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Dress Code of an Invited Speaker as Satisfiability Problem 1

• propositional logic:

– variables tie shirt

– negation ¬ (not)

– disjunction ∨ disjunction (or)

– conjunction ∧ conjunction (and)

• three conditions / clauses:

– clearly one should not wear a tie without a shirt ¬tie∨shirt

– not wearing a tie nor a shirt is impolite tie∨shirt

– wearing a tie and a shirt is overkill ¬(tie∧shirt) ≡ ¬tie∨¬shirt

• is the formula (¬tie∨shirt)∧ (tie∨shirt)∧ (¬tie∨¬shirt) satisfiable?
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What is SAT? Satisfiability Solving 2

• a class of rather low-level kind of problems:

– propositional variables only, e.g. either hold (true) or not (false)

– logic operators ¬, ∨, ∧, actually restricted to conjunctive normal form (CNF)

– but no quantifiers such as “for all such things”, or “there is one such thing”

– can we find an assignment of the variables to true or false, such that

a set of clauses is satisfied simultaneously

• theory: it is the standard NP complete problem [Cook’70]

• encoding: how to get your problem into CNF

• simplifying: how can the problem or the CNF be simplified (preprocessing)

• solving: how to implement fast solvers
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What is SMT? Satisfiability Modulo Theory 3

• satisfiability solving for first order formulae

– interpreted over fixed theories

– usually without quantifiers

– fully automatic decision procedures which also can provide models

• theories of interest

– equality, uninterpreted functions

– real / integer arithmetic

– bit-vectors

– arrays

• particularly important are bit-vectors and arrays for HW/SW verification
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Formal Methods in Computer Science Satisfiability Modulo Theory 4

Formal
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Formal
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Formal
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Formal Methods and Satisfiability (SAT) Satisfiability Modulo Theory 5
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Applications of SAT and SMT 6

• bounded model checking in electronic design automation (EDA)

– routinely used for falsification in all major design houses

– unbounded extensions also use SAT technology

• SAT as working horse in static software verification

• static device driver verification at Microsoft (SLAM, SDV)

– predicate abstraction with SMT solvers

– spurious counter example checking

• software configuration, e.g. Eclipse IDE ships with SAT4J

• cryptanalysis and solving other combinatorial problems
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A Short SAT Solver History
up to and including 2nd version of MiniSAT and SatELite

7

• Davis and Putnam procedure

– DP: elimination procedure [DavisPutnam’60]

– DPLL: splitting [DavisLogemannLoveland’62]

• modern SAT solvers are mostly based on DPLL

– learning: GRASP [MarquesSilvaSakallah’96], RelSAT [BayardoSchrag’97]

– watched literals, VSIDS, mChaff [MoskewiczMadiganZhaoZhangMalik-DAC’01]

– improved heuristics: MiniSAT [EénSörensson-SAT’03] actually version from 2005

• preprocessing is still a hot topic:

– currently fastest solvers use SatELite style preprocessing [EénBiere’05] DP

– our solver PrecoSAT won the industrial category of last SAT competition
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MiniSAT
[EénSörensson-SAT’03]

8

• originally was a clean and compact reimplementation of

– Satzoo, Satnik which are based on

– zChaff, Limmat which in turn are based on

– mChaff [MoskewiczMadiganZhaoZhangMalik-DAC’01] which is based on

– Grasp [MarquesSilvaSakallah96] which in turn is based on?

– triggered by the success of Satzoo in the SAT competition 2003

• bridged gap between (complicated) implementations and high-level descriptions

• made it possible to understand the inner workings of a SAT solver for a broad audience
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Improved MiniSAT 1.13 / 1.14
[EénSörensson’05]

9

• very competitive performance in 2005

– nobody could catch up until 2007

– faster than any other solver in the competition

– except for SateELiteGTI which however used MiniSAT as backend

• replaced “zChaff” as quasi standard open source SAT solver

• improvements:

– careful tuning of some magic constants (clause reduction ratio, restart intervals)

– precise decision scheduler

– learned clause minimization

• most newer SAT solvers are based on MiniSAT technology
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Variable State Independent Decaying Sum (VSIDS)
mChaff, zChaff, [MoskewiczMadiganZhaoZhangMalik-DAC’01]

10

• which variable to pick?

