
Lingeling Essentials
Design and Implementation Aspects

Armin Biere
Johannes Kepler University

Linz, Austria

POS 2014
5th Workshop on Pragmatics of SAT 2014

SAT 2014 / FLoC 2014
Vienna Summer of Logic

Vienna, Austria

Sunday, 13 July, 2014

Lingeling successor of PrecoSAT (Inprocessing)
lightweight (compact), beautiful written in C

Farfalla

Butterfly

Papillon

Schmetterling

my 3 year old daughter used Lingeling instead of Schmetterling

 10

 100

 1000

 10 100 1000

Li
ng

el
in

g
(in

 M
B

)

B
en

ch
m

ar
ks

 fr
om

 A
pp

lic
at

io
n

T
ra

ck
 S

A
T

 C
om

pe
tit

io
n

20
13

Glucose (in MB)

Maximum Memory Usage Glucose (3.0) vs Lingeling (aqv) in 1000 seconds

Compact Data Structures for CDCL 3/25

focus on conflict-driven clause learning (CDCL)

similar arguments apply to look-ahead or local search solvers

preprocessing / inprocessing have to be considered as well

memory usage dominated by clause data base

memory layout of individual clauses

occurrence lists of references to (watched) clauses

cache friendliness

keep data compact (maximize what fits in a cache line)

minimize pointer dereferences (mems)

low-level parallelization not considered here

watching clauses (sparse mode) versus full occurrence lists (dense mode)

special treatment of short clauses: binary and ternary

Lingeling Essentials @ POS’14

ZChaff Occurrence Stacks 4/25

start

top

end

−2

start

top

end

2

−2 3 −5

−87

−8

3

−2

−21

1

1

start

top

end

start

top

end

1

−3

Literals

ClausesStack

Lingeling Essentials @ POS’14

Limmat / FunEx Occurrence Stacks 5/25

start

top

end

−2

−2 3 −5

−87−21

Watcher of B

A

B

Watcher of A

−8

3

Lingeling Essentials @ POS’14

CompSAT / MiniSAT Occurrence Stacks 6/25

start

top

end

−2

−2 3 −5

7

−8

3

−2

−2

1

1

−8 1

invariant: first two literals are watched

Lingeling Essentials @ POS’14

MChaff / PicoSAT Occurrence Lists 7/25

−21

−2 3 −5

7−2

head

−8 1

−2

1

invariant: first two literals are watched

Lingeling Essentials @ POS’14

Occurrence Stacks for Binary Clauses 8/25

start

top

end

1

−2
−3

−2 1

−3 −2

Additional Binary Clause Watcher Stack

Lingeling Essentials @ POS’14

Blocking Literals
ChuHarwoodStuckey’09

9/25

start

top

end

1

−7 2 −7 −1−3

2 3−5

3

watch 2

watch −7

observation: often the other watched literal satisfies the clause

so cache these literals in watch list to avoid pointer dereference

for binary clause no need to store clause at all

never has to access the actual clause data

needs special treatment of binary clauses during conflict analysis

reasons are either references to clauses or “other” literals of binary clauses

can easily be adjusted for ternary clauses

with full occurrence lists (all three literals are watched)

a ternary reason consists of the “other two” literals

Lingeling Essentials @ POS’14

Lingeling Occurrence Lists 10/25

offset

count

offset

count

1

−1

literal
offset

offset + count last allocated field if zero

for Literal 1

Occurrences / Watches

’count’ can be increased if non−zero

two 32−bit integer stacks

Block of

Lingeling Essentials @ POS’14

Lingeling Occurrence Lists 11/25

assumes number of watches much smaller than 232

actually closer to 2 billion, but still very reasonable in practice

the count field is needed for fast “pushing of watches”

8 bytes for offset/count entry per literal

plus 4 bytes for sentinel on the actual watches stack

MiniSAT / Glucose / STL Stack need 3 pointers (24 bytes on 64-bit machine)

contiguous occurrences / watches stack needs explicit memory management

without contiguous memory need pointer instead of offset (so 64 bit)

if occurrence / watch pushed and (blue) block full for this literal reallocate

maintain free lists of free blocks

might need to reallocate (with realloc) whole stack of blocks

which in turn might move addresses of the (blue) blocks

so pushing watches while iterating (blue) blocks dangerous

periodical defragmentation of blocks to keep overhead small

Lingeling Essentials @ POS’14

Literal Stacks 12/25

actual clause data stored on literal stacks (only clauses with at least 4 literals)
first two literals are watched

integer literals separated by zero sentinels (think DIMACS format)

learned clauses have an additional 32-bit activity counter (before the actual literals)

separate stacks for redundant (original) clauses and irredundant (learned) clauses
we cluster learned clauses with similar glucose level (LBD) into 16 clusters

each cluster corresponds to one “scaled glue” and has one literal stack

references to clauses are actually offsets into these stacks
pushing clauses while iterating through literals is dangerous

restricts number of literals in each cluster to 232

irr -1 2 3 4 0 5 1 6 -4 9 0 ...
red[0] 47536 6 -3 4 7 8 2 0 4789 -6 -3 7 8 2 5 0 ...
....
red[14] ...

