Automated Reencoding of Boolean Formulas

Norbert Manthey¹ Marijn J. H. Heule^{2,3} <u>Armin Biere³</u>

¹Institute of Artificial Intelligence, Technische Universität Dresden, Germany ²Department of Computer Science, University of Texas, Austin, United States ³Institute for Formal Models and Verification, Johannes Kepler University, Austria

> November 6, 2012 Haifa Verification Conference Haifa, Israel

Motivation: Encoding into SAT

Applications:

- verification, model checking, scheduling, ...
- SAT solvers usually perform well, but not always ...
- . . . for instance if the *wrong encoding* is chosen

What is a good encoding:

- small number of variables
- small number of clauses
- search space should be pruned by unit propagation
 - as in the original domain (arc consistency)

Motivation: Encoding Matters

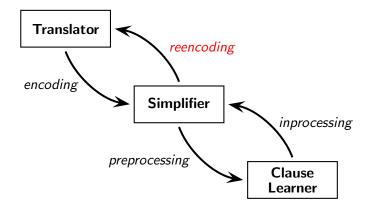
Context:

• The quality of the encoding has a huge impact on the performance of SAT solvers

Research Question:

 How can one *automatically* increase the quality of encodings?

Motivation: The Big Picture



Simplifiers

Variable Elimination [DavisPutnam'60]

Definition (Resolution)

Given two clauses $C = (\mathbf{x} \lor a_1 \lor \cdots \lor a_i)$ and $D = (\mathbf{\overline{x}} \lor b_1 \lor \cdots \lor b_j)$, the *resolvent* of *C* and *D* on variable \mathbf{x} (denoted by $C \otimes_x D$) is $(a_1 \lor \cdots \lor a_i \lor b_1 \lor \cdots \lor b_j)$

Resolution on sets of clauses F_x and $F_{\bar{x}}$ (denoted by $F_x \otimes_x F_{\bar{x}}$) generates all (non-tautological) resolvents of $C \in F_x$ and $D \in F_{\bar{x}}$.

Definition (Variable elimination (VE))

Given a CNF formula F, variable elimination (or DP resolution) removes a variable x by replacing F_x and $F_{\bar{x}}$ by $F_x \otimes_x F_{\bar{x}}$

Proof procedure [DavisPutnam60]

VE is a complete proof procedure. Applying VE until fixpoint results in the empty formula (satisfiable) or empty clause (unsatisfiable)

Variable Elimination [DavisPutnam'60]

Definition (Resolution)

Given two clauses $C = (\mathbf{x} \lor a_1 \lor \cdots \lor a_i)$ and $D = (\mathbf{\overline{x}} \lor b_1 \lor \cdots \lor b_j)$, the *resolvent* of *C* and *D* on variable \mathbf{x} (denoted by $C \otimes_x D$) is $(a_1 \lor \cdots \lor a_i \lor b_1 \lor \cdots \lor b_j)$

Resolution on sets of clauses F_x and $F_{\bar{x}}$ (denoted by $F_x \otimes_x F_{\bar{x}}$) generates all (non-tautological) resolvents of $C \in F_x$ and $D \in F_{\bar{x}}$.

Definition (Variable elimination (VE))

Given a CNF formula F, variable elimination (or DP resolution) removes a variable x by replacing F_x and $F_{\bar{x}}$ by $F_x \otimes_x F_{\bar{x}}$

Proof procedure [DavisPutnam60]

VE is a complete proof procedure. Applying VE until fixpoint results in the empty formula (satisfiable) or empty clause (unsatisfiable)

Variable Elimination [DavisPutnam'60]

Definition (Resolution)

Given two clauses $C = (\mathbf{x} \lor a_1 \lor \cdots \lor a_i)$ and $D = (\mathbf{\overline{x}} \lor b_1 \lor \cdots \lor b_j)$, the *resolvent* of *C* and *D* on variable \mathbf{x} (denoted by $C \otimes_x D$) is $(a_1 \lor \cdots \lor a_i \lor b_1 \lor \cdots \lor b_j)$

Resolution on sets of clauses F_x and $F_{\bar{x}}$ (denoted by $F_x \otimes_x F_{\bar{x}}$) generates all (non-tautological) resolvents of $C \in F_x$ and $D \in F_{\bar{x}}$.

