
Automated Reencoding of Boolean Formulas

Norbert Manthey1 Marijn J. H. Heule2,3 Armin Biere3

1Institute of Artificial Intelligence, Technische Universität Dresden, Germany

2Department of Computer Science, University of Texas, Austin, United States

3Institute for Formal Models and Verification, Johannes Kepler University, Austria

November 6, 2012
Haifa Verification Conference

Haifa, Israel

Motivation: Encoding into SAT

Applications:

verification, model checking, scheduling, . . .

SAT solvers usually perform well, but not always . . .

. . . for instance if the wrong encoding is chosen

What is a good encoding:

small number of variables

small number of clauses

search space should be pruned by unit propagation
◮ as in the original domain (arc consistency)

Motivation: Encoding Matters

Context:

The quality of the encoding has a huge impact on

the performance of SAT solvers

Research Question:

How can one automatically increase the quality of

encodings?

Motivation: The Big Picture

encoding

reencoding

preprocessing

inprocessing

Translator

Simplifier

Clause
Learner

4

Simplifiers

Variable Elimination [DavisPutnam’60]

Definition (Resolution)

Given two clauses C = (x ∨ a1 ∨ · · · ∨ ai) and D = (x̄ ∨ b1 ∨ · · · ∨ bj),
the resolvent of C and D on variable x (denoted by C ⊗x D) is
(a1 ∨ · · · ∨ ai ∨ b1 ∨ · · · ∨ bj)

Resolution on sets of clauses Fx and Fx̄ (denoted by Fx ⊗x Fx̄)
generates all (non-tautological) resolvents of C ∈ Fx and D ∈ Fx̄ .

Definition (Variable elimination (VE))

Given a CNF formula F , variable elimination (or DP resolution)
removes a variable x by replacing Fx and Fx̄ by Fx ⊗x Fx̄

Proof procedure [DavisPutnam60]

VE is a complete proof procedure. Applying VE until fixpoint results
in the empty formula (satisfiable) or empty clause (unsatisfiable)

Variable Elimination [DavisPutnam’60]

Definition (Resolution)

Given two clauses C = (x ∨ a1 ∨ · · · ∨ ai) and D = (x̄ ∨ b1 ∨ · · · ∨ bj),
the resolvent of C and D on variable x (denoted by C ⊗x D) is
(a1 ∨ · · · ∨ ai ∨ b1 ∨ · · · ∨ bj)

Resolution on sets of clauses Fx and Fx̄ (denoted by Fx ⊗x Fx̄)
generates all (non-tautological) resolvents of C ∈ Fx and D ∈ Fx̄ .

Definition (Variable elimination (VE))

Given a CNF formula F , variable elimination (or DP resolution)
removes a variable x by replacing Fx and Fx̄ by Fx ⊗x Fx̄

Proof procedure [DavisPutnam60]

VE is a complete proof procedure. Applying VE until fixpoint results
in the empty formula (satisfiable) or empty clause (unsatisfiable)

Variable Elimination [DavisPutnam’60]

Definition (Resolution)

Given two clauses C = (x ∨ a1 ∨ · · · ∨ ai) and D = (x̄ ∨ b1 ∨ · · · ∨ bj),
the resolvent of C and D on variable x (denoted by C ⊗x D) is
(a1 ∨ · · · ∨ ai ∨ b1 ∨ · · · ∨ bj)

Resolution on sets of clauses Fx and Fx̄ (denoted by Fx ⊗x Fx̄)
generates all (non-tautological) resolvents of C ∈ Fx and D ∈ Fx̄ .

Definition (Variable elimination (VE))

Given a CNF formula F , variable elimination (or DP resolution)
removes a variable x by replacing Fx and Fx̄ by Fx ⊗x Fx̄

Proof procedure [DavisPutnam60]

VE is a complete proof procedure. Applying VE until fixpoint results
in the empty formula (satisfiable) or empty clause (unsatisfiable)

Example (Bounded) VE [DavisPutnam’60] [EénBiere’05]

Definition (Variable elimination (VE))

Given a CNF formula F , variable elimination (or DP resolution) removes a
variable x by replacing Fx and Fx̄ by Fx ⊗x Fx̄

Example of VE but not BVE

Fx
︷ ︸︸ ︷

(x ∨ c) (x ∨ d) (x ∨ ā ∨ b̄)

Fx̄







(x̄ ∨ a) (a ∨ c) (a ∨ d) (a ∨ ā ∨ b̄)
(x̄ ∨ b) (b ∨ c) (b ∨ d) (b ∨ ā ∨ b̄)

(x̄ ∨ ē ∨ f) (c ∨ ē ∨ f) (d ∨ ē ∨ f) (ā ∨ b̄ ∨ ē ∨ f)

example: |Fx ⊗ Fx̄ | > |Fx |+ |Fx̄ |; in general: quadratic growth of clauses

Bounded VE (BVE): apply VE if the number of clauses does not increase.

