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Overview 2

1. SAT

• DPLL

• Decision Heuristics and Learning

2. Bounded Model Checking

3. QBF

• QBF for Symbolic Traversal

• State-of-the-Art in QBF Solvers

• Resolve & Expand
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SAT SAT: State-of-the-Art 3

• input formula in conjunctive normal form (CNF)

– a formula in CNF is a conjunction of clauses

– each clause a disjunction of literals

– a literal is positive (v) or negated boolean variable (¬v)

(¬r ∨v) ∧ (s∨v) ∧ (x∨y∨v) ∧ (¬v∨ r) ∧ (¬v∨¬x∨¬y∨¬r)

• SAT = check whether formula in CNF is satisfiable
(satisfiable = exists assignments which makes the formula true)

– the NP complete problem

– can be restricted (also in practice) to clauses of length 3

– equivalent to check formula or circuit satisfiability
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Tseitin Transformation: Circuit to CNF SAT: State-of-the-Art 4

equivalence checking problem constraints
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(x ↔ a∧c) ∧
(y ↔ b∨x) ∧
(u ↔ a∨b) ∧
(v ↔ b∨c) ∧
(w↔ u∧v) ∧
(o ↔ y⊕w)

o∧ (x→ a)∧ (x→ c)∧ (x← a∧c)∧ . . . implications

o∧ (x∨a)∧ (x∨c)∧ (x∨a∨c)∧ . . . clauses
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Variable Elimination by Resolution SAT: State-of-the-Art 5

original clauses in which v or ¬v occurs:
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add non-trivial resolvents:

(s ∨ r), (x ∨ y ∨ r), and (s ∨ ¬x ∨ ¬y ∨ r)

remove original clauses
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Pure Literals SAT: State-of-the-Art 6

• pure literal l in a CNF f

– l occurs in f

– ¬l does not occur in f

• clauses with pure literals can be removed

– result f{l/1}

– f{l/0}⇒ f{l/1}

– stronger semantic criteria possible (e.g. autarkies)

• pure literal reduction as satisfiability preserving transformation
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DP for SAT SAT: State-of-the-Art 7

[DavisPutnam60]

dp-sat()
forever

boolean-constraint-propagation()
if contains-empty-clause() then return unsatisfiable
remove-clauses-with-pure-literals()
if no-clause-left() then return satisfiable
v := next-not-eliminated-variable()
Cv := clauses-containing(v)
C¬v := clauses-containing(¬v)
C′ := /0
forall cv ∈Cv do

forall c¬v ∈C¬v do
c′ := resolve(v, cv, c¬v)
if non-trivial(c′) then C′ := C′∪{c′}

replace Cv∪C¬v by C′
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DPLL for SAT SAT: State-of-the-Art 8

[DavisLogemannLoveland62]

Trade Space for Time

dpll-sat(Assignment S)
boolean-constraint-propagation()
if contains-empty-clause() then return unsatisfiable
if no-clause-left() then return satisfiable
v := next-unassigned-variable()
return dpll-sat(S∪{v 7→ false}) ∨ dpll-sat(S∪{v 7→ true})

(pure literal rule omitted)
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Historical Perspective I SAT: State-of-the-Art 9

• early 90ies

– focus on decision heuristics

– 1st order heuristics

∗ derived from current assignment plus formula

∗ example: dynamic independent literal sum (DLIS)

∗ does not take search history into account (⇒ 1st order)

• mid 90ies

– non-chronlogical backtracking, learning , conflict driven assignment

Solvers: RELSAT, GRASP, SATO
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Implication Graph and Learning SAT: State-of-the-Art 10

decision conflict
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learned clause: (¬v ∨ ¬x ∨ y ∨ ¬z)
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Historical Perspective II SAT: State-of-the-Art 11

• end of 90ies

– SAT solvers became mature enough to be used in various applications

– e.g. in formal verification: bounded model checking (BMC)

• since 2000

– wide spread industrial usage of SAT solvers in circuit verification

– improved lazy data structures, 2nd order decision heuristics

Solvers: ZCHAFF, BERKMIN

– regular SAT solver competition
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2nd Order Decision Heuristics SAT: State-of-the-Art 12

