Preprocessing and Inprocessing Techniques in SAT

Armin Biere

Institute for Formal Models and Verification
 Johannes Kepler University, Linz, Austria

joint work with
Marijn Heule and Matti Järvisalo on SAT preprocessing
Florian Lonsing and Martina Seidl on QBF preprocessing

Haifa Verification Conference

Thursday, December 8, 2011
Haifa, Israel

RISE

- propositional logic:
- variables tie shirt
- negation \neg (not)
- disjunction \vee disjunction (or)
- conjunction \wedge conjunction (and)
- three conditions / clauses:
- clearly one should not wear a tie without a shirt
- not wearing a tie nor a shirt is impolite
- wearing a tie and a shirt is overkill
- is the formula $\quad(\neg$ tie \vee shirt $) \wedge($ tie \vee shirt $) \wedge(\neg$ tie $\vee \neg$ shirt $) \quad$ satisfiable?

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

$D P L L(F)$

$$
F:=B C P(F)
$$

if $F=\top$ return satisfiable
if $\perp \in F$ return unsatisfiable
pick remaining variable x and literal $l \in\{x, \neg x\}$
if $\operatorname{DPLL}(F \wedge\{l\})$ returns satisfiable return satisfiable
return $\operatorname{DPLL}(F \wedge\{\neg l\}$

clauses

$$
\neg a \vee \neg b \vee \neg c
$$

$$
\neg a \vee \neg b \vee c
$$

$$
\neg a \vee \quad b \vee \neg c
$$

$$
\neg a \vee \quad b \vee c
$$

$$
\begin{aligned}
& a \vee \neg b \vee \neg c \\
& a \vee \neg b \vee c
\end{aligned}
$$

$$
\begin{aligned}
& a \vee b \vee \neg c \\
& a \vee b \vee c
\end{aligned}
$$

$$
\neg a \vee \neg b
$$

learn

- failed literal probing
- variable elimination (VE)
- inprocessing
- lazy hyper binary resolution
- blocked clause elimination (BCE)
- for SAT
- for QBF
- hidden tautologies elimination (HTE)
- unhiding
- key technique in look-ahead solvers such as Satz, OKSolver, March
- failed literal probing at all search nodes
- used to find the best decision variable and phase
- simple algorithm

1. assume literal l, propagate (BCP), if this results in conflict, add unit clause $\neg l$
2. continue with all literals l until saturation (nothing changes)

- quadratic to cubic complexity
- BCP linear in the size of the formula

1st linear factor

- each variable needs to be tried

2nd linear factor

- and tried again if some unit has been derived
- lifting
- complete case split: literals implied in all cases become units
- similar to Stålmark's method and Recursive Learning [PradhamKunz'94]
- asymmetric branching
- assume all but one literal of a clause to be false
- if BCP leads to conflict remove originally remaining unassigned literal
- implemented for a long time in MiniSAT but switched off by default
- generalizations:
- vivification [PietteHamadiSais ECAl'08]
- distillation [JinSomenzi'05][HanSomenzi DAC'07] probably most general (+ tries)
- goes back to original Davis \& Putnam algorithm
- eliminate variable x by adding all resolvents with x as pivot \ldots
- ... and removing all clauses in which x or $\neg x$ occurs
- eliminating one variable is in the worst case quadratic
- bounded = apply only if increment in size is small
- Quantor [Biere'03,Biere'04] bound increase in terms of literals (priority queue)
- NiVER [SubbarayanPradhan'04] do non increase number of clauses (round-robin)
- SatELite [EénBiere'05] do not increase number of clauses (priority queue)
- fast subsumption and strengthening
- backward subsumption: traverse clauses of least occurring literal
- forward subsumption: one-watched literal scheme
- 1st and 2nd level signatures = Bloom-filters for faster checking
- strengthen clauses through self-subsuming resolution
- functional substitution
- if x has a functional dependency, e.g. Tseitin translation of a gate
- then only resolvents using exactly one "gate clause" need to be added

$$
\overbrace{(\bar{x} \vee a)(\bar{x} \vee b)(x \vee \bar{a} \vee \bar{b})}^{x=a \wedge b}(x \vee c)(x \vee d)(\bar{x} \vee e)(\bar{x} \vee f)
$$

