SAT \& QBF in Formal Verification

Armin Biere
Institute for Formal Models and Verification
Johannes Kepler University, Linz, Austria

RISC Seminar

Schloß Hagenberg
March 14, 2005

Overview

1. SAT

- DPLL
- Decision Heuristics and Learning

2. Bounded Model Checking
3. QBF

- QBF for Symbolic Traversal
- State-of-the-Art in QBF Solvers
- Resolve \& Expand
- input formula in conjunctive normal form (CNF)
- a formula in CNF is a conjunction of clauses
- each clause a disjunction of literals
- a literal is positive (v) or negated boolean variable ($\neg v)$

$$
(\neg r \vee v) \wedge(s \vee v) \wedge(x \vee y \vee v) \wedge(\neg v \vee r) \wedge(\neg v \vee \neg x \vee \neg y \vee \neg r)
$$

- SAT = check whether formula in CNF is satisfiable (satisfiable = exists assignments which makes the formula true)
- the NP complete problem
- can be restricted (also in practice) to clauses of length 3
- equivalent to check formula or circuit satisfiability
equivalence checking problem

$$
o \wedge(x \rightarrow a) \wedge(x \rightarrow c) \wedge(x \leftarrow a \wedge c) \wedge \ldots
$$

$$
o \wedge(\bar{x} \vee a) \wedge(\bar{x} \vee c) \wedge(x \vee \bar{a} \vee \bar{c}) \wedge \ldots
$$

constraints

$$
\begin{aligned}
& o \wedge \\
& (x \leftrightarrow a \wedge c) \wedge \\
& (y \leftrightarrow b \vee x) \wedge \\
& (u \leftrightarrow a \vee b) \wedge \\
& (v \leftrightarrow b \vee c) \wedge \\
& (w \leftrightarrow u \wedge v) \wedge \\
& (o \leftrightarrow y \oplus w)
\end{aligned}
$$

implications
clauses
original clauses in which v or $\neg v$ occurs:

add non-trivial resolvents:
$(s \vee r), \quad(x \vee y \vee r), \quad$ and $\quad(s \vee \neg x \vee \neg y \vee r)$
remove original clauses

- pure literal l in a CNF f
$-l$ occurs in f
$-\neg l$ does not occur in f
- clauses with pure literals can be removed
- result $f\{l / 1\}$
- $f\{l / 0\} \Rightarrow f\{l / 1\}$
- stronger semantic criteria possible (e.g. autarkies)
- pure literal reduction as satisfiability preserving transformation
[DavisPutnam60]

```
dp-sat()
    forever
        boolean-constraint-propagation()
        if contains-empty-clause() then return unsatisfiable
        remove-clauses-with-pure-literals()
        if no-clause-left() then return satisfiable
        v : = ~ n e x t - n o t - e l i m i n a t e d - v a r i a b l e ( )
        C
        C}\mp@subsup{\neg}{\nu}{}:= clauses-containing(\negv
        C':= \emptyset
        forall }\mp@subsup{c}{v}{}\in\mp@subsup{C}{v}{}\mathrm{ do
        forall }\mp@subsup{c}{\negv}{}\in\mp@subsup{C}{\negv}{}\mathrm{ do
            c
            if non-trivial( }\mp@subsup{c}{}{\prime}\mathrm{ ) then }\mp@subsup{C}{}{\prime}:=\mp@subsup{C}{}{\prime}\cup{\mp@subsup{c}{}{\prime}
    replace C}\mp@subsup{C}{v}{}\cup\mp@subsup{C}{\negv}{}\mathrm{ by }\mp@subsup{C}{}{\prime
```

[DavisLogemannLoveland62]

Trade Space for Time

```
dpIl-sat(Assignment S)
    boolean-constraint-propagation()
    if contains-empty-clause() then return unsatisfiable
    if no-clause-left() then return satisfiable
    v : = ~ n e x t - u n a s s i g n e d - v a r i a b l e ( )
    return dpll-sat(S }\cup{v\mapstofalse}) \vee \underline{dpll-sat(S }\cup{v\mapstotrue}
```

(pure literal rule omitted)

- early 90ies
- focus on decision heuristics
- 1st order heuristics
* derived from current assignment plus formula
* example: dynamic independent literal sum (DLIS)
* does not take search history into account (\Rightarrow 1st order)
- mid 90ies
- non-chronlogical backtracking, learning, conflict driven assignment Solvers: RELSAT, GRASP, SATO

learned clause: $\quad(\neg v \vee \neg x \vee y \vee \neg z)$
- end of 90ies
- SAT solvers became mature enough to be used in various applications
- e.g. in formal verification: bounded model checking (BMC)
- since 2000
- wide spread industrial usage of SAT solvers in circuit verification
- improved lazy data structures, 2nd order decision heuristics

Solvers: ZCHAFF, BERKMIN

- regular SAT solver competition
- take search history into account
- focus on literals that recently contributed to conflicts
- pioneered by CHAFF’s Variable State Independent Decaying Sum (VSIDS):

1. increase score of literals in learned clauses
2. exponentially decrease all scores over time
3. pick unassigned variable with largest score