Example (Bounded) VE [DavisPutnam’60] [EénBiere’05]

Definition (Variable elimination (VE))

Given a CNF formula F , variable elimination (or DP resolution) removes a
variable x by replacing Fx and Fx̄ by Fx ⊗x Fx̄

Example of VE but not BVE

Fx
︷ ︸︸ ︷

(x ∨ c) (x ∨ d) (x ∨ ā ∨ b̄)

Fx̄







(x̄ ∨ a) (a ∨ c) (a ∨ d) (a ∨ ā ∨ b̄)
(x̄ ∨ b) (b ∨ c) (b ∨ d) (b ∨ ā ∨ b̄)

(x̄ ∨ ē ∨ f) (c ∨ ē ∨ f) (d ∨ ē ∨ f) (ā ∨ b̄ ∨ ē ∨ f)

example: |Fx ⊗ Fx̄ | > |Fx |+ |Fx̄ |; in general: quadratic growth of clauses

Bounded VE (BVE): apply VE if the number of clauses does not increase.

Example (Bounded) VE [DavisPutnam’60] [EénBiere’05]

Definition (Variable elimination (VE))

Given a CNF formula F , variable elimination (or DP resolution) removes a
variable x by replacing Fx and Fx̄ by Fx ⊗x Fx̄

Example of VE but not BVE

Fx
︷ ︸︸ ︷

(x ∨ c) (x ∨ d) (x ∨ ā ∨ b̄)

Fx̄







(x̄ ∨ a) (a ∨ c) (a ∨ d) (a ∨ ā ∨ b̄)
(x̄ ∨ b) (b ∨ c) (b ∨ d) (b ∨ ā ∨ b̄)

(x̄ ∨ ē ∨ f) (c ∨ ē ∨ f) (d ∨ ē ∨ f) (ā ∨ b̄ ∨ ē ∨ f)

example: |Fx ⊗ Fx̄ | > |Fx |+ |Fx̄ |; in general: quadratic growth of clauses

Bounded VE (BVE): apply VE if the number of clauses does not increase.

Example (Bounded) VE [DavisPutnam’60] [EénBiere’05]

Definition (Variable elimination (VE))

Given a CNF formula F , variable elimination (or DP resolution) removes a
variable x by replacing Fx and Fx̄ by Fx ⊗x Fx̄

Example of VE but not BVE

Fx
︷ ︸︸ ︷

(x ∨ c) (x ∨ d) (x ∨ ā ∨ b̄)

Fx̄







(x̄ ∨ a) (a ∨ c) (a ∨ d) (a ∨ ā ∨ b̄)
(x̄ ∨ b) (b ∨ c) (b ∨ d) (b ∨ ā ∨ b̄)

(x̄ ∨ ē ∨ f) (c ∨ ē ∨ f) (d ∨ ē ∨ f) (ā ∨ b̄ ∨ ē ∨ f)

example: |Fx ⊗ Fx̄ | > |Fx |+ |Fx̄ |; in general: quadratic growth of clauses

Bounded VE (BVE): apply VE if the number of clauses does not increase.

Example (Bounded) VE [DavisPutnam’60] [EénBiere’05]

Definition (Variable elimination (VE))

Given a CNF formula F , variable elimination (or DP resolution) removes a
variable x by replacing Fx and Fx̄ by Fx ⊗x Fx̄

Example of VE but not BVE

Fx
︷ ︸︸ ︷

(x ∨ c) (x ∨ d) (x ∨ ā ∨ b̄)

Fx̄







(x̄ ∨ a) (a ∨ c) (a ∨ d) (a ∨ ā ∨ b̄)
(x̄ ∨ b) (b ∨ c) (b ∨ d) (b ∨ ā ∨ b̄)

(x̄ ∨ ē ∨ f) (c ∨ ē ∨ f) (d ∨ ē ∨ f) (ā ∨ b̄ ∨ ē ∨ f)

example: |Fx ⊗ Fx̄ | > |Fx |+ |Fx̄ |; in general: quadratic growth of clauses

Bounded VE (BVE): apply VE if the number of clauses does not increase.

Reencoding

Bounded Variable Addition: Main Idea

Main Idea

Given a CNF formula F , can we construct a logically equivalent F ′

by introducing a new variable x /∈ VAR(F) such that |F ′| < |F |?