Definition (Variable elimination (VE))

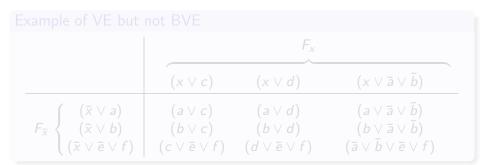
Given a CNF formula F, variable elimination (or DP resolution) removes a variable x by replacing F_x and $F_{\bar{x}}$ by $F_x \otimes_x F_{\bar{x}}$

Proof procedure [DavisPutnam60]

VE is a complete proof procedure. Applying VE until fixpoint results in the empty formula (satisfiable) or empty clause (unsatisfiable)

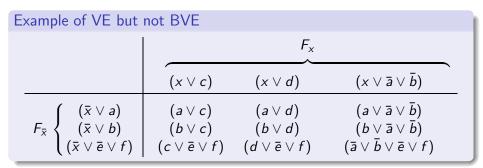
Definition (Variable elimination (VE))

Given a CNF formula F, variable elimination (or DP resolution) removes a variable x by replacing F_x and $F_{\overline{x}}$ by $F_x \otimes_x F_{\overline{x}}$



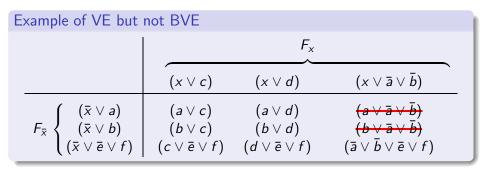
Definition (Variable elimination (VE))

Given a CNF formula F, variable elimination (or DP resolution) removes a variable x by replacing F_x and $F_{\overline{x}}$ by $F_x \otimes_x F_{\overline{x}}$



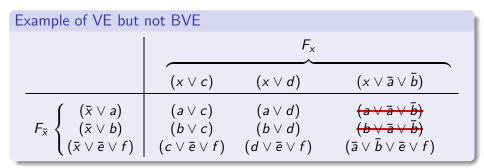
Definition (Variable elimination (VE))

Given a CNF formula F, variable elimination (or DP resolution) removes a variable x by replacing F_x and $F_{\overline{x}}$ by $F_x \otimes_x F_{\overline{x}}$



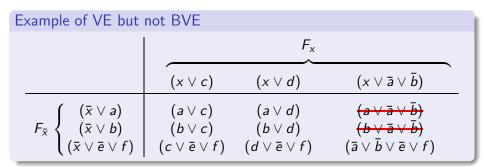
Definition (Variable elimination (VE))

Given a CNF formula F, variable elimination (or DP resolution) removes a variable x by replacing F_x and $F_{\overline{x}}$ by $F_x \otimes_x F_{\overline{x}}$



Definition (Variable elimination (VE))

Given a CNF formula F, variable elimination (or DP resolution) removes a variable x by replacing F_x and $F_{\overline{x}}$ by $F_x \otimes_x F_{\overline{x}}$



Reencoding

Bounded Variable Addition: Main Idea

Main Idea

Given a CNF formula F, can we construct a logically equivalent F' by introducing a new variable $x \notin VAR(F)$ such that |F'| < |F|?

Reverse of Variable Elimination For example, replace the clauses $\begin{array}{cccc}
(a \lor c) & (a \lor d) \\
(b \lor c) & (b \lor d) \\
(c \lor \overline{e} \lor f) & (d \lor \overline{e} \lor f) & (\overline{a} \lor \overline{b} \lor \overline{e} \lor f) \\
\end{array}$ by $\begin{array}{cccc}
(\overline{x} \lor a) & (\overline{x} \lor b) & (\overline{x} \lor \overline{e} \lor f) \\
(x \lor c) & (x \lor d) & (x \lor \overline{a} \lor \overline{b})
\end{array}$

Challenge: how to find suitable patterns for replacement?

