Automated Reencoding of Boolean Formulas

Norbert Manthey ${ }^{1} \quad$ Marijn J. H. Heule ${ }^{2,3} \quad$ Armin Biere ${ }^{3}$

${ }^{1}$ Institute of Artificial Intelligence, Technische Universität Dresden, Germany
${ }^{2}$ Department of Computer Science, University of Texas, Austin, United States
${ }^{3}$ Institute for Formal Models and Verification, Johannes Kepler University, Austria
November 6, 2012
Haifa Verification Conference
Haifa, Israel

Motivation: Encoding into SAT

Applications:

- verification, model checking, scheduling, ...
- SAT solvers usually perform well, but not always ...
- ... for instance if the wrong encoding is chosen

What is a good encoding:

- small number of variables
- small number of clauses
- search space should be pruned by unit propagation
- as in the original domain (arc consistency)

Motivation: Encoding Matters

Context:

- The quality of the encoding has a huge impact on the performance of SAT solvers

Research Question:

- How can one automatically increase the quality of encodings?

Motivation: The Big Picture

4

Simplifiers

Variable Elimination [DavisPutnam'60]

Definition (Resolution)

Given two clauses $C=\left(x \vee a_{1} \vee \cdots \vee a_{i}\right)$ and $D=\left(\bar{x} \vee b_{1} \vee \cdots \vee b_{j}\right)$, the resolvent of C and D on variable x (denoted by $C \otimes_{x} D$) is $\left(a_{1} \vee \cdots \vee a_{i} \vee b_{1} \vee \cdots \vee b_{j}\right)$
Resolution on sets of clauses F_{x} and $F_{\bar{x}}$ (denoted by $F_{x} \otimes_{x} F_{\bar{x}}$) generates all (non-tautological) resolvents of $C \in F_{x}$ and $D \in F_{\bar{x}}$.

Given a CNF formula F, variable elimination (or DP resolution) removes a variable x by replacing F_{x} and $F_{\bar{x}}$ by F_{x}

VE is a complete proof procedure. Applying VE until fixpoint results in the empty formula (satisfiable) or empty clause (unsatisfiable)

Variable Elimination [DavisPutnam'60]

Definition (Resolution)

Given two clauses $C=\left(x \vee a_{1} \vee \cdots \vee a_{i}\right)$ and $D=\left(\bar{x} \vee b_{1} \vee \cdots \vee b_{j}\right)$, the resolvent of C and D on variable x (denoted by $C \otimes_{x} D$) is $\left(a_{1} \vee \cdots \vee a_{i} \vee b_{1} \vee \cdots \vee b_{j}\right)$
Resolution on sets of clauses F_{x} and $F_{\bar{x}}$ (denoted by $F_{x} \otimes_{x} F_{\bar{x}}$) generates all (non-tautological) resolvents of $C \in F_{x}$ and $D \in F_{\bar{x}}$.

Definition (Variable elimination (VE))

Given a CNF formula F, variable elimination (or DP resolution) removes a variable x by replacing F_{x} and $F_{\bar{x}}$ by $F_{x} \otimes_{x} F_{\bar{x}}$

Variable Elimination [DavisPutnam'60]

Definition (Resolution)

Given two clauses $C=\left(x \vee a_{1} \vee \cdots \vee a_{i}\right)$ and $D=\left(\bar{x} \vee b_{1} \vee \cdots \vee b_{j}\right)$, the resolvent of C and D on variable x (denoted by $C \otimes_{x} D$) is $\left(a_{1} \vee \cdots \vee a_{i} \vee b_{1} \vee \cdots \vee b_{j}\right)$
Resolution on sets of clauses F_{x} and $F_{\bar{x}}$ (denoted by $F_{x} \otimes_{x} F_{\bar{x}}$) generates all (non-tautological) resolvents of $C \in F_{x}$ and $D \in F_{\bar{x}}$.