MAXGLUE = 15 clauses are actually discarded after backtracking
Lingeling Essentials @ POS’14

Lingeling Occurrence Lists 13/25

entries in occurrence list are classified as
binary, ternary, large watch, large occurrence (constraint types)

redundant or irredundant clause (redundancy)

constraint types are used for classifying reasons too
need two additional types: unit clause, decision

altogether 3 bits are used to encode the constraint type

one bit is used to encoded redundancy
binary and ternary clauses are only stored in occurrence lists

during preprocessing it is essential to know their redundancy

remaining 28 = 32 - 4 bits of first integer used to encode blocking literal / occurrence
restriction on a maximum of 227 = 134 million variables

and the same number of actual literals in irredundant clauses (including sentinels)

ternary clauses have an additional blocking literal (wasting four bits)

large watched clauses have and additional offset into literal stack
for irredundant clauses the glucose level is stored in least significant four bits

Lingeling Essentials @ POS’14

Lingeling Occurrence Lists Example 14/25

binary clauses

3.0.2 (hexadecimal 0000 0032)
reference to a irredundant binary clause with other literal 3

-2.1.2 (hexadecimal ffff ffea)
reference to a redundant binary clause with other literal -2

ternary clauses

7.0.3 -1 (hexadecimal 0000 0073 ffff ffff)
reference to a irredundant ternary clause with other literals 7 and -1

large watched clauses

5.0.4 9 (hexadecimal 0000 0054 0000 0009)
reference to large watched irredundant clause, blocking literal 5, offset 9

6.1.4 12.8 (hexadecimal 0000 006b 0000 00c8)
reference to large watched redundant clause, blocking literal 6, glue 12, offset 8

large occurrence

17.0.1 (hexadecimal 0000 0111)
reference to large clause with offset 17 in irredundant literal stack

Lingeling Essentials @ POS’14

Inprocessing: Interleaving Preprocessing and Search 15/25

PrecoSAT [Biere’09], Lingeling [Biere’10], also in CryptoMiniSAT (Mate Soos)

preprocessing can be extremely beneficial

most SAT competition solvers use bounded variable elimination (BVE)
[EénBiere SAT’05]

equivalence / XOR reasoning

various clause elimination procedures

probing / failed literal preprocessing / hyper binary resolution

however, even though polynomial, can not be run until completion

simple idea to benefit from full preprocessing without penalty

“preempt” preprocessors after some time

resume preprocessing between restarts

limit preprocessing time in relation to search time

Lingeling Essentials @ POS’14

Reencoding and Inprocessing 16/25

Encoding

Simplifying

Inprocessing

Reencoding

[MantheyHeuleBiere’HVC12]

[JärvisaloHeuleBiere’IJCAR12]

Search

Lingeling Essentials @ POS’14

Inprocessors in Lingeling 17/25

Ternary Resolution
Cardinality Reasoning
Gaussian Elimination
Equivalent Literal Substitution
various literal probing algorithms

3 variants: Root, Simple, Tree
+ basic asymmetric tautologies (AT)
+ lazy hyper bin resolution (LHBR)

Congruence Closure
after syntactic gate extraction

Lifting
double look-head probing
extract equivalences
finds units + implications

Cliffing
lift units implied by literals in clause

Unhiding
uses binary implication graph (BIG)
randomized depth first search
removes clauses / literals

Transitive Reduction
explicit and on BIG only

Blocked Clause Elimination (BCE)
Covered Clause Elimination (CCE)
Bounded Variable Elimination (BVE)

semantic: Minato’s algorithm
syntactic: SatELite like
implicit BCE and (self) subsumption

Blocked Clause Addition (BCA)
only binary clauses

some more disabled

Lingeling Essentials @ POS’14

Benefits of Inprocessing 18/25

special case incremental preprocessing:

preprocessing during incremental SAT solving

allows to use costly preprocessors

without increasing run-time “much” in the worst-case

still useful for benchmarks where these costly techniques help

good examples: probing and CCE even BVE is in general costly

additional benefit:

makes units / equivalences learned in search available to preprocessing

particularly interesting if preprocessing simulates encoding optimizations

danger of hiding “bad” implementation though . . .