Bounded Variable Addition: Main Idea

Main Idea

Given a CNF formula F, can we construct a logically equivalent F' by introducing a new variable $x \notin VAR(F)$ such that |F'| < |F|?

Challenge: how to find suitable patterns for replacement?

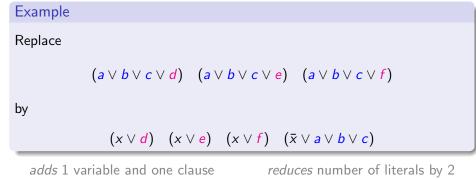
Bounded Variable Addition: Main Idea

Main Idea

Given a CNF formula F, can we construct a logically equivalent F' by introducing a new variable $x \notin VAR(F)$ such that |F'| < |F|?

Challenge: how to find suitable patterns for replacement?

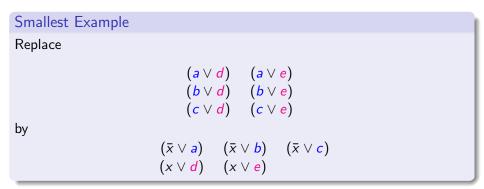
Factoring Out Subclauses



Not compatible with BVE, which would eliminate x immediately!

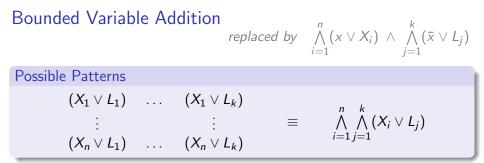
... so this does not work ...

Bounded Variable Addition



adds 1 variable

removes 1 clause

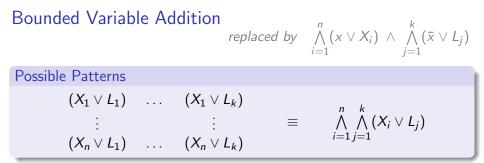


• Every k clauses share sets of literals L_i

• There are *n* sets of literals X_i that appear in clauses with L_j

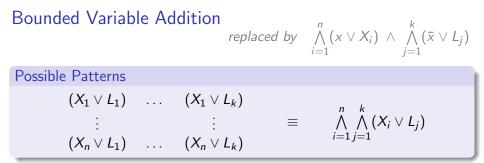
• Reduction: nk - n - k clauses are removed

- Restrict the patterns to $|X_i| = 1$, i.e. single literals
- Test for each literal / whether it is part of a pattern



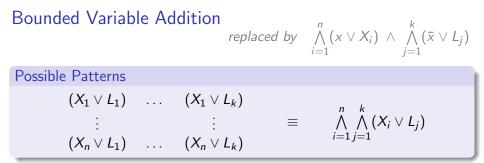
- Every k clauses share sets of literals L_i
- There are *n* sets of literals X_i that appear in clauses with L_j
- Reduction: nk n k clauses are removed

- Restrict the patterns to $|X_i| = 1$, i.e. single literals
- Test for each literal / whether it is part of a pattern



- Every k clauses share sets of literals L_i
- There are *n* sets of literals X_i that appear in clauses with L_j
- Reduction: nk n k clauses are removed

- Restrict the patterns to $|X_i| = 1$, i.e. single literals
- Test for each literal / whether it is part of a pattern



- Every k clauses share sets of literals L_i
- There are *n* sets of literals X_i that appear in clauses with L_j
- Reduction: nk n k clauses are removed

- Restrict the patterns to $|X_i| = 1$, i.e. single literals
- Test for each literal / whether it is part of a pattern

Bounded Variable Addition: Implementation

SimpleBoundedVariableAddition (CNF formula F)

2 for $l \in LIT(F)$ do 3 $M_{\text{lit}} := \{I\}, M_{\text{cls}} := F_{I}$ 4 $P := \emptyset$ 5 foreach $C \in M_{cls}$ do 6 let $I_{\min} \in C \setminus \{I\}$ be least occurring in F 7 foreach $D \in F_{l_{\min}}$ do 8 if |C| = |D| and $C \setminus D = I$ then 9 $I' := D \setminus C; P := P \cup \langle I', C \rangle$ 11 let $I_{\rm max}$ be occurring most frequently in P 12 if adding I_{max} to M_{lit} further reduces |F| then 13 recalculate $M_{\rm lit}$ and $M_{\rm cls}$; goto 4 17 if $|M_{\text{lit}}| = 1$ then continue 18 replace $M_{\rm cls}$ and $M_{\rm lit}$ with new clauses