Definition (Variable elimination (VE))

Given a CNF formula F, variable elimination (or DP resolution) removes a variable x by replacing F_{x} and $F_{\bar{x}}$ by $F_{x} \otimes_{x} F_{\bar{x}}$

Proof procedure [DavisPutnam60]

VE is a complete proof procedure. Applying VE until fixpoint results in the empty formula (satisfiable) or empty clause (unsatisfiable)

Example (Bounded) VE [DavisPutnam'60] [EénBiere'05]

Definition (Variable elimination (VE))
Given a CNF formula F, variable elimination (or DP resolution) removes a variable x by replacing F_{x} and $F_{\bar{x}}$ by $F_{x} \otimes_{x} F_{\bar{x}}$

Example of VE but not BVE

example: $\left|F_{x} \otimes F_{\bar{x}}\right|>\left|F_{x}\right|+\left|F_{\bar{x}}\right|$; in general: quadratic growth of clauses Bounded VE (BVE): apply VE if the number of clauses does not increase

Example (Bounded) VE [DavisPutnam'60] [EénBiere'05]

Definition (Variable elimination (VE))

Given a CNF formula F, variable elimination (or DP resolution) removes a variable x by replacing F_{x} and $F_{\bar{x}}$ by $F_{x} \otimes_{x} F_{\bar{x}}$

Example of VE but not BVE

	$\overbrace{(x \vee c)}$	$(x \vee d)$	$(x \vee \bar{a} \vee \bar{b})$
$F_{\bar{x}}\left\{\begin{array}{ccc}(\bar{x} \vee a) \\ (\bar{x} \vee b) \\ (\bar{x} \vee \bar{e} \vee f)\end{array}\right.$	$(a \vee c)$ $(a \vee d)$ $(b \vee c)$ $(b \vee d)$ $(c \vee \bar{e} \vee f)$ $(d \vee \bar{a} \vee \bar{b})$ $(d \vee \bar{e} \vee f)$ $(\bar{a} \vee \bar{a} \vee \bar{b})$ $(\bar{a} \vee \bar{b} \vee \bar{e} \vee f)$		

Example (Bounded) VE [DavisPutnam'60] [EénBiere'05]

Definition (Variable elimination (VE))

Given a CNF formula F, variable elimination (or DP resolution) removes a variable x by replacing F_{x} and $F_{\bar{x}}$ by $F_{x} \otimes_{x} F_{\bar{x}}$

Example of VE but not BVE

	$\overbrace{(x \vee c)}$	$(x \vee d)$	$(x \vee \bar{a} \vee \bar{b})$
$F_{\bar{x}}\left\{\begin{array}{ccc}(\bar{x} \vee a) \\ (\bar{x} \vee b) \\ (\bar{x} \vee \bar{e} \vee f)\end{array}\right.$	$(a \vee c)$ $(a \vee d)$ $(b \vee c)$ $(b \vee d)$ $(c \vee \bar{e} \vee f)$ $(d \vee \bar{a} \vee \bar{b})$ $(d \vee \bar{a} \vee f)$ $(\bar{a} \vee \bar{b} \vee \bar{b} \vee \bar{e} \vee f)$		

Example (Bounded) VE [DavisPutnam'60] [EénBiere'05]

Definition (Variable elimination (VE))

Given a CNF formula F, variable elimination (or DP resolution) removes a variable x by replacing F_{x} and $F_{\bar{x}}$ by $F_{x} \otimes_{x} F_{\bar{x}}$

Example of VE but not BVE

example: $\left|F_{x} \otimes F_{\bar{x}}\right|>\left|F_{x}\right|+\left|F_{\bar{x}}\right|$; in general: quadratic growth of clauses Bounded VE (BVE): apply VE if the number of clauses does not increase

Example (Bounded) VE [DavisPutnam'60] [EénBiere'05]

Definition (Variable elimination (VE))

Given a CNF formula F, variable elimination (or DP resolution) removes a variable x by replacing F_{x} and $F_{\bar{x}}$ by $F_{x} \otimes_{x} F_{\bar{x}}$

Example of VE but not BVE

example: $\left|F_{x} \otimes F_{\bar{x}}\right|>\left|F_{x}\right|+\left|F_{\bar{x}}\right|$; in general: quadratic growth of clauses
Bounded VE (BVE): apply VE if the number of clauses does not increase.