- works incredibly well in practice, but it is (still) unclear why
- model checking is about verifying temporal properties of systems algorithmically
- builds on Pnueli's idea on using temporal logic for specification purposes
- explicit model checking represents states explicitly [EmersonClarke81]
- state explosion problem, particulary in hardware verification:
- state space grows exponentially with the size of the system description
- symmetry or partial order reduction as one solution
- symbolic model checking
- symbolic representations for sets of states to combat the state explosion problem
- originally with binary decision diagrams (BDDs)
[CoudertMadre89,BurchClarkeMcMillanDillHwang90,McMillan93]

[BiereClarkeCimattiZhu99]

- motivation: leverage improvements of SAT technology for model checking
- BDD based model checking did and does not scale as much as necessary
- SAT seems to be more robust than BDDs
- original idea: shift focus towards falsification instead of verification
- search for counter example traces of a certain length k
- reformulate existence of a counter example of length k as SAT problem
- impact:
- industry uses simulation, then bounded and finally BDD based model checking
- accelerated interest in SAT technology
checking safety property $\mathbf{G} p$ for a bound k as SAT problem:

check occurrence of $\neg p$ in the first k states
generic counter example trace of length k for liveness $\mathbf{F} p$

$$
I\left(s_{0}\right) \wedge T\left(s_{0}, s_{1}\right) \wedge \cdots \wedge T\left(s_{k}, s_{k+1}\right) \wedge \bigvee_{l=0}^{k} s_{l}=s_{k+1} \wedge \bigwedge_{i=0}^{k} \neg p\left(s_{i}\right)
$$

(however we recently showed that liveness can always
be reformulated as safety [BiereArthoSchuppan02])

- find bounds on the maximal length of counter examples
- also called completeness threshold
- exact bounds are hard to find \Rightarrow approximations
- induction
- use of inductive invariants (manually generated)
- generalization of inductive invariants: pseudo induction or k-induction
- use SAT for quantifier elimination as with BDDs
- then model checking becomes fixpoint calculation
- alternatively use approximate elimination (as in McMillan's interpolation)
- or in an abstraction/refinement loop

$$
\begin{aligned}
& T \text { boolean formula encoding of a (finite transition) relation } \\
& {[[T]] \subseteq\{0,1\}^{n} \times\{0,1\}^{n} }
\end{aligned}
$$

Transitive Closure

$$
T^{*} \equiv T^{2^{n}}
$$

Standard Linear Unfolding

$$
T^{i+1}(s, t) \equiv \exists m \cdot T^{i}(s, m) \wedge T(m, t)
$$

Iterative Squaring via Copying

$$
T^{2 \cdot i}(s, t) \equiv \exists m \cdot T^{i}(s, m) \wedge T^{i}(m, t)
$$

Non Copying Iterative Squaring

$$
T^{2 \cdot i}(s, t) \equiv \exists m \cdot \forall c \cdot \exists l, r .(c \rightarrow(l, r)=(s, m)) \wedge(\bar{c} \rightarrow(l, r)=(m, t)) \wedge T^{i}(l, r)
$$

```
dpll-sat(Assignment S)
[DavisLogemannLoveland62]
    boolean-constraint-propagation()
    if contains-empty-clause() then return false
    if no-clause-left() then return true
    v := next-unassigned-variable()
    return dpll-sat(S }\cup{v\mapstofalse})\vee\underline{dpll-sat(S }\cup{v\mapstotrue}
dpIl-qbf(Assignment S)
[CadoliGiovanardiSchaerf98]
    boolean-constraint-propagation()
    if contains-empty-clause() then return false
    if no-clause-left() then return true
    v : = ~ n e x t - ~ o u t e r m o s t ~ - u n a s s i g n e d - v a r i a b l e ( )
    @ := is-existential(v)? \vee : ^
    return dpll-sat(S\cup{v\mapsto false})@ dpll-sat(S }\cup{v\mapstotrue}
```

Why is QBF harder than SAT?

$$
\models \quad \forall x . \exists y .(x \leftrightarrow y)
$$

$$
\not \models \quad \exists y \cdot \forall x \cdot(x \leftrightarrow y)
$$

Decision Order Matters!

- almost all implementations are QBF-enhanced DPLL: [Cadoli...98] [Rintanen01]
- recently learning was added [Giunchiglia...01] [Letz01] [ZhangMalik02]
- all deterministic solvers (except one) in QBF-Evaluation'03 were DPLL based
- top-down: split on variables from the outside to the inside
- multiple quantifier elimination procedures:
- enumeration [PlaistedBiereZhu03] [McMillan02]
- expansion [Aziz-Abdulla...00] [WilliamsBiere...00] [AyariBasin02]
- bottom-up: eliminate variables from the inside to the outside
- q-resolution [Kleine-Büning...95]
- collect variables in scopes, order variables and scopes according to nesting depth:

$$
\underbrace{\exists a, b, c, d .}_{\text {scope 0 }} \underbrace{\forall x, y, z .}_{\text {scope 1 }} \underbrace{\exists r, s, t .}_{\text {scope 2 }}(c \vee d)(a \vee \bar{c} \vee \bar{x} \vee y)(\bar{a} \vee x \vee s)(t \vee \ldots) \cdots