7 clauses
$(a \vee c)(a \vee d)(b \vee c)(b \vee d)(\bar{a} \vee \bar{b} \vee e)(\bar{a} \vee \bar{b} \vee f)(c \vee e)(c \vee f)(d \vee e)(d \vee f) \quad 6+4$ clauses

- preprocessing can be extremely beneficial
- most SAT competition solvers use variable elimination (VE) [EénBiere SAT'05]
- equivalence \& XOR reasoning beneficial
- probing / failed literal preprocessing / hyper binary resolution useful
- however, even though polynomial, can not be run until completion
- inprocessing: simple idea to benefit from full preprocessing without penalty
- "preempt" preprocessors after some time
- resume preprocessing between restarts
- limit preprocessing time in relation to search time
- allows to use costly preprocessors
- without increasing run-time "much" in the worst-case
- still useful for benchmarks where these costly techniques help
- good examples: probing and distillation
- additional benefit:
- makes learned units / equivalences / implications available to preprocessing
- particularly interesting if preprocessing simulates encoding optimizations
- danger of hiding "bad" implementation though ...
- ... and hard(er) to debug
- one Hyper Binary Resolution step
[Bacchus-AAAI02]

$$
\frac{\left(l \vee l_{1} \vee \cdots \vee l_{n}\right) \quad\left(\overline{l_{1}} \vee l^{\prime}\right) \quad \cdots \quad\left(\overline{l_{n}} \vee l^{\prime}\right)}{\left(l \vee l^{\prime}\right)}
$$

- combines multiple resolution steps into one
- special case "hyper unary resolution" where $l=l^{\prime}$
- HBR stronger than unit propagation if it is repeated until (confluent) closure
- equality reduction: if $\quad(a \vee \bar{b}),(\bar{a} \vee b) \in f \quad$ replace a by b in $f \quad$ substitution
- can be simulated by unit propagation
[BacchusWinter-SAT03]
if $\quad\left(l \vee l^{\prime}\right) \in \operatorname{HypBinRes}(f) \quad$ then $\quad l^{\prime} \in \operatorname{UnitProp}(f \wedge \bar{l})$ or vice versa
- repeated probing, c.f. HypBinResFast
[GershmanStrichman-SAT05]

[BacchusWinter-SAT03][GershmanStrichman-SAT05]

- maintain acyclic and transitively-reduced binary implication graph
- acyclic: decomposition in strongly connected components (SCCs)

$$
(\bar{a} \vee b)(\bar{b} \vee c)(\bar{c} \vee a) \wedge R \quad \text { equisatisfiable to } \quad R[a / b, a / c]
$$

- transitively-reduced: remove resp. do not add transitive edges
- not all literals have to be probed
- if $l \in \operatorname{UnitProp}(r)$ and $\operatorname{UnitProp}(r)$ does not produce anything
$\Rightarrow \quad$ no need to probe l
until next unit or implication is found
- at least with respect to units it is possible to focus on roots
- tree based probing in March
- current algorithms too expensive to run until completion
- time complexity: seems to be at least quadratic, unfortunately also in practice
- space complexity: unclear, at most quadratic, linear?
- hyper binary resolution simulates structural hashing for AND gates a and b

$$
F \equiv(\bar{a} \vee x)(\bar{a} \vee y)(a \vee \bar{x} \vee \bar{y}) \quad(\bar{b} \vee x)(\bar{b} \vee y)(b \vee \bar{x} \vee \bar{y}) \quad \cdots
$$

$$
\frac{(\bar{a} \vee x)(\bar{a} \vee y)(b \vee \bar{x} \vee \bar{y})}{(\bar{a} \vee b)} \quad \frac{(\bar{b} \vee x)(\bar{b} \vee y)(a \vee \bar{x} \vee \bar{y})}{(\bar{b} \vee a)}
$$

can also be seen by $b \in \operatorname{UnitProp}(F \wedge a)$ and $a \in \operatorname{UnitProp}(F \wedge b)$