Reencoding

Bounded Variable Addition: Main Idea

Main Idea

Given a CNF formula F, can we construct a logically equivalent F^{\prime} by introducing a new variable $x \notin \operatorname{VAR}(F)$ such that $\left|F^{\prime}\right|<|F|$?

For example, replace the clauses

Bounded Variable Addition: Main Idea

Main Idea

Given a CNF formula F, can we construct a logically equivalent F^{\prime} by introducing a new variable $x \notin \operatorname{VAR}(F)$ such that $\left|F^{\prime}\right|<|F|$?

Reverse of Variable Elimination

For example, replace the clauses

$$
\begin{array}{ll}
(a \vee c) & (a \vee d) \\
(b \vee c) & (b \vee d) \\
(c \vee \bar{e} \vee f) & (d \vee \bar{e} \vee f)
\end{array} \quad(\bar{a} \vee \bar{b} \vee \bar{e} \vee f)
$$

by

$$
\begin{array}{lll}
(\bar{x} \vee a) & (\bar{x} \vee b) & (\bar{x} \vee \bar{e} \vee f) \\
(x \vee c) & (x \vee d) & (x \vee \bar{a} \vee \bar{b})
\end{array}
$$

Challenge: how to find suitable patterns for replacement?

Bounded Variable Addition: Main Idea

Main Idea

Given a CNF formula F, can we construct a logically equivalent F^{\prime} by introducing a new variable $x \notin \operatorname{VAR}(F)$ such that $\left|F^{\prime}\right|<|F|$?

Reverse of Variable Elimination

For example, replace the clauses

$$
\begin{array}{ll}
(a \vee c) & (a \vee d) \\
(b \vee c) & (b \vee d) \\
(c \vee \bar{e} \vee f) & (d \vee \bar{e} \vee f)
\end{array} \quad(\bar{a} \vee \bar{b} \vee \bar{e} \vee f)
$$

by

$$
\begin{array}{lll}
(\bar{x} \vee a) & (\bar{x} \vee b) & (\bar{x} \vee \bar{e} \vee f) \\
(x \vee c) & (x \vee d) & (x \vee \bar{a} \vee \bar{b})
\end{array}
$$

Challenge: how to find suitable patterns for replacement?

Factoring Out Subclauses

Example

Replace

$$
(a \vee b \vee c \vee d) \quad(a \vee b \vee c \vee e) \quad(a \vee b \vee c \vee f)
$$

by

$$
(x \vee d)(x \vee e)(x \vee f)(\bar{x} \vee a \vee b \vee c)
$$

adds 1 variable and one clause reduces number of literals by 2

Not compatible with BVE, which would eliminate x immediately!

Bounded Variable Addition

Smallest Example

Replace

$$
\begin{array}{ll}
(a \vee d) & (a \vee e) \\
(b \vee d) & (b \vee e) \\
(c \vee d) & (c \vee e)
\end{array}
$$

by

$$
\begin{array}{lll}
(\bar{x} \vee a) & (\bar{x} \vee b) & (\bar{x} \vee c) \\
(x \vee d) & (x \vee e) &
\end{array}
$$

Bounded Variable Addition

$$
\bigwedge_{i=1}^{n}\left(x \vee X_{i}\right) \wedge \bigwedge_{j=1}^{k}\left(\bar{x} \vee L_{j}\right)
$$

Possible Patterns

$$
\begin{array}{ccc}
\left(X_{1} \vee L_{1}\right) & \ldots & \left(X_{1} \vee L_{k}\right) \\
\vdots & & \vdots \\
\left(X_{n} \vee L_{1}\right) & \ldots & \left(X_{n} \vee L_{k}\right)
\end{array} \quad \equiv \bigwedge_{i=1}^{n} \bigwedge_{j=1}^{k}\left(X_{i} \vee L_{j}\right)
$$

- Every k clauses share sets of literals L_{j}
- There are n sets of literals X_{i} that appear in clauses with L_{j}
- Reduction: nk - $n-k$ clauses are removed

How to find suitable patterns efficiently?