26 return F

Impact on Cardinality Constraint Encodings

Cardinality Constraints / At-Most-One Constraints

Cardinality Constraints

Among the variables x_i , at most k are allowed to be assigned \top :

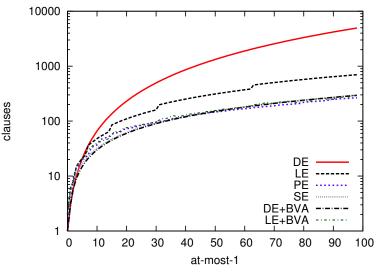
 $\sum x_i \leq k$

- The talk focuses on At-Most-One Constraints (k = 1)
- Many Encodings have been proposed for At-Most-One Constraints

Good Encodings for Domains

EncodingClausesDirect Encoding (DE) $\frac{n(n-1)}{2}$ many binary clausesLog Encoding (LE) $n \cdot \lceil \log n \rceil$ many duplicate patternsSequential Counter (SE)3n - 4represent as circuit firstProduct Encoding (PE) $2n + 4 \cdot \sqrt{n} + O(\sqrt[4]{n})$ best asymptotic bound

At-Most-One Constraints



BVA overcomes the drawback of DE and LE; for k < 47, DE+BVA is best

Evaluation on General SAT Instances

Results: FPGA Routing

- Try to route *s* inputs to *t* outputs (chnl*s*_*t*)
- Uses many cardinality constraints with DE
- Results illustrate impact of BVA on cardinality constraints

	original			BVA preprocessed			
instance	#var	#cls	solve	#var	#cls	pre	solve
chnl10_11	220	1122	9372	 302	562	0.00	69.3
chnl10_12	240	1344	7279	340	624	0.00	15.0
chnl10_13	260	1586	2682	380	686	0.00	26.0
chnl11_12	264	1476	ТО	374	684	0.00	41.6
chnl11_13	286	1742	ТО	418	752	0.00	17.1
chnl11_20	440	4220	то	667	1228	0.00	12.1

Results: Bio-informatics

- Comparing gene evolutions by checking for same structure in trees
- No direct encoding inside the formulas
- BVA improves the encoding of the actual problem

		origina			BVA preprocessed				
instance	//	0							
instance	#var	#cls	solve	#var	#cls	pre	solve		
ndhf_09	1910	167476	ΤO	3098	14588	1.47	187		
ndhf_10	2112	191333	то	3418	16756	1.70	1272		
rbcl_08	1278	67720	то	1981	8669	0.29	16		
rbcl_09	1430	79118	то	2192	10157	0.39	101		
rbcl_10	1584	91311	ТО	2443	11811	0.43	604		
rpoc_08	1278	74454	8628	2011	8494	0.39	237		
rpoc <u>-</u> 09	1430	86709	то	2252	10063	0.47	3590		
rpoc_10	1584	99781	ΤO	2474	11667	0.66	11945		

Evaluation on General SAT Instances

Conclusions

- Bounded Variable Addition has been introduced
- Exchanges clauses for variables
- Adds a missing arc in the tool chain of SAT solving
- The quality of SAT encodings can be improved automatically
- Users of SAT solvers can rely on the solver to improve encoding
- Encoding and run time improvement on application instances

Automated Reencoding of Boolean Formulas

Norbert Manthey¹ Marijn J. H. Heule^{2,3} <u>Armin Biere³</u>

¹Institute of Artificial Intelligence, Technische Universität Dresden, Germany ²Department of Computer Science, University of Texas, Austin, United States ³Institute for Formal Models and Verification, Johannes Kepler University, Austria

> November 6, 2012 Haifa Verification Conference Haifa, Israel