- can not simulate structural hashing of ITE or (binary) XOR gates
- need equivalence reasoning and/or double look ahead
- learn binary clauses lazily or on-the-fly
- in the innermost (!) BCP loop
- actually only necessary during failed literal probing
- whenever a large clause $\left(a_{1} \vee \cdots \vee a_{m} \vee c\right)$ with $m \geq 2$ becomes a reason for c
- partial assignment σ with $\sigma\left(a_{i}\right)=0$ and $\sigma(c)=1$
- check whether exists literal d dominating all $\overline{a_{i}}$
- in implication graph restricted to binary clauses
- which is a tree!
- learn $(\bar{d} \vee c)$ if such a dominator exists

- theory
- at least as strong as structual hashing with AIGs
- might derive additional important implication
- practice
- empirically proven that simulation of structural hashing really works
- but current algorithms are far slower (100x)
- example: combinational miter for intel048 from HWMCC ($>200 \mathrm{k}$ gates) with itself can not be solved by Lingeling in a day, with structural hashing in half a second
- even in combination with advanced probing techniques
- such as tree based lookahead
as implemented by Marijn Heule in March
- probably need eager/online substitution

$$
\text { one clause } C \in F \text { with } l \quad \text { all clauses in } F \text { with } \bar{l}
$$

$$
\bar{l} \vee \bar{a} \vee c
$$

fix a CNF F

$$
\begin{aligned}
& a \vee b \vee l \\
& \\
& \qquad \bar{l} \vee \bar{b} \vee d
\end{aligned}
$$

all resolvents of C on l are tautological $\quad \Rightarrow$
 C can be removed

Proof assume assignment σ satisfies $F \backslash C$ but not C
can be extended to a satisfying assignment of F by flipping value of lBlocked Clauses Eliminationn vs Encoding vs Preprocessing [JärvisaloBiereHeule-TACAS10] [JärvisaloBiereHeule-JAR1X]
COI Cone-of-Influence reduction
MIR Monontone-Input-Reduction
NSI Non-Shared Inputs reduction

PG Plaisted-Greenbaum polarity based encoding

TST standard Tseitin encoding

VE Variable-Elimination as in DP / Quantor / SATeLite

BCE Blocked-Clause-Elimination

	encoding			b			be		beb		bebe		e	
	T	V	C	T	V	C	T	V C		$\checkmark \mathrm{C}$	T	$\vee \mathrm{C}$	T	V C
SU	0	46	256	2303	29	178	1042	11145	1188	11145	569	11144	2064	11153
AT	12	9	27	116	7	18	1735	18	1835	16	34	16	244	9
AP	10	9	20	94	7	18	1900	16	36	1	34	16	1912	6
M	190	1	8	42	1	7	178	7	675	1	68	17	48	8
AN	9	3	10	50	3	10	1855	16	36	1	34	16	1859	6
HT	147	121	347	164811	17	277	2641	18118	567	18118	594	18116	3240	23140
HP	130	121	286	139811	17	277	2630	18118	567	18118	595	18116	2835	19119
HM	6961	16	91	473	16	84		1278	374	1277	403	1276	553	1590
HN	134	34	124	573	34	122	1185	17102	504	17101	525	17100	1246	17103
BT	577	44	1253	5799	20	119	7023	57321	1410	56310	1505	52294	8076	64363
BP	542	442	1153	54614	2011	119	7041	57321	1413	56310	1506	52294	7642	57322
BM	10024	59	311	1252	58	303	1351	53287	1135	53286	1211	52280	1435	55303
BN	13148	196	643	290219		635	4845	108508	2444	107504	2250	105500	5076	114518