• take search history into account

– focus on literals that recently contributed to conflicts

– pioneered by CHAFF’s Variable State Independent Decaying Sum (VSIDS):

1. increase score of literals in learned clauses

2. exponentially decrease all scores over time

3. pick unassigned variable with largest score

• works incredibly well in practice, but it is (still) unclear why
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Explicit/Symbolic Checking Bounded Model Checking 13

• model checking is about verifying temporal properties of systems algorithmically

– builds on Pnueli’s idea on using temporal logic for specification purposes

– explicit model checking represents states explicitly [EmersonClarke81]

• state explosion problem , particulary in hardware verification:

– state space grows exponentially with the size of the system description

– symmetry or partial order reduction as one solution

• symbolic model checking

– symbolic representations for sets of states to combat the state explosion problem

– originally with binary decision diagrams (BDDs)

[CoudertMadre89,BurchClarkeMcMillanDillHwang90,McMillan93]
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Bounded Model Checking Bounded Model Checking 14

[BiereClarkeCimattiZhu99]

• motivation : leverage improvements of SAT technology for model checking

– BDD based model checking did and does not scale as much as necessary

– SAT seems to be more robust than BDDs

• original idea : shift focus towards falsification instead of verification

– search for counter example traces of a certain length k

– reformulate existence of a counter example of length k as SAT problem

• impact:

– industry uses simulation, then bounded and finally BDD based model checking

– accelerated interest in SAT technology
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Bounded Model Checking Safety Bounded Model Checking 15

checking safety property Gp for a bound k as SAT problem:

∨ ∨ ∨ ∨p¬ p¬ p¬ p¬p¬

0s s1 l+1s sksl

I(s0) ∧ T(s0,s1) ∧·· ·∧ T(sk−1,sk) ∧
k_

i=0

¬p(si)

check occurrence of ¬p in the first k states
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Bounded Model Checking Liveness Bounded Model Checking 16

generic counter example trace of length k for liveness Fp

p¬ p¬ p¬ p¬p¬

0s sls1 l+1s sk

I(s0) ∧ T(s0,s1) ∧·· ·∧ T(sk,sk+1) ∧
k_

l=0

sl = sk+1 ∧
k̂

i=0

¬p(si)

(however we recently showed that liveness can always
be reformulated as safety [BiereArthoSchuppan02])
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Completeness in Bounded Model Checking Bounded Model Checking 17

• find bounds on the maximal length of counter examples

– also called completeness threshold

– exact bounds are hard to find⇒ approximations

• induction

– use of inductive invariants (manually generated)

– generalization of inductive invariants: pseudo induction or k-induction

• use SAT for quantifier elimination as with BDDs

– then model checking becomes fixpoint calculation

– alternatively use approximate elimination (as in McMillan’s interpolation)

• or in an abstraction/refinement loop
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Symbolic Transitive Closure QBF: Resolve & Expand 18

T boolean formula encoding of a (finite transition) relation

[[T]] ⊆ {0,1}n×{0,1}n

Transitive Closure

T∗ ≡ T2n

Standard Linear Unfolding Iterative Squaring via Copying

T i+1(s, t) ≡ ∃m. T i(s,m)∧T(m, t) T2·i(s, t) ≡ ∃m. T i(s,m)∧T i(m, t)

Non Copying Iterative Squaring

T2·i(s, t) ≡ ∃m. ∀c. ∃ l , r. (c→ (l , r) = (s,m))∧ (c→ (l , r) = (m, t))∧T i(l , r)
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DPLL for SAT and QBF QBF: Resolve & Expand 19

dpll-sat(Assignment S) [DavisLogemannLoveland62]
boolean-constraint-propagation()
if contains-empty-clause() then return false
if no-clause-left() then return true
v := next-unassigned-variable()
return dpll-sat(S∪{v 7→ false}) ∨ dpll-sat(S∪{v 7→ true})

dpll-qbf(Assignment S) [CadoliGiovanardiSchaerf98]
boolean-constraint-propagation()
if contains-empty-clause() then return false
if no-clause-left() then return true
v := next- outermost -unassigned-variable()