– alternatives are to statically “schedule” variables in the same order

– or pick one that greedily satisfies the largest number of unsatisfied clauses

– or monitor dynamically involvement of variables in conflicts

• variable state independent decaying sum (VSIDS) heuristic:

– involvement of variable in conflict increments its score

– score is divided by two at every 256th conflict

– always pick variable with largest score

• VSIDS localizes search and thus finds short proofs
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Precise Variable Scheduler 11

• searching through all variables at every decision point is too expensive

• zChaff’s imprecise solution:

– sort variables every 256 conflicts

– pick first unassigned variable in this sorted list (may not have largest score)

• Jerusat’s, NanoSAT’s slow solution:

– priority queue of unassigned variables (updates are logarithmic)

– decisions usually force 2 orders of magnitude more assignments

• Niklas Sörensson’s precise and fast solution:

– keep assigned variables in priority queue, remove them if they have largest score

– add variables back while backtracking

SAT, SMT and Applications – LPNMR’09 Armin Biere – FMV – JKU Linz



Implication Graph Minimizing Learned Clauses
[SörenssonBiere-SAT’09]

12
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Antecedents / Reasons Minimizing Learned Clauses
[SörenssonBiere-SAT’09]

13
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Conflicting Clauses Minimizing Learned Clauses
[SörenssonBiere-SAT’09]

14
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Resolving Antecedents 1st Time Minimizing Learned Clauses
[SörenssonBiere-SAT’09]

15
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Resolving Antecedents 1st Time Minimizing Learned Clauses
[SörenssonBiere-SAT’09]

16
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Resolvents = Cuts = Potential Learned Clauses Minimizing Learned Clauses
[SörenssonBiere-SAT’09]

17
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Potential Learned Clause After 1 Resolution Minimizing Learned Clauses
[SörenssonBiere-SAT’09]

18
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Resolving Antecedents 2nd Time Minimizing Learned Clauses
[SörenssonBiere-SAT’09]

19
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Resolving Antecedents 3rd Time Minimizing Learned Clauses
[SörenssonBiere-SAT’09]

20
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Resolving Antecedents 4th Time Minimizing Learned Clauses
[SörenssonBiere-SAT’09]

21
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1st UIP Clause after 4 Resolutions Minimizing Learned Clauses
[SörenssonBiere-SAT’09]
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Resolving Antecedents 5th Time Minimizing Learned Clauses
[SörenssonBiere-SAT’09]

23
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Decision Learned Clause Minimizing Learned Clauses
[SörenssonBiere-SAT’09]

24
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1st UIP Clause after 4 Resolutions Minimizing Learned Clauses
[SörenssonBiere-SAT’09]

25
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Locally Minimizing 1st UIP Clause Minimizing Learned Clauses
[SörenssonBiere-SAT’09]

26
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Locally Minimized Learned Clause Minimizing Learned Clauses
[SörenssonBiere-SAT’09]

27
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Local Minimization Algorithm Minimizing Learned Clauses
[SörenssonBiere-SAT’09]

28
[BeameKautzSabharwal-JAIR’04] is an independent variation

Two step algorithm:

1. mark all variables in 1st UIP clause

2. remove literals with all antecedent literals also marked

Correctness:

• removal of literals in step 2 are self subsuming resolution steps.

• implication graph is acyclic.

Confluence: produces a unique result.
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Minimizing Locally Minimized Learned Clause Further? Minimizing Learned Clauses
[SörenssonBiere-SAT’09]

29
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Recursively Minimizing Learned Clause Minimizing Learned Clauses
[SörenssonBiere-SAT’09]

30
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Recursively Minimized Learned Clause Minimizing Learned Clauses
[SörenssonBiere-SAT’09]

31
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Recursive Minimization Algorithm Minimizing Learned Clauses
[SörenssonBiere-SAT’09]

32
[MiniSAT 1.13]

Four step algorithm:

1. mark all variables in 1st UIP clause

2. for each candidate literal: search implication graph

3. start at antecedents of candidate literals

4. if search always terminates at marked literals remove candidate

Correctness and Confluence as in local version!!!