Reverse of Variable Elimination

For example, replace the clauses

(a ∨ c) (a ∨ d)
(b ∨ c) (b ∨ d)

(c ∨ ē ∨ f) (d ∨ ē ∨ f) (ā ∨ b̄ ∨ ē ∨ f)

by

(x̄ ∨ a) (x̄ ∨ b) (x̄ ∨ ē ∨ f)
(x ∨ c) (x ∨ d) (x ∨ ā ∨ b̄)

Challenge: how to find suitable patterns for replacement?

Bounded Variable Addition: Main Idea

Main Idea

Given a CNF formula F , can we construct a logically equivalent F ′

by introducing a new variable x /∈ VAR(F) such that |F ′| < |F |?

Reverse of Variable Elimination

For example, replace the clauses

(a ∨ c) (a ∨ d)
(b ∨ c) (b ∨ d)

(c ∨ ē ∨ f) (d ∨ ē ∨ f) (ā ∨ b̄ ∨ ē ∨ f)

by

(x̄ ∨ a) (x̄ ∨ b) (x̄ ∨ ē ∨ f)
(x ∨ c) (x ∨ d) (x ∨ ā ∨ b̄)

Challenge: how to find suitable patterns for replacement?

Bounded Variable Addition: Main Idea

Main Idea

Given a CNF formula F , can we construct a logically equivalent F ′

by introducing a new variable x /∈ VAR(F) such that |F ′| < |F |?

Reverse of Variable Elimination

For example, replace the clauses

(a ∨ c) (a ∨ d)
(b ∨ c) (b ∨ d)

(c ∨ ē ∨ f) (d ∨ ē ∨ f) (ā ∨ b̄ ∨ ē ∨ f)

by

(x̄ ∨ a) (x̄ ∨ b) (x̄ ∨ ē ∨ f)
(x ∨ c) (x ∨ d) (x ∨ ā ∨ b̄)

Challenge: how to find suitable patterns for replacement?

Factoring Out Subclauses

Example

Replace

(a ∨ b ∨ c ∨ d) (a ∨ b ∨ c ∨ e) (a ∨ b ∨ c ∨ f)

by

(x ∨ d) (x ∨ e) (x ∨ f) (x̄ ∨ a ∨ b ∨ c)

adds 1 variable and one clause reduces number of literals by 2

Not compatible with BVE, which would eliminate x immediately!

. . . so this does not work . . .

Bounded Variable Addition

Smallest Example

Replace

(a ∨ d) (a ∨ e)
(b ∨ d) (b ∨ e)
(c ∨ d) (c ∨ e)

by

(x̄ ∨ a) (x̄ ∨ b) (x̄ ∨ c)
(x ∨ d) (x ∨ e)

adds 1 variable removes 1 clause

Bounded Variable Addition
replaced by

n∧

i=1
(x ∨ Xi) ∧

k∧

j=1
(x̄ ∨ Lj)

Possible Patterns

(X1 ∨ L1) . . . (X1 ∨ Lk)
...

...
(Xn ∨ L1) . . . (Xn ∨ Lk)

≡
n∧

i=1

k∧

j=1
(Xi ∨ Lj)

Every k clauses share sets of literals Lj

There are n sets of literals Xi that appear in clauses with Lj

Reduction: nk − n − k clauses are removed

How to find suitable patterns efficiently?

Restrict the patterns to |Xi | = 1, i.e. single literals

Test for each literal l whether it is part of a pattern

Bounded Variable Addition
replaced by

n∧

i=1
(x ∨ Xi) ∧

k∧

j=1
(x̄ ∨ Lj)

Possible Patterns

(X1 ∨ L1) . . . (X1 ∨ Lk)
...

...
(Xn ∨ L1) . . . (Xn ∨ Lk)

≡
n∧

i=1

k∧

j=1
(Xi ∨ Lj)

Every k clauses share sets of literals Lj

There are n sets of literals Xi that appear in clauses with Lj

Reduction: nk − n − k clauses are removed

How to find suitable patterns efficiently?

Restrict the patterns to |Xi | = 1, i.e. single literals

Test for each literal l whether it is part of a pattern

Bounded Variable Addition
replaced by

n∧

i=1
(x ∨ Xi) ∧

k∧

j=1
(x̄ ∨ Lj)

Possible Patterns

(X1 ∨ L1) . . . (X1 ∨ Lk)
...

...
(Xn ∨ L1) . . . (Xn ∨ Lk)

≡
n∧

i=1

k∧

j=1
(Xi ∨ Lj)

Every k clauses share sets of literals Lj

There are n sets of literals Xi that appear in clauses with Lj

Reduction: nk − n − k clauses are removed

How to find suitable patterns efficiently?

