICCAD’93
ICCAD’93

Verification of Large Synthesized Designs

Daniel Brand

Abstract

G

F

Weaknesses of CDCL Solvers

Structural Hashing and Hyper-Binary Resolution Equivalence Checking 37/45

[HeuleJärvisaloBiere-CPAIOR’13]

a ↔ x∧ y b ↔ x∧ y
a↔ b

(ā∨ x)(ā∨ y)(a∨ x̄∨ ȳ)(b̄∨ x)(b̄∨ y)(b∨ x̄∨ ȳ)

hyper-binary resolve multiple binary clauses in “parallel”:

ā∨ x ā∨ y b∨ x̄∨ ȳ
ā∨b

b̄∨ x b̄∨ y a∨ x̄∨ ȳ
a∨ b̄

thus “in principle” hyper-binary resolution can simulate structural hashing

but we do not know how to implement it fast
(without having the circuit and including equivalence literal substitution)

Weaknesses of CDCL Solvers

Software Architecture of our Boolector SMT Solver Equivalence Checking 38/45

Expr

SAT Solver

BTOR

SMT2 Expr

parse O2

subst

norm

slice

O3

synthesize

AIG(Vec)

CNF

O1 = bottom up simplification

O3 = normalizing (often non−linear) [default]

O1

rewrite

encode

Lingeling / PicoSAT / MiniSAT

SMT1

O2 = global but almost linear

Weaknesses of CDCL Solvers

Solving Miters with CDCL Requires Restarts Equivalence Checking 39/45

trivial miters of identical circuits
equivalence = bimplication (two implications aka binary clauses)

equivalences are reused recursively and thus order of learning important

best solved by “finding” and applying equivalences bottom-up

point of Yakau Novikov at our predecessor Dagstuhl meeting in 2015
assume first implication a→ b is learned

w.l.o.g. a assigned before b

then a was assigned to 1 and b to 0

after learning first implication, b is flipped and both a and b are assigned to 1

in order to learn b→ a we have to assign b to 1 and a to 0

thus without unassigning a we can not learn the second implication

so frequent restarts are useful here
triggered by Glucose restart style schedules (as discused in Part II)

actually phase saving is also counter productive here (tried to fix it without success)

still not perfect, dedicated preprocessing faster

Weaknesses of CDCL Solvers

Challenges Part III Equivalence Checking 40/45

how to do equivalence checking on the CNF level

(even) more efficient implementation of hyper-binary resolution

partial solution [HeuleBiere-LPAR’13]

blocked clause decomposition

SAT sweeping

another (unpublished) partial solution:

simple-probing in Lingeling

simulates structural hashing on the CNF level

eager equivalent literal substitution

fails after preprocessing (bounded variable elimination)

recover / use circuit structure

locality

direction (inputs)

functional dependencies (might get lost during preprocessing)

Weaknesses of CDCL Solvers

Part IV Arithmetic Reasoning Hard for CDCL 41/45

Evaluating CDCL Variable Scoring Schemes [SAT’15 paper with Andreas Fröhlich]

continued discussion from our Banff and Dagstuhl workshops

shows that VMTF is as good as VSIDS (and explains boths)

Evaluating CDCL Restart Schemes [POS’15 paper with Andreas Fröhlich]

simplifies Glucose style restart schemes

evaluation shows clear benefits but also weaknesses

Weaknesses of CDCL for Equivalence Checking (miters)

CDCL has a hard time to learn the right clauses

fast restarts important for miters

Arithmetic Reasoning Hard for CDCL

Weaknesses of CDCL Solvers

Commutativity of Bit-Vector Multiplication Arithmetic Reasoning Hard for CDCL 42/45

(set-logic QF_BV)
(declare-fun x () (_ BitVec 12))
(declare-fun y () (_ BitVec 12))
(assert (distinct (bvmul x y) (bvmul y x)))
(check-sat)

12 core
1 core 1 core cube-and-conquer 12 core

bits Glucose Lingeling March|iLingeling Treengeling

01 0.00 0.00 0.00 0.01
02 0.00 0.00 0.00 0.01
03 0.00 0.00 0.00 0.01
04 0.00 0.00 0.02 0.03
05 0.00 0.01 0.05 0.13
06 0.02 0.03 0.36 0.31
07 0.14 0.27 0.63 0.72
08 1.18 1.98 1.38 2.47
09 7.85 10.98 2.63 4.65
10 37.16 41.49 5.02 10.86
11 147.62 214.98 15.72 21.96
12 833.62 649.49 56.57 61.48
13 -- -- 238.10 263.44

limit of 900 seconds wall clock time

Weaknesses of CDCL Solvers

Arithmetic Circuit Equivalence Checking Arithmetic Reasoning Hard for CDCL 43/45

secret of the success of (combinational) equivalence checking

assumption: many internal equivalence points

makes BDD and SAT sweeping effective

problems with arithmetic circuits

almost no equivalent internal signals (except for outputs)

proof complexity conjectured to be beyond resolution

often no ”clean” implementation circuit available

challenges

prove conjectured complexity

use world-level (bit-vector) information

arithmetic reasoning on the bit-level

robust integration in SAT and/or SMT solver

started to collect a large number of such benchmarks: http://fmv.jku.at/datapath

Weaknesses of CDCL Solvers

http://fmv.jku.at/datapath

Challenge Part IV Arithmetic Reasoning Hard for CDCL 44/45

Problem
Tseitin encoding of the miter of a multiplier with itself but with inputs swapped.

Conjecture
Refuting the resulting CNF requires exponential resolution proofs (and thus CDCL too).

Research Question
Determine proof systems with polynomial proofs for this problem.

candidate proof systems:

polynomial ring reasoning in B[X]/〈F〉 or Z[X]/〈F〉 with F = {x2− x | x ∈ X}

see our benchmark description in SAT’16 Competition proceedings for more references

Weaknesses of CDCL Solvers

Overall Conclusion 45/45

decision heuristics

new empirical insights: VMTF simpler and as good as VSIDS

can we prove why these work?

restarts

simplified Glucose restart scheme, showed that it somehow works

clearly not where we want it to be (machine learning necessary?)

miters

CDCL implementations do not learn the right clauses

fast restarts partially fix it, can we prove that?

arithmetic reasoning

need stronger proof systems?

can we prove that?

Weaknesses of CDCL Solvers