Optimization: terminate early with failure if new decision level is “pulled in”
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Experiments on 100 SAT’08 Race Instances Minimizing Learned Clauses
[SörenssonBiere-SAT’09]

33

solved time space out of deleted
instances in hours in GB memory literals

MiniSAT recur 788 9% 170 11% 198 49% 11 89% 33%
with local 774 7% 177 8% 298 24% 72 30% 16%

preprocessing none 726 192 392 103
MiniSAT recur 705 13% 222 8% 232 59% 11 94% 37%
without local 642 3% 237 2% 429 24% 145 26% 15%

preprocessing none 623 242 565 196
PicoSAT recur 767 10% 182 13% 144 45% 10 60% 31%

with local 745 6% 190 9% 188 29% 10 60% 15%
preprocessing none 700 209 263 25

PicoSAT recur 690 6% 221 8% 105 63% 10 68% 33%
without local 679 5% 230 5% 194 31% 10 68% 14%

preprocessing none 649 241 281 31
recur 2950 9% 795 10% 679 55% 42 88% 34%

altogether local 2840 5% 834 6% 1109 26% 237 33% 15%
none 2698 884 1501 355

10 runs for each configuration with 10 seeds for random number generator
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Large Variance for Different Seeds Minimizing Learned Clauses
[SörenssonBiere-SAT’09]

34

MiniSAT
with preprocessing

seed solved time space mo del

1. recur 8 82 16 19 1 33%
2. recur 6 81 17 20 1 33%
3. local 0 81 16 29 7 16%
4. local 7 80 17 29 8 15%
5. recur 4 80 17 20 1 33%
6. recur 1 79 17 20 1 33%
7. recur 9 79 17 20 1 34%
8. local 5 78 18 29 7 16%
9. local 1 78 17 29 6 16%

10. recur 0 78 17 20 1 34%
11. recur 5 78 17 19 1 33%
12. local 3 77 18 31 7 16%
13. local 8 77 18 30 8 16%
14. recur 7 77 17 20 1 34%
15. recur 3 77 17 20 1 34%
16. recur 2 77 17 20 2 33%
17. none 7 76 19 39 9 0%

... ... ... ... ... ... ... ...
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Conclusion on Mimizing Learned Clauses Minimizing Learned Clauses
[SörenssonBiere-SAT’09]

35

• minimization is effective and efficient

• how to use clauses not in the implication graph

[AudemardBordeauxHamadiJabbourSais-SAT’08] . . .

• how to use intermediate resolvents

[HanSomenzi-SAT’9] . . .

• how to extract resolution proofs directly [VanGelder SAT’9]
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More Recent Developments SAT
see also [Biere-JSAT’08]

36

• phase saving of assigned variables as in RSAT [PipatsrisawatDarwiche’07]

– initially pick phase according to number of occurrences

– afterwards always pick last saved phase for decision variables

• rapid restarts [Luby. . .’93] as in TiniSAT [Huang’07]

– uses ideas from stochastic local search

– empirically works well for complete solvers as well

– see peformance of RSAT and PicoSAT in SAT competition in 2007

• actually both ideas need to be combined to give an improvement

• ongoing work in SAT’08/SAT’09 on how to schedule restarts even better
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New Normalized VSIDS (NVSIDS) SAT
[Biere-SAT’08]

37

(consider only one variable)

feedback / punishment / I in PID: 0 < f < 1

s old score s′ new score

s′ =

{
s · f +(1− f ) if variable is involved in current conflict

s · f if variable is NOT involved

0 ≤ s · f︸︷︷︸
decay in any case

≤ s′ ≤ s

decay in any case︷︸︸︷
· f +(1− f )︸ ︷︷ ︸

increment if involved

≤ f +(1− f ) = 1

MiniSAT, RSAT: f = 0.95 ≈ 1/1.05 (1− f ) = 0.05

PicoSAT: f = 1/1.1≈ 0.91 (1− f ) = 0.09
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Exponential VSIDS (EVSIDS) as in MiniSAT SAT
[Biere-SAT’08]