@ := is-existential(v) ? ∨ : ∧

return dpll-sat(S∪{v 7→ false}) @ dpll-sat(S∪{v 7→ true})
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The Crux of QBF QBF: Resolve & Expand 20

Why is QBF harder than SAT?

|= ∀x . ∃y . (x↔ y)

6|= ∃y . ∀x . (x↔ y)

Decision Order Matters!
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State-of-the-Art QBF: Resolve & Expand 21

• almost all implementations are QBF-enhanced DPLL: [Cadoli. . .98] [Rintanen01]

– recently learning was added [Giunchiglia. . .01] [Letz01] [ZhangMalik02]

– all deterministic solvers (except one) in QBF-Evaluation’03 were DPLL based

– top-down: split on variables from the outside to the inside

• multiple quantifier elimination procedures:

– enumeration [PlaistedBiereZhu03] [McMillan02]

– expansion [Aziz-Abdulla. . .00] [WilliamsBiere. . .00] [AyariBasin02]

– bottom-up: eliminate variables from the inside to the outside

• q-resolution [Kleine-Büning. . .95]
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Forall Reduction and Q-Resolution QBF: Resolve & Expand 22

• collect variables in scopes, order variables and scopes according to nesting depth:

∃ a,b,c,d.︸ ︷︷ ︸
scope 0

∀x,y,z.︸ ︷︷ ︸
scope 1

∃ r,s, t.︸ ︷︷ ︸
scope 2

(c∨d)(a∨c∨x∨y)(a∨x∨s)(t ∨ . . .) · · ·

attach clauses to the scope of its innermost variables

• remove innermost universal literals in clauses attached to universal scopes:

(a∨c∨x∨y) simplifies to (a∨c)

• q-resolution = resolution + forall reduction
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Invariant QBF: Resolve & Expand 23

• all clauses are forall reduced

⇒ innermost scope is always existential

⇒ no clauses attached to universal scopes

• normalized structure of quantified CNF:

Ω(S1) S1 . Ω(S2) S2 . . . . ∀Sm−1 . ∃ Sm . f ∧ g m≥ 2

f ≡ clauses of scope Sm

g ≡ clauses of outer scopes Si, i < m−1

S∃ ≡ Sm

S∀ ≡ Sm−1
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Algorithm QBF: Resolve & Expand 24

resolve-and-expand()

forever

simplify()

if contains-empty-clause() then return false

if no-clause-left() then return true

if is-propositional() then return sat-solve( /0)

v := schedule-cheapest-to-eliminate-variable()

if is-existential(v) then resolve(v)

if is-universal(v) then expand(v)
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Resolve QBF: Resolve & Expand 25

original clauses in which v or ¬v occurs:
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add forall reduced non-trivial resolvents:

(s ∨ r), (x ∨ y ∨ r), and (s ∨ ¬x ∨ ¬y ∨ r)

remove original clauses
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Expand QBF: Resolve & Expand 26

one-to-one mapping of variables: u∈ S∃ mapped to u′ ∈ S′∃

before expansion:

Ω(S1) S1 . Ω(S2) S2 . . . . ∀S∀ . ∃ S∃ . f ∧ g

after expansion:

Ω(S1) S1 . Ω(S2) S2 . . . . ∀(S∀−{v}). ∃(S∃∪S′∃). f{v/0} ∧ f ′{v/1} ∧ g
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Schedule QBF: Resolve & Expand 27

• elimination cost: number of expected added literals

o(l) ≡ number of clauses with literal l

s(l) ≡ sum of lengths of clauses with literal l

s(S) ≡ sum lengths of clauses with scope S

• expansion cost: s(S∃) −
(

s(v)+s(¬v)+o(v)+o(¬v)
)

• resolution cost: o(¬v) ·
(

s(v) − o(v)
)

+ o(v) ·
(

s(¬v) − o(¬v)
)
−

(
s(v) + s(¬v)

)
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Benchmarking Structured Instances of SAT’03 QBF Evaluation 28

benchmark family #inst decide qube semprop expand quantor
1 adder* 16 2 2 2 1 3
2 Adder2* 14 2 2 2 2 3
3 C[0-9]* 27 2 3 2 3 4
4 CHAIN* 11 10 7 11 4 11
5 comp* 5 4 4 5 5 5
6 flip* 7 6 7 7 7 7
7 impl* 16 12 16 16 16 16
8 k* 171 77 91 97 60 108
9 mutex* 2 1 2 2 2 2