- Restrict the patterns to $\left|X_{i}\right|=1$, i.e single literals
- Test for each literal / whether it is part of a pattern

Bounded Variable Addition

Possible Patterns

$$
\begin{array}{ccc}
\left(X_{1} \vee L_{1}\right) & \ldots & \left(X_{1} \vee L_{k}\right) \\
\vdots & & \vdots \\
\left(X_{n} \vee L_{1}\right) & \ldots & \left(X_{n} \vee L_{k}\right)
\end{array} \quad \equiv \bigwedge_{i=1}^{n} \bigwedge_{j=1}^{k}\left(X_{i} \vee L_{j}\right)
$$

- Every k clauses share sets of literals L_{j}
- There are n sets of literals X_{i} that appear in clauses with L_{j}
- Reduction: $n k-n-k$ clauses are removed
\square
- Restrict the natterns to $\left|X_{i}\right|=1$, i.e single literals
- Test for each literal I whether it is part of a pattern

Bounded Variable Addition

Possible Patterns

$$
\begin{array}{ccc}
\left(X_{1} \vee L_{1}\right) & \ldots & \left(X_{1} \vee L_{k}\right) \\
\vdots & & \vdots \\
\left(X_{n} \vee L_{1}\right) & \ldots & \left(X_{n} \vee L_{k}\right)
\end{array} \quad \equiv \quad \bigwedge_{i=1}^{n} \bigwedge_{j=1}^{k}\left(X_{i} \vee L_{j}\right)
$$

- Every k clauses share sets of literals L_{j}
- There are n sets of literals X_{i} that appear in clauses with L_{j}
- Reduction: $n k-n-k$ clauses are removed

How to find suitable patterns efficiently?

- Restrict the patterns to $\left|X_{i}\right|=1$, i.e. single literals
- Test for each literal / whether it is part of a pattern

Bounded Variable Addition

Possible Patterns

$$
\begin{array}{ccc}
\left(X_{1} \vee L_{1}\right) & \ldots & \left(X_{1} \vee L_{k}\right) \\
\vdots & & \vdots \\
\left(X_{n} \vee L_{1}\right) & \ldots & \left(X_{n} \vee L_{k}\right)
\end{array} \quad \equiv \bigwedge_{i=1}^{n} \bigwedge_{j=1}^{k}\left(X_{i} \vee L_{j}\right)
$$

- Every k clauses share sets of literals L_{j}
- There are n sets of literals X_{i} that appear in clauses with L_{j}
- Reduction: $n k-n-k$ clauses are removed

How to find suitable patterns efficiently?

- Restrict the patterns to $\left|X_{i}\right|=1$, i.e. single literals
- Test for each literal / whether it is part of a pattern

Bounded Variable Addition: Implementation

SimpleBoundedVariableAddition (CNF formula F)

```
for I }\in\operatorname{LIT}(F)\mathrm{ do
    M lit }:={l},\mp@subsup{M}{\textrm{cls}}{}:=\mp@subsup{F}{l}{
    P:=\emptyset
    foreach C }\in\mp@subsup{M}{\mathrm{ cls }}{}\mathrm{ do
    let Imin}\inC\{l} be least occurring in F
        foreach }D\in\mp@subsup{F}{\mp@subsup{l}{\mathrm{ min }}{}}{}\mathrm{ do
            if }|C|=|D|\mathrm{ and C\D=I then
        I':= D\C; P:=P\cup\langleI',C\rangle
    let Imax be occurring most frequently in P
    if adding Imax to }\mp@subsup{M}{\mathrm{ lit }}{}\mathrm{ further reduces |F| then
    recalculate }\mp@subsup{M}{\mathrm{ lit }}{}\mathrm{ and }\mp@subsup{M}{\textrm{cls}}{};\mathrm{ goto 4
    if }|\mp@subsup{M}{\mathrm{ lit }}{}|=1\mathrm{ then continue
    replace }\mp@subsup{M}{\mathrm{ cls }}{}\mathrm{ and }\mp@subsup{M}{\mathrm{ lit }}{}\mathrm{ with new clauses
    return F
```