$S=$ Sat competition	$T=$ plain Tseitin encoding
$A=$ AIG competition	$P=$ Plaisted Greenbaum
$H=$ HW model checking competition	$M=$ MiniCirc encoding
$B=$ bit-vector SMT competition	$N=$ NiceDAGs

$$
\mathrm{H}=\text { hidden }, \mathrm{A}=\text { asymmetric, }
$$

SE = subsumption elimination, $T=$ tautology elimination
$B C=$ blocked clause elimination, $C C=$ covered clause elimination

logically equivalent
satisfiability equivalent

Quantified Blocking Literal Given PCNF $\psi:=Q_{1} S_{1} \ldots Q_{n} S_{n} . \phi$, a literal l in a clause $C \in \psi$ is a quantified blocking literal if for every clause C^{\prime} with $\neg l \in C^{\prime}, C \otimes C^{\prime}$ is tautologous wrt. some variable k such that $k \leq l$ in prefix ordering.

Quantified Blocked Clause Given PCNF $Q_{1} S_{1} \ldots Q_{n} S_{n} .(\phi \wedge C)$. Clause C is quantified blocked if it contains a quantified blocking literal. Removing C preserves satisfiability.
$Q_{1} S_{1} \ldots Q_{n} S_{n} .(\phi \wedge C) \stackrel{\text { sat }}{=} Q_{1} S_{1} \ldots Q_{n} S_{n} . \phi$.

All clauses blocked: $\quad \forall x \exists y((x \vee \neg y) \wedge(\neg x \vee y))$.

No clause blocked: $\quad \exists x \forall y((x \vee \neg y) \wedge(\neg x \vee y))$.

Implemented in our QBF preprocessor Bloqqer

	preprocessing	\# formulas (total 568)			run time (sec)	
		solved	sat	unsat	avg	med
	sQueeze/Bloqqer	482 (+29\%)	234	248	180	5
	Bloqqer	467 (+25\%)	224	243	198	5
DepQBF	Bloqqer/sQueeze	452 (+21\%)	213	239	258	19
	sQueeze	435 (+16\%)	201	234	231	6
	none	373	167	206	332	26
	sQueeze/Bloqqer	454 (+36\%)	207	247	227	7
	Bloqqer	444 (+33\%)	200	244	246	5
Qube	Bloqqer/sQueeze	421 (+26\%)	183	238	307	27
	sQueeze	406 (+22\%)	181	225	313	31
	none	332	135	197	426	258
	Bloqqer	288 (+39\%)	145	143	468	34
	sQueeze/Bloqqer	285 (+38\%)	147	138	472	39
Quantor	Bloqqer/sQueeze	270 (+31\%)	131	139	486	34
	sQueeze	222 (+7\%)	106	116	561	49
	none	206	100	106	587	38

- there are instances which can be solved (only) cheaply with BCE
- most of the time only modest additional size reduction after VE
- BCE implementation very similar to implementation of VE
- as VE needs freeze/melt (freeze/thaw) interface
- we have an unpublished theory to treat redundant clauses as learned clauses ...
- ... and an unpublished solution reconstruction for CCE as well
- extended to QBF [BiereLonsingSeidl-CADE11]
- SAT solvers applied to huge formulas
- fastests solvers use preprocessing/inprocessing
- need cheap and effective inprocessing techniques for millions of variables
- this talk:
- unhiding redundancy in large formulas
- almost linear randomized algorithm
- using the binary implication graph
- fast enough to be applied to learned clauses
- see our SAT'11 paper for more details

$$
\begin{aligned}
& (\bar{a} \vee c) \wedge(\bar{a} \vee d) \wedge(\bar{b} \vee d) \wedge(\bar{b} \vee e) \wedge \\
& (\bar{c} \vee f) \wedge(\bar{d} \vee f) \wedge(\bar{g} \vee f) \wedge(\bar{f} \vee h) \wedge \\
& (\bar{g} \vee h) \wedge \underbrace{(\bar{a} \vee \bar{e} \vee h) \wedge(\bar{b} \vee \bar{c} \vee h) \wedge(a \vee b \vee c \vee d \vee e \vee f \vee g \vee h)}_{\text {non binary clauses }}
\end{aligned}
$$