. . . and hard(er) to debug and get right

our “Inprocessing Rules” IJCAR’12 paper very useful to think about what is allowed

need efficient testing techniques (see our TAP’13 paper on model based testing)

Lingeling Essentials @ POS’14

20%

40%

60%

80%

100%

 0 50 100 150 200 250 300

R
em

ai
ni

ng
 V

ar
ia

bl
es

 a
fte

r
S

im
pl

ifi
ca

tio
n

(in
 p

er
ce

nt
)

Lingeling (ayv) on Benchmarks Application Track SAT Competition 2013

Variables

after simplification round 1
after simplification round 2
after simplification round 3
after simplification round 4
after simplification round 5
after simplification round 6
after simplification round 7
after simplification round 8
after simplification round 9

20%

40%

60%

80%

100%

 0 50 100 150 200 250 300

R
em

ai
ni

ng
 C

la
us

es
 a

fte
r

S
im

pl
ifi

ca
tio

n
(in

 p
er

ce
nt

)

Lingeling (ayv) on Benchmarks Application Track SAT Competition 2013

Clauses

after simplification round 1
after simplification round 2
after simplification round 3
after simplification round 4
after simplification round 5
after simplification round 6
after simplification round 7
after simplification round 8
after simplification round 9

Scheduling 21/25

original version scheduled inprocessing techniques individually

introduces restarts

makes it difficult to understand what is going on

hard to control inprocessing frequency / effort

effort spent in phases is measured in “steps”

number of visited clauses for search (approx. of mems)

propagations for probing, resolutions for BVE etc.

“counters” provide deterministic execution (versus using time)

newer versions alternate simplification and search

simplification−3
inprocessing

simplification−1
preprocessing

search−2
simplification−2
inprocessing

search−1

search phases limited by geometrically increasing conflict limit

inprocessors steps limited relative to visited clauses during search

Lingeling Essentials @ POS’14

When to Start Next Simplification Phase? 22/25

condensed experience of 4 years tweaking inprocessing scheduling

default simplification schedule: 0, 20k, 40k, 80k, 160k, . . . conflicts

last conflict limit is default increment for next conflict limit

increment reduced relative to maximum of removed variables and clauses

0% vars/clauses removed in preprocessing⇒ 20k

3% vars/clauses removed in preprocessing⇒ 6666 = 20k / (2 + 1)

9% vars/clauses removed in preprocessing⇒ 2k = 20k / (9 + 1)

as more effective inprocessing as higher its frequency

large reduction (of at least 5% vars/clauses removed)

small conflict limit increment of 2k

in this case increment independent of current conflict limit

global limits

hard conflict limit increment of 10 million

soft conflict limit increment of 1 million (if at least one var / clause removed)

Lingeling Essentials @ POS’14

Which Preprocessors Should be Run? 23/25

bounded variable elimination (BVE) most effective

most preprocessors “wait” until BVE completed once

exceptions in current configuration: probing, unhiding, cardinality reasoning

similar waiting for blocked clause elimination (BCE)

for instance there is no point in doing CCE before BCE completed once

same exceptions as for BVE in current configuration

some preprocessors can decide formula on their own

BVE, Gaussian elimination, cardinality reasoning, simple probing, etc.

those are “boosted” the first time they are run (given more time)

for instance BVE is boosted by a factor of 40x initially

execution of an “unsuccessful” preprocessor leads to “delay” its next execution

for instance if BVE could not delete a variable skip it next time

this “delay” is increased with every unsuccessful attempt

Lingeling Essentials @ POS’14

Preprocessor Effort Spent in Simplification Phase 24/25

steps (resolutions etc.) limited linearly in relation to search time (visited clauses)

Limit = f ·Visits (f different for each preprocessor)

each preprocessor has its own “steps counter” Steps

requires monitoring of actual time in preprocessors (during development)

each preprocessor has hard step limits too (like 800 million resolutions/steps in BVE)

taking size of formula into account

some preprocessor require dense mode (linear in whole formula)

then steps limit will have size of formula as lower bound

penalty scheme

unsuccessful runs increase preprocessor specific penalty P

large formulas size increase penalty P

actual steps limit divided by 2P

increase preprocessor internal limits for later simplifications

for instance limits on the number of occurrences in BVE

Lingeling Essentials @ POS’14

Undiscussed Features 25/25

OTFS, LMTF, minimization, etc.

internal versus external variable indices

incremental interface: freezing, melting

Treengeling, Plingeling

model based testing

callbacks, cloning

336 options

Lingeling Essentials @ POS’14