10 robots* 48 0 36 36 15 24
11 term1* 4 2 3 3 1 3
12 toilet* 260 187 260 260 259 259
13 TOILET* 8 8 6 8 8 8
14 tree* 12 10 12 12 8 12
#(among best in family) 1 7 10 5 12
#(single best in family) 0 0 0 0 4

(families with no difference and two actually random families removed)

SAT & QBF in Formal Verification – RISC Seminar – March 2005 Armin Biere – JKU Linz



Simplify QBF: Resolve & Expand 29

• resolve quadratic in number of occurrences, expand may double the size

⇒ simplify CNF as much as possible before elimination

• standard simplification: unit propagation , pure literal rule , forall reduction

• equivalence reasoning : extract bi-implications and substitute variables

∀x .∃y .(x∨y)(x→ y)(y→ x) ≡ ∀x .∃y .(x∨y)(x = y) ≡ ∀x .∃y .(x∨x) ≡ 0

• subsumption : remove subsumed clauses

– backward subsumption is checked on-the-fly whenever a clause is added

– forward subsumption is expensive and only checked before expensive operations
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Solved Hard Instances of SAT’03 QBF Evaluation: QUANTOR 30

hard instance time space ∀ ∃ units pure subsu. subst. ∀red.
1 Adder2-6-s 29.6 19.7 90 13732 126 13282 174081 0 37268
2 adder-4-sat 0.2 2.8 42 1618 0 884 6487 0 960
3 adder-6-sat 36.6 22.7 90 13926 0 7290 197091 0 54174
4 C49*1.* 0 0* 27.9 13.3 1 579 0 0 48 84 0
5 C5*1.* 0 0* 56.2 16.0 2 2288 10 0 4552 2494 0
6 k path n-15 0.1 0.8 32 977 66 82 2369 2 547
7 k path n-16 0.1 0.8 34 1042 69 85 2567 2 597
8 k path n-17 0.1 0.9 36 1087 72 100 3020 2 639
9 k path n-18 0.1 0.9 36 1146 76 106 3242 2 725

10 k path n-20 0.1 0.9 38 1240 84 149 3967 2 855
11 k path n-21 0.1 1.0 40 1318 84 130 4470 2 909
12 k t4p n-7 15.5 105.8 43 88145 138 58674 760844 8 215
13 k t4p p-8 5.8 178.6 29 12798 206 5012 85911 4 138
14 k t4p p-9 0.3 4.5 32 4179 137 1389 23344 10 142
15 k t4p p-10 27.9 152.9 35 130136 193 63876 938973 4 137
16 k t4p p-11 86.0 471.5 38 196785 204 79547 1499430 4 140
17 k t4p p-15 84.6 354.7 50 240892 169 181676 1336774 9 226
18 k t4p p-20 3.6 16.1 65 27388 182 21306 197273 11 325

time in seconds, space in MB
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Solved Hard Instances of SAT’03 QBF Evaluation: EXPAND ONLY 31

hard instance time space ∀
1 Adder2-6-s (12.2) m.o. –
2 adder-4-sat (12.1) m.o. –
3 adder-6-sat (13.0) m.o. –
4 C49*1.* 0 0* 98.3 40.8 1
5 C5*1.* 0 0* 357.0 45.6 2
6 k path n-15 (16.5) m.o. –
7 k path n-16 (16.6) m.o. –
8 k path n-17 (16.2) m.o. –
9 k path n-18 (16.8) m.o. –

10 k path n-20 (21.4) m.o. –
11 k path n-21 (21.0) m.o. –
12 k t4p n-7 (16.8) m.o. –
13 k t4p p-8 (21.4) m.o. –
14 k t4p p-9 (21.2) m.o. –
15 k t4p p-10 (17.3) m.o. –
16 k t4p p-11 (17.3) m.o. –
17 k t4p p-15 (21.3) m.o. –
18 k t4p p-20 (20.9) m.o. –

time in seconds, space in MB, m.o. = memory out (> 1 GB)
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