$$
\begin{aligned}
& (\bar{a} \vee c) \wedge(\bar{a} \vee d) \wedge(\bar{b} \vee d) \wedge(\bar{b} \vee e) \wedge \\
& (\bar{c} \vee f) \wedge(\bar{d} \vee f) \wedge(\bar{g} \vee f) \wedge(\bar{f} \vee h) \wedge \\
& (\bar{g} \vee h) \wedge(\bar{a} \vee \bar{e} \vee h) \wedge(\bar{b} \vee \bar{c} \vee h) \wedge(a \vee b \vee c \vee d \vee e \vee f \vee g \vee h)
\end{aligned}
$$

TRD
$g \rightarrow f \rightarrow h$

$$
\begin{aligned}
&(\bar{a} \vee c) \wedge(\bar{a} \vee d) \wedge(\bar{b} \vee d) \wedge(\bar{b} \vee e) \wedge \\
&(\bar{c} \vee f) \wedge(\bar{d} \vee f) \wedge(\bar{g} \vee f) \wedge(\bar{f} \vee h) \wedge \\
&(\bar{a} \vee \bar{e} \vee h) \wedge(\bar{b} \vee \bar{c} \vee h) \wedge(a \vee b \vee c \vee d \vee e \vee f \vee g \vee h) \\
& \quad \quad \operatorname{HTE} \\
& a \rightarrow d \rightarrow f \rightarrow h
\end{aligned}
$$

$$
\begin{aligned}
& (\bar{a} \vee c) \wedge(\bar{a} \vee d) \wedge(\bar{b} \vee d) \wedge(\bar{b} \vee e) \wedge \\
& (\bar{c} \vee f) \wedge(\bar{d} \vee f) \wedge(\bar{g} \vee f) \wedge(\bar{f} \vee h) \wedge \\
& (\bar{b} \vee \bar{c} \vee h) \wedge(a \vee b \vee c \vee d \vee e \vee f \vee g \vee h) \\
& \text { HTE }
\end{aligned}
$$

$$
c \rightarrow f \rightarrow h
$$

$$
\begin{aligned}
& (\bar{a} \vee c) \wedge(\bar{a} \vee d) \wedge(\bar{b} \vee d) \wedge(\bar{b} \vee e) \wedge \\
& (\bar{c} \vee f) \wedge(\bar{d} \vee f) \wedge(\bar{g} \vee f) \wedge(\bar{f} \vee h) \wedge
\end{aligned}
$$

HLE

all but e imply h
also b implies e

$$
\begin{aligned}
& (\bar{a} \vee c) \wedge(\bar{a} \vee d) \wedge(\bar{b} \vee d) \wedge(\bar{b} \vee e) \wedge \\
& (\bar{c} \vee f) \wedge(\bar{d} \vee f) \wedge(\bar{g} \vee f) \wedge(\bar{f} \vee h) \wedge
\end{aligned}
$$

$$
e \vee \quad h)
$$

$$
\begin{aligned}
& (\bar{a} \vee c) \wedge(\bar{a} \vee d) \wedge(\bar{b} \vee d) \wedge(\bar{b} \vee e) \wedge \\
& (\bar{c} \vee f) \wedge(\bar{d} \vee f) \wedge(\bar{g} \vee f) \wedge(\bar{f} \vee h) \wedge \\
& (e \vee h)
\end{aligned}
$$