Impact on Cardinality Constraint Encodings

Cardinality Constraints / At-Most-One Constraints

Cardinality Constraints

Among the variables x_{i}, at most k are allowed to be assigned T :

$$
\sum x_{i} \leq k
$$

- The talk focuses on At-Most-One Constraints $(k=1)$
- Many Encodings have been proposed for At-Most-One Constraints

Good Encodings for Domains

Encoding
Direct Encoding (DE)
Log Encoding (LE) $n \cdot\lceil\log n\rceil$
Sequential Counter (SE)
Product Encoding (PE) $2 n+4 \cdot \sqrt{n}+O(\sqrt[4]{n})$

Clauses
$\frac{n(n-1)}{2}$
$3 n-4$
many binary clauses many duplicate patterns represent as circuit first best asymptotic bound

At-Most-One Constraints

BVA overcomes the drawback of DE and LE; for $k<47$, DE + BVA is best

Evaluation on General SAT Instances

Results: FPGA Routing

- Try to route s inputs to t outputs (chnls_t)
- Uses many cardinality constraints with DE
- Results illustrate impact of BVA on cardinality constraints

instance	original			BVA preprocessed			
	\#var	\#cls	solve	\#var	\#cls	pre	solve
chnl10_11	220	1122	9372	302	562	0.00	69.3
chnl10_12	240	1344	7279	340	624	0.00	15.0
chnl10_13	260	1586	2682	380	686	0.00	26.0
chnl11_12	264	1476	TO	374	684	0.00	41.6
chnl11_13	286	1742	TO	418	752	0.00	17.1
chnl11_20	440	4220	TO	667	1228	0.00	12.1

Results: Bio-informatics

- Comparing gene evolutions by checking for same structure in trees
- No direct encoding inside the formulas
- BVA improves the encoding of the actual problem

instance	original			BVA preprocessed			
	\#var	\#cls	solve	\#var	\#cls	pre	solve
ndhf_09	1910	167476	TO	3098	14588	1.47	187
ndhf_10	2112	191333	TO	3418	16756	1.70	1272
rbcl_08	1278	67720	TO	1981	8669	0.29	16
rbcl_09	1430	79118	TO	2192	10157	0.39	101
rbcl_10	1584	91311	TO	2443	11811	0.43	604
rpoc_08	1278	74454	8628	2011	8494	0.39	237
rpoc_09	1430	86709	TO	2252	10063	0.47	3590
rpoc_10	1584	99781	TO	2474	11667	0.66	11945

Evaluation on General SAT Instances

Conclusions

- Bounded Variable Addition has been introduced
- Exchanges clauses for variables
- Adds a missing arc in the tool chain of SAT solving
- The quality of SAT encodings can be improved automatically
- Users of SAT solvers can rely on the solver to improve encoding
- Encoding and run time improvement on application instances

Automated Reencoding of Boolean Formulas

Norbert Manthey ${ }^{1} \quad$ Marijn J. H. Heule ${ }^{2,3} \quad$ Armin Biere ${ }^{3}$

${ }^{1}$ Institute of Artificial Intelligence, Technische Universität Dresden, Germany
${ }^{2}$ Department of Computer Science, University of Texas, Austin, United States
${ }^{3}$ Institute for Formal Models and Verification, Johannes Kepler University, Austria
November 6, 2012
Haifa Verification Conference
Haifa, Israel