38

(consider only one variable)

δk =

{
1 if involved in k-th conflict

0 otherwise

ik = (1− f ) ·δk

sn = (. . .(i1 · f + i2) · f + i3) · f · · ·) · f + in =
n

∑
k=1

ik · f n−k = (1− f ) ·
n

∑
k=1

δk · f n−k (NVSIDS)

Sn =
f−n

(1− f )
· sn =

f−n

(1− f )
· (1− f ) ·

n

∑
k=1

δk · f n−k =
n

∑
k=1

δk · f−k (EVSIDS)
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What is Model Checking? Model Checking 39

• mechanically check properties of models

• models:

– finite automata, labelled transition systems

– often requires automatic/manual abstraction techniques

• properties:

– only interested in partial properties

– specified in temporal logic: CTL, LTL, etc.

– safety: something bad should not happen

– liveness: something god should happen

• automatic generation of counterexamples
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Reachability Model Checking 40

• set of states S, initial states I, transition relation T

• bad states B reachable from I via T?

• symbolic representation of T (ciruit, program, parallel product)

– avoid explicit matrix representations, because of the

– state space explosion problem, e.g. n-bit counter: |T |= O(n), |S|= O(2n)

– makes reachability PSPACE complete [Savitch’70]

• on-the-fly [Holzmann’81’] for protocols

– restrict search to reachable states

– simulate and hash reached concrete states
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Forward Fixpoint: Initial and Bad States Model Checking 41

I B
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Forward Fixpoint: Step 1 Model Checking 42

I B
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Forward Fixpoint: Step 2 Model Checking 43

I B
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Forward Fixpoint: Step 3 Model Checking 44

I B
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Forward Fixpoint: Bad State Reached Model Checking 45

I B
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Forward Fixpoint: Termination, No Bad State Reachable Model Checking 46

I B
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Forward Least Fixpoint Algorithm for Model Checking Safety Model Checking 47

initial states I, transition relation T , bad states B

model-checkµ
forward (I, T, B)

SC = /0; SN = I;
while SC 6= SN do

if B∩SN 6= /0 then
return “found error trace to bad states”;

SC = SN;

SN = SC∪ Img(SC) ;
done;
return “no bad state reachable”;
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Symbolic Model Checking Model Checking 48

• work with symbolic representations of states

– symbolic representations are potentially exponentially more succinct

– favors BFS: next frontier set of states in BFS is calculated symbolically

• originally “symbolic” meant model checking with BDDs

[CoudertMadre’89/’90,BurchClarkeMcMillanDillHwang’90,McMillan’93]

• Binary Decision Diagrams [Bryant’86]

– canonical representation for boolean functions

– BDDs have fast operations (but image computation is expensive)

– often blow up in space

– restricted to hundreds of variables
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Linear Size BDD for Bit-Vector Comparison Model Checking 49

00

00

00

00 1

x

x2

2 2

x

x

y y

3

3 3

y y

y y

y y

1

1 1

0

0 0

boolean function/expression:

n−1̂

i=0
xi = yi

interleaved variable order:

x3 > y3 > x2 > y2 > x1 > y1 > x0 > y0

comparison of two n-bit-vectors needs 3 ·n in-
ner nodes for the interleaved variable order
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Exponential BDD for Bit-Vector Comparison Model Checking 50

missing edges
lead to 0

1

x3

x2

1x

x0

1x

x0x0x0

x2

1x

x0

1x

x0x0x0

y2 y2 y2 y2

y3y3y3 y3y3y3y3 y3 y3y3y3 y3y3y3y3 y3

y2 y2 y2 y2

y1 y1 y1y1

y0 y0
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Unrolling of Forward Least Fixpoint Algorithm Model Checking 51

0: continue? S0
C 6= S0

N ∃s0[I(s0)]

0: terminate? S0
C = S0

N ∀s0[¬I(s0)]