DFS tree with discovered and finished times: $\quad[\operatorname{dsc}(l), \operatorname{fin}(l)]$

tree edges
parenthesis theorem: $\quad l$ ancestor in DFS tree of $k \quad$ iff $\quad[\operatorname{dsc}(k), \operatorname{fin}(k)] \subseteq[\operatorname{dsc}(l), \operatorname{fin}(l)]$
well known
ancestor relationship gives necessary conditions for transitive implication:
if $\quad[\mathrm{dsc}(k), \operatorname{fin}(k)] \subseteq[\operatorname{dsc}(l), \operatorname{fin}(l)]$ then $l \rightarrow k$
if $\quad[\operatorname{dsc}(\bar{l}), \operatorname{fin}(\bar{l})] \subseteq[\operatorname{dsc}(\bar{k}), \operatorname{fin}(\bar{k})] \quad$ then $\quad l \rightarrow k$

- time stamping in previous example does not cover $b \rightarrow h$
$[11,16]=[\operatorname{dsc}(b), \operatorname{fin}(b)] \nsubseteq[\operatorname{dsc}(h), \operatorname{fin}(h)]=[3,4]$
$[17,28]=[\operatorname{dsc}(\bar{h}), \operatorname{fin}(\bar{h})] \nsubseteq[\operatorname{dsc}(\bar{b}), \operatorname{fin}(\bar{b})]=[8,9]$
in example still both HTE "unhidden", HLE works too $\quad($ since $b \rightarrow e)$
- "coverage" heavily depends on DFS order
- as solution we propose multiple randomized DFS rounds/phases
- approximate quadratic problem (BIG reachability) randomly by a linear algorithm
- if BIG is a tree one time stamping covers everything

```
Unhiding (formula \(F\) )
```

 stamp :=0 literal l in BIG (F) do
    ```
    stamp :=0 literal l in BIG (F) do 
        dsc(l):=0; fin(l):=0
        dsc(l):=0; fin(l):=0
        prt(l):=l; root (l):=l
        prt(l):=l; root (l):=l
    foreach r}\operatorname{RTSS}(F)\mathrm{ do
    foreach r}\operatorname{RTSS}(F)\mathrm{ do
        stamp := Stamp(r,stamp)
        stamp := Stamp(r,stamp)
    foreach literal l in BIG (F) do
    foreach literal l in BIG (F) do
        if }\operatorname{dsc}(l)=0\mathrm{ then
        if }\operatorname{dsc}(l)=0\mathrm{ then
        stamp := Stamp(l,stamp)
        stamp := Stamp(l,stamp)
    return Simplify (F)
```

```
    return Simplify (F)
```

```
\[
\begin{aligned}
& \text { foreach literal } l \text { in } \operatorname{BIG}(F) \text { do } \\
& \operatorname{dsc}(l):=0 ; \operatorname{fin}(l):=0 \\
& \operatorname{prt}(l):=l ; \operatorname{root}(l):=l \\
& \text { foreach } r \in \operatorname{RTS}(F) \text { do } \\
& \text { stamp }:=\operatorname{Stamp}(r, \text { stamp }) \\
& \text { foreach literal } l \text { in } \operatorname{BIG}(F) \text { do } \\
& \text { if dsc }(l)=0 \text { then } \\
& \quad \text { stamp }:=\operatorname{Stamp}(l, \text { stamp }) \\
& \text { return Simplify }(F)
\end{aligned}
\]
1

Stamp (literal \(l\), integer stamp)
\[
\text { stamp }:=\operatorname{stamp}+1
\]
\[
\operatorname{dsc}(l):=\operatorname{stamp}
\]
\[
\text { foreach }\left(\bar{l} \vee l^{\prime}\right) \in F_{2} \text { do }
\]
\[
\text { if } \operatorname{dsc}\left(l^{\prime}\right)=0 \text { then }
\]
\[
\operatorname{prt}\left(l^{\prime}\right):=l
\]
\[
\operatorname{root}\left(l^{\prime}\right):=\operatorname{root}(l)
\]
\[
\text { stamp }:=\operatorname{Stamp}\left(l^{\prime}, \text { stamp }\right)
\]
\[
\text { stamp }:=\text { stamp }+1
\]
\[
\operatorname{fin}(l):=\operatorname{stamp}
\]
return stamp