Restrict the patterns to |Xi | = 1, i.e. single literals

Test for each literal l whether it is part of a pattern

Bounded Variable Addition
replaced by

n∧

i=1
(x ∨ Xi) ∧

k∧

j=1
(x̄ ∨ Lj)

Possible Patterns

(X1 ∨ L1) . . . (X1 ∨ Lk)
...

...
(Xn ∨ L1) . . . (Xn ∨ Lk)

≡
n∧

i=1

k∧

j=1
(Xi ∨ Lj)

Every k clauses share sets of literals Lj

There are n sets of literals Xi that appear in clauses with Lj

Reduction: nk − n − k clauses are removed

How to find suitable patterns efficiently?

Restrict the patterns to |Xi | = 1, i.e. single literals

Test for each literal l whether it is part of a pattern

Bounded Variable Addition: Implementation

SimpleBoundedVariableAddition (CNF formula F)

2 for l ∈ LIT(F) do

3 Mlit := {l}, Mcls := Fl

4 P := ∅
5 foreach C ∈ Mcls do

6 let lmin ∈ C \ {l} be least occurring in F

7 foreach D ∈ Flmin
do

8 if |C | = |D| and C \D = l then

9 l ′ := D \ C ; P := P ∪ 〈l ′,C 〉
11 let lmax be occurring most frequently in P

12 if adding lmax to Mlit further reduces |F | then
13 recalculate Mlit and Mcls; goto 4

17 if |Mlit| = 1 then continue

18 replace Mcls and Mlit with new clauses

26 return F

Impact on Cardinality Constraint Encodings

Cardinality Constraints / At-Most-One Constraints

Cardinality Constraints

Among the variables xi , at most k are allowed to be assigned ⊤:

∑
xi ≤ k

The talk focuses on At-Most-One Constraints (k = 1)

Many Encodings have been proposed for At-Most-One Constraints

Good Encodings for Domains

Encoding Clauses

Direct Encoding (DE) n(n−1)
2 many binary clauses

Log Encoding (LE) n · ⌈log n⌉ many duplicate patterns
Sequential Counter (SE) 3n − 4 represent as circuit first
Product Encoding (PE) 2n + 4 · √n + O(4

√
n) best asymptotic bound

At-Most-One Constraints

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70 80 90 100

c
la

u
s
e

s

at-most-1

DE

LE

PE

SE

DE+BVA

LE+BVA

BVA overcomes the drawback of DE and LE; for k < 47, DE+BVA is best

Evaluation on General SAT Instances

Results: FPGA Routing

Try to route s inputs to t outputs (chnls t)

Uses many cardinality constraints with DE

Results illustrate impact of BVA on cardinality constraints

original BVA preprocessed

instance #var #cls solve #var #cls pre solve

chnl10 11 220 1122 9372 302 562 0.00 69.3

chnl10 12 240 1344 7279 340 624 0.00 15.0

chnl10 13 260 1586 2682 380 686 0.00 26.0

chnl11 12 264 1476 TO 374 684 0.00 41.6

chnl11 13 286 1742 TO 418 752 0.00 17.1

chnl11 20 440 4220 TO 667 1228 0.00 12.1

Results: Bio-informatics

Comparing gene evolutions by checking for same structure in trees

No direct encoding inside the formulas

BVA improves the encoding of the actual problem

original BVA preprocessed

instance #var #cls solve #var #cls pre solve

ndhf 09 1910 167476 TO 3098 14588 1.47 187

ndhf 10 2112 191333 TO 3418 16756 1.70 1272

rbcl 08 1278 67720 TO 1981 8669 0.29 16

rbcl 09 1430 79118 TO 2192 10157 0.39 101

rbcl 10 1584 91311 TO 2443 11811 0.43 604

rpoc 08 1278 74454 8628 2011 8494 0.39 237

rpoc 09 1430 86709 TO 2252 10063 0.47 3590

rpoc 10 1584 99781 TO 2474 11667 0.66 11945

Evaluation on General SAT Instances

Conclusions

Bounded Variable Addition has been introduced

Exchanges clauses for variables

Adds a missing arc in the tool chain of SAT solving

The quality of SAT encodings can be improved automatically

Users of SAT solvers can rely on the solver to improve encoding

Encoding and run time improvement on application instances

Automated Reencoding of Boolean Formulas

Norbert Manthey1 Marijn J. H. Heule2,3 Armin Biere3

1Institute of Artificial Intelligence, Technische Universität Dresden, Germany

2Department of Computer Science, University of Texas, Austin, United States

3Institute for Formal Models and Verification, Johannes Kepler University, Austria

November 6, 2012
Haifa Verification Conference

Haifa, Israel

	Introduction
	Bounded Variable Elimination
	Bounded Variable Addition
	Cardinality Constraints
	Results
	Conclusions