0: bad state? B∩S0
N 6= /0 ∃s0[I(s0)∧B(s0)]

1: continue? S1
C 6= S1

N ∃s0,s1[I(s0)∧T (s0,s1)∧¬I(s1)]

1: terminate? S1
C = S1

N ∀s0,s1[I(s0)∧T (s0,s1)→ I(s1)]

1: bad state? B∩S1
N 6= /0 ∃s0,s1[I(s0)∧T (s0,s1)∧B(s1)]

2: continue? S2
C 6= S2

N ∃s0,s1,s2[I(s0)∧T (s0,s1)∧T (s1,s2)∧
¬(I(s2)∨∃t0[I(t0)∧T (t0,s2)])]

2: terminate? S2
C = S2

N ∀s0,s1,s2[I(s0)∧T (s0,s1)∧T (s1,s2)→
I(s2)∨∃t0[I(t0)∧T (t0,s2)]]

2: bad state? B∩S1
N 6= /0 ∃s0,s1,s2[I(s0)∧T (s0,s1)∧T (s1,s2)∧B(s2)]
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Falsification Part of Fixpoint Algorithm Model Checking
[BiereCimattiClarkeZhu-TACAS’99]

52

0: continue? S0
C 6= S0

N ∃s0[I(s0)]

0: terminate? S0
C = S0

N ∀s0[¬I(s0)]

0: bad state? B∩S0
N 6= /0 ∃s0[I(s0)∧B(s0)]

1: continue? S1
C 6= S1

N ∃s0,s1[I(s0)∧T (s0,s1)∧¬I(s1)]

1: terminate? S1
C = S1

N ∀s0,s1[I(s0)∧T (s0,s1)→ I(s1)]

1: bad state? B∩S1
N 6= /0 ∃s0,s1[I(s0)∧T (s0,s1)∧B(s1)]

2: continue? S2
C 6= S2

N ∃s0,s1,s2[I(s0)∧T (s0,s1)∧T (s1,s2)∧
¬(I(s2)∨∃t0[I(t0)∧T (t0,s2)])]

2: terminate? S2
C = S2

N ∀s0,s1,s2[I(s0)∧T (s0,s1)∧T (s1,s2)→
I(s2)∨∃t0[I(t0)∧T (t0,s2)]]

2: bad state? B∩S1
N 6= /0 ∃s0,s1,s2[I(s0)∧T (s0,s1)∧T (s1,s2)∧B(s2)]
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Bounded Model Checking (BMC) Model Checking
[BiereCimattiClarkeZhu-TACAS’99]

53

• look only for counter example made of k states (the bound)

∨ ∨ ∨ ∨p¬ p¬ p¬ p¬p¬

0s s1 l+1s sksl

or
p¬ p¬ p¬ p¬p¬

0s sls1 l+1s sk

• simple for safety properties p is invariantly true (e.g. p = ¬B)

I(s0) ∧ T (s0,s1))∧·· ·∧T (sk−1,sk) ∧
k_

i=0
¬p(si)

• harder for liveness properties p is eventually true

I(s0) ∧ T (s0,s1))∧·· ·∧T (sk−1,sk) ∧
k̂

i=0
¬p(si) ∧ ∃l T (sk,sl)
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Bounded Model Checking (BMC) Model Checking
[BiereCimattiClarkeZhu-TACAS’99]

54

• look only for counter example made of k states (the bound)

∨ ∨ ∨ ∨p¬ p¬ p¬ p¬p¬

0s s1 l+1s sksl

or
p¬ p¬ p¬ p¬p¬

0s sls1 l+1s sk

• simple for safety properties p is invariantly true (e.g. p = ¬B)

I(s0) ∧ T (s0,s1))∧·· ·∧T (sk−1,sk) ∧
k_

i=0
¬p(si)

• harder for liveness properties p is eventually true

I(s0) ∧ T (s0,s1))∧·· ·∧T (sk−1,sk) ∧
k̂

i=0
¬p(si) ∧

k_
l=0

T (sk,sl)
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Bounded Model Checking State-of-the-Art Model Checking
Chapter 14 on BMC in Handbook of Satisfiability

55

• increase in efficiency of SAT solvers [Grasp,zChaff,MiniSAT,SatELite,. . .]