Simplify (formula \(F\) )
\(1 \quad\) foreach \(C \in F\)
\(2 \quad F:=F \backslash\{C\}\)
3 if \(\operatorname{UHTE}(C)\) then continue
\(F:=F \cup\{U H L E(C)\}\)
return \(F\)
```

UHTE (clause C)
l pos := first element in S}\mp@subsup{S}{}{+}(C
lneg}:=\mathrm{ first element in S}\mp@subsup{S}{}{-}(C
while true
if dsc}(\mp@subsup{l}{\mathrm{ neg }}{})>\textrm{dsc}(\mp@subsup{l}{\mathrm{ pos }}{})\mathrm{ then
if l}\mp@subsup{l}{\mathrm{ pos is last element in }\mp@subsup{S}{}{+}(C)\mathrm{ then return false}}{
lpos := next element in S}\mp@subsup{S}{}{+}(C
else if fin(l lneg})<\operatorname{fin}(\mp@subsup{l}{\mathrm{ pos }}{})\mathrm{ or (}|C|=2\mathrm{ and ((l pos =
if lneg}\mathrm{ is last element in S}\mp@subsup{S}{}{-}(C)\mathrm{ then return false
lneg}:=\mathrm{ next element in S}\mp@subsup{S}{}{-}(C
else return true

```
        \(S^{+}(C)\) sequence of literals in \(C\) ordered by dsc()
        \(S^{-}(C)\) sequence of negations of literals in \(C\) ordered by dsc()
            \(O(|C| \log |C|)\)
```

UHLE (clause C)
finished $:=$ finish time of first element in $S_{\text {rev }}^{+}(C)$
foreach $l \in S_{\text {rev }}^{+}(C)$ starting at second element
if $\operatorname{fin}(l)>$ finished then $C:=C \backslash\{l\}$
else finished $:=\mathrm{fin}(l)$
finished $:=$ finish time of first element in $S^{-}(C)$
foreach $\bar{l} \in S^{-}(C)$ starting at second element
if $\operatorname{fin}(\bar{l})<$ finished then $C:=C \backslash\{l\}$
else finished $:=\operatorname{fin}(\bar{l})$
return C

```
\[
S_{\text {rev }}^{+}(C) \quad \text { reverse of } S^{+}(C)
\]
\[
O(|C| \log |C|)
\]
```

Stamp (literal l, integer stamp)
stamp $:=\operatorname{stamp}+1$
2 BSC $\quad \operatorname{dsc}(l):=\operatorname{stamp} ;$ obs $(l):=$ stamp
3 ELS flag $:=$ true \quad / l represents a SCC
4 ELS $\quad S$. push (l) // push l on SCC stack
5 BSC for each $\left(\bar{l} \vee l^{\prime}\right) \in F_{2}$
if $\mathrm{dsc}(l)<\mathrm{obs}\left(l^{\prime}\right)$ then $F:=F \backslash\left\{\left(\bar{l} \vee l^{\prime}\right)\right\}$; continue
if $\operatorname{dsc}(\operatorname{root}(l)) \leq \operatorname{obs}\left(\bar{l}^{\prime}\right)$ then
$l_{\text {failed }}:=l$
while $\operatorname{dsc}\left(l_{\text {failed }}\right)>\operatorname{obs}\left(\bar{l}^{\prime}\right)$ do $l_{\text {failed }}:=\operatorname{prt}\left(l_{\text {failed }}\right)$
$F:=F \cup\left\{\left(\bar{l}_{\text {failed }}\right)\right\}$
if $\operatorname{dsc}\left(\bar{l}^{\prime}\right) \neq 0$ and $\operatorname{fin}\left(\bar{l}^{\prime}\right)=0$ then continue
if $\operatorname{dsc}\left(l^{\prime}\right)=0$ then
$\operatorname{prt}\left(l^{\prime}\right):=l$
$\operatorname{root}\left(l^{\prime}\right):=\operatorname{root}(l)$
stamp $:=\operatorname{Stamp}\left(l^{\prime}\right.$, stamp $)$
if $\operatorname{fin}\left(l^{\prime}\right)=0$ and $\operatorname{dsc}\left(l^{\prime}\right)<\operatorname{dsc}(l)$ then
$\mathrm{dsc}(l):=\operatorname{dsc}\left(l^{\prime}\right)$; flag $:=$ false $\quad / l l$ is equivalent to l^{\prime}
obs $\left(l^{\prime}\right):=\operatorname{stamp} \quad / /$ set last observed time attribute
if $f l a g=$ true then $\quad / /$ if l represents a SCC
stamp $:=$ stamp +1
do
$l^{\prime}:=S$.pop() // get equivalent literal
$\operatorname{dsc}\left(l^{\prime}\right):=\operatorname{dsc}(l) \quad / /$ assign equal discovered time
$\operatorname{fin}\left(l^{\prime}\right):=\operatorname{stamp} \quad / /$ assign equal finished time
while $l^{\prime} \neq l$
return stamp

```
1 BSC
6 TRD
7 FLE
8 FLE
9 FLE
0 FLE
1 FLE
2 BSC
3 BSC
4 BSC
5 BSC
6 ELS
7 ELS
8 OBS
9 ELS
0 BSC
1 ELS
2 ELS
3 ELS
4 BSC
25 ELS
26 BSC
- implemented as one inprocessing phase in our SAT solver Lingeling beside variable elimination, distillation, blocked clause elimination, probing,
- bursts of randomized DFS rounds and sweeping over the whole formula
- fast enough to be applicable to large learned clauses as well
unhiding is particullary effective for learned clauses
- beside UHTE and UHLE we also have added hyper binary resolution UHBR
not useful in practice
\begin{tabular}{l||r|r|r||r|r|c}
\hline configuration & solved & sat & uns & unhd & simp & elim \\
\hline \hline adv.stamp (no uhbr) & 188 & 78 & 110 & \(7.1 \%\) & \(33.0 \%\) & \(16.1 \%\) \\
\hline adv.stamp (w/uhbr) & 184 & 75 & 109 & \(7.6 \%\) & \(32.8 \%\) & \(15.8 \%\) \\
\hline basic stamp (no uhbr) & 183 & 73 & 110 & \(6.8 \%\) & \(32.3 \%\) & \(15.8 \%\) \\
\hline basic stamp (w/uhbr) & 183 & 73 & 110 & \(7.4 \%\) & \(32.8 \%\) & \(15.8 \%\) \\
\hline no unhiding & 180 & 74 & 106 & \(0.0 \%\) & \(28.6 \%\) & \(17.6 \%\) \\
\hline
\end{tabular}
\begin{tabular}{l||r|r|r||r|r||r|r}
\hline configuration & he & stamp & redundant & hle & redundant & units & stamp \\
\hline \hline adv.stamp (no uhbr) & 22 & \(64 \%\) & \(59 \%\) & 291 & \(77.6 \%\) & 935 & \(57 \%\) \\
\hline adv.stamp (w/uhbr) & 26 & \(67 \%\) & \(70 \%\) & 278 & \(77.9 \%\) & 941 & \(58 \%\) \\
\hline basic stamp (no uhbr) & 6 & \(0 \%\) & \(52 \%\) & 296 & \(78.0 \%\) & 273 & \(0 \%\) \\
\hline basic stamp (w/uhbr) & 7 & \(0 \%\) & \(66 \%\) & 288 & \(76.7 \%\) & 308 & \(0 \%\) \\
\hline no unhiding & 0 & \(0 \%\) & \(0 \%\) & 0 & \(0.0 \%\) & 0 & \(0 \%\) \\
\hline
\end{tabular}
- search: conflict driven clause learning (CDCL)
- steady progress in capacity
- how and when to restart is active research area
- preprocessing / inprocessing gives considerable reduction
- new preprocessing algorithms
- even quadratic algorithms are typically too expensive
- parallel SAT solving
- port-folio versus splitting
- SIMD algorithms
- parallel preprocessing / inprocessing```