• SAT more robust than BDDs in bug finding

(shallow bugs are easily reached by explicit model checking or testing)

• better unbounded but still SAT based model checking algorithms

– k-induction [SinghSheeranStalmarck’00]

– interpolation [McMillan’03]

• 4th Intl. Workshop on Bounded Model Checking (BMC’06)

• other logics, better encodings, e.g. [LatvalaBiereHeljankoJuntilla-FMCAD’04]

• other models, e.g. C/C++/Verilog [Kröning. . .], hybrid automata [Audemard. . .-BMC’04]
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Induction with SAT Model Checking
Chapter 14 on BMC in Handbook of Satisfiability

56

[SinghSheeranStalmarck’00]

• more specifically k-induction

– does there exist k such that the following formula is unsatisfiable

B(s0)∧·· ·∧B(sk−1)∧T (s0,s1)∧·· ·∧T (sk−1,sk)∧B(sk)∧
^

0≤i< j≤k
si 6= s j

– if unsatisfiable and ¬BMC(k) then bad state unreachable

• bound on k: length of longest cycle free path = reoccurrence diameter

• k = 0 check whether ¬B tautological (propositionally)

• k = 1 check whether ¬B inductive for T
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Interpolation Model Checking
Chapter 14 on BMC in Handbook of Satisfiability

57

[McMillan’03]

• SAT based technique to overapproximate frontiers Img(SC)

– currently most effective technique to show that bad states are unreachable

– better than BDDs and k-induction in most cases [HWMCC’08]

• starts from a resolution proof refutation of a BMC problem with bound k +1

SC(s0)∧T (s0,s1)∧T (s1,s2)∧·· ·∧T (sk,sk+1)∧B(sk+1)

– result is a characteristic function f (s1) over variables of the second state s1

– these states do not reach the bad state sk+1 in k steps

– any state reachable from SC satisfies f : SC(s0)∧T (s0,s1)⇒ f (s1)

• k is bounded by the diameter (exponentially smaller than longest cycle free path)
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Simple Path Constraints Symbolic All-Different Constraints
[BiereBrummayer-FMCAD’08]

58

• bounded model checking: [BiereCimattiClarkeZhu’99]

I(s1)∧T (s1,s2)∧ . . .∧T (sk−1,sk)∧
_

0≤i≤k
B(si) satisfiable?

• reoccurrence diameter checking: [BiereCimattiClarkeZhu’99]

T (s1,s2)∧ . . .∧T (sk−1,sk) ∧
^

1≤i< j≤k
si 6= s j unsatisfiable?

• k-induction base case: [SheeranSinghStålmarck’00]

I(s1)∧T (s1,s2)∧ . . .∧T (sk−1,sk) ∧ B(sk)∧
^

0≤i<k
¬B(si) satisfiable?

• k-induction induction step: [SheeranSinghStålmarck’00]

T (s1,s2)∧ . . .∧T (sk−1,sk) ∧ B(sk)∧
^

0≤i<k
¬B(si) ∧

^
1≤i< j≤k

si 6= s j unsatisfiable?
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All Different Constraints (ADC) Symbolic All-Different Constraints
[BiereBrummayer-FMCAD’08]

59

• classical concept in constraint programming:

– k variables over a domain of size m supposed to have different values

– for instance k-queen problem

• propagation algorithms to establish arc-consistency

– explicit propagators: [Régin’94]

∗ O(k ·m) space

∗ O(k2 ·m2) time

– symbolic propagators: [GentNightingale’04] also [MarquesSilvaLynce’07]

∗ one-hot CNF encoding with Ω(k ·m) boolean variables

• in model checking k << m typically k < 1000 m = 2n > 2100 n latches
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Symbolic ADCs for Large Domains Symbolic All-Different Constraints
[BiereBrummayer-FMCAD’08]

60

• encoding bit-vector inequalities directly:

– let u, v be two n-bit vectors, d0, . . . ,dn−1 fresh boolean variables

u 6= v is equisatisfiable to (d0∨·· ·∨dn−1)∧
n−1̂

j=0
(u j∨ v j∨d j)∧ (u j∨ v j∨d j)

– can be extended to encode Ackermann Constraints + McCarthy Axioms

– either eagerly encode all si 6= s j quadratic in k

– or refine adding bit-vector inequalities on demand [EénSörensson-BMC’03]

• natively handle ADCs within SAT solver: main contribution in FMCAD’08

– similar to theory consistency checking in lazy SMT vs. “lemmas on demand”

– can be extended to also perform theory propagation

• sorting networks ineffective in our experience [KröningStrichman’03,JussilaBiere’06]
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Lemmas on Demand for ADCs Symbolic All-Different Constraints
TIP [EénSörensson-BMC’03]

61

Abstract

call SAT solver

SAT?

NO

YES
Spurious?

NO

original ADC?
violates any

check solution:

YES

Refine

just leave out ADCs

do not encode them

add violated ADC(s) as
Lemma on Demand

incrementally
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Lemmas on Demand for Satisfiability Modulo Theory (SMT)
[DeMouraRueß-SAT’02] [BarrettDillStump-CAV’02] . . .

62

Abstract

call SAT solver

SAT?

NO

YES
Spurious?

NO

violates any

check solution:

YES

Refine

skeleton of original
first−order formula

only keep boolean

theory axiom

 lemma on demand
add instance of violated axiom as

incrementally
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Localization / Counter Example Guided Abstraction Refinement 63

Localization [Kurshan’93], Predicate Abstraction [GrafSaidi’97],
SLAM [BallRajamani’01], CEGAR [ClarkeGrumbergJhaLuVeith’03]

Abstract

SAT?

NO

YES
Spurious?

NO

YES

Refine

 lemma on demand

incrementally

locally around property

add more logic of model as

cut connections in model

impossible to
extend
to full model

check solution:

call model checker
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Lemmas on Demand for Extensional Arrays Boolector: Bit-Vector and Arrays
[BrummayerBiere-JSAT’09]

64

Abstract

call SAT solver

SAT?

NO

YES
Spurious?

NO

violates any

check solution:

YES

Refine

 lemma on demand
add instance of violated axiom as

incrementally

replace array reads
and equality checks
by fresh variables

array axiom
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Early Unsat Termination Boolector: Bit-Vector and Arrays
[BrummayerBiere-EuroCAST’09]

65

SAT?

Call SAT solver

YES

Formula is satisfiable Formula is unsatisfiable

NO YES

Add under−approx. clauses C
Refine under−approx.Encode input to CNF

C used?

NO
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Combining Over- and Under-Approximation Boolector: Bit-Vector and Arrays
[BrummayerBiere-EuroCAST’09]

66

Add lemma

SAT?

Formula is unsatisfiable

NO YES

Add under−approx. clauses C
Refine under−approx.

C used?

NO

Encode to CNF

YES
spurious?

Call SAT solver

Array formula

Formula is satisfiable

Call SAT solver

Refine over−approx.

NO

YES

Over−approximate
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Lazy SMT Boolector: Bit-Vector and Arrays
survey on lazy SMT [Sebastiani-JSAT’07]

67

• Lemmas on Demand are as lazy as it gets

– SAT solver enumerates full models of propositional skeleton

– abstracted lemmas are added / learned on demand

– theory solver checks consistency of conjunction of theory literals

• on-the-fly consistency checking

– additionally theory solver checks consistency of partial model as well

• theory propagation

– theory solver even deduces and notifies SAT solver about implied values of literals

• generic framework: DPLL(T) [NieuwenhuisOliverasTinelli-JACM’06]
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All Different Objects (ADOs) Symbolic All-Different Constraints
[BiereBrummayer-FMCAD’08]

68

v 2 v 1 v 0 ADO for v

w2 w1 w0 ADO for w

u 0u 2 u 1

hash

ADO for u

watch
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All Different Objects (ADOs) Symbolic All-Different Constraints
[BiereBrummayer-FMCAD’08]

69

v 2 v 1 v 0 ADO for v

w2 w1 w0 ADO for w

u 0u 1

hash

ADO for u0

assign
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All Different Objects (ADOs) Symbolic All-Different Constraints
[BiereBrummayer-FMCAD’08]

70

v 2 v 1 v 0 ADO for v

w2 w1 w0 ADO for w

u 1

hash

ADO for u10
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All Different Objects (ADOs) Symbolic All-Different Constraints
[BiereBrummayer-FMCAD’08]

71

v 2 v 1 v 0 ADO for v

w2 w1 w0 ADO for w

u 1

hash

ADO for u0 1

move
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All Different Objects (ADOs) Symbolic All-Different Constraints
[BiereBrummayer-FMCAD’08]

72

w2 w1 w0 ADO for w

u 1

v 0

hash

ADO for u0 1

ADO for v10

SAT, SMT and Applications – LPNMR’09 Armin Biere – FMV – JKU Linz



All Different Objects (ADOs) Symbolic All-Different Constraints
[BiereBrummayer-FMCAD’08]

73

u 1

v 0

w2

hash

ADO for u0 1

ADO for v0 1

ADO for w11
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All Different Objects (ADOs) Symbolic All-Different Constraints
[BiereBrummayer-FMCAD’08]

74

v 0

w2

hash

ADO for u0 1

ADO for v0 1

ADO for w

1

1 1

complete
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All Different Objects (ADOs) Symbolic All-Different Constraints
[BiereBrummayer-FMCAD’08]

75

v 0

w2

hash

ADO for u0 1

ADO for v0 1

ADO for w1 1

1

insert
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All Different Objects (ADOs) Symbolic All-Different Constraints
[BiereBrummayer-FMCAD’08]

76

w2

hash

ADO for u0 1

ADO for v0 1

ADO for w1 1

1

1

lookup
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All Different Objects (ADOs) Symbolic All-Different Constraints
[BiereBrummayer-FMCAD’08]

77

w2

hash

ADO for u0 1

ADO for v0 1

ADO for w1 1

1

1

u = vconflict
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Implementation Details Symbolic All-Different Constraints
[BiereBrummayer-FMCAD’08]

78

• ADO key is calculated from concrete bit-vector

– by for instance XOR’ing bits word by word

• ADOs watched by variables (not literals)

– during backtracking all inserted ADOs need to be removed from hash table

– save whether variable assignment forced ADO to be inserted

– stack like insert/remove operations on hash table allow open addressing

• conflict analysis

– all bits of the bit-vectors in conflict are followed

– can be implemented by temporarily generating a pseudo clause

(u2∨u1∨u0∨ v2∨ v1∨ v0)
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Symbolic ADCs versus Refine Symbolic All-Different Constraints
[BiereBrummayer-FMCAD’08]

79

 1
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Mixed Approach versus Refine Only Symbolic All-Different Constraints
[BiereBrummayer-FMCAD’08]

80

 1

 10

 100

 1000

 1  10  100  1000

re
fin

e

mixed
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Conclusion on Symbolic All-Different Constraints
[BiereBrummayer-FMCAD’08]

81

• symbolic consistency checker for ADCs over bit-vectors

– successfully applied to simple path constraints in model checking

– similar to theory consistency checking in lazy SMT solvers

– combination with eager refinement approach lemmas on demand

• future work: ADC based BCP for bit-vectors

– aka theory propagation in lazy SMT solvers

– extensions to handle Ackermann constraints or even McCarthy axioms

– one-way to get away from pure bit-blasting in BV
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SAT Solver Progress (SAT’06 Race Instances) 82
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Summary 83

• SAT and SMT have seen tremendous improvements in recent years

• many applications through the whole field of computer science

• still lots of opportunities for improvements:

– parallel SAT solving

– integration of new paradigms

– portfolio and preprocessing (PrecoSAT as first attempt)

– improved decision procedures for SW / HW verificiation

– make quantified boolean formula (QBF) reasoning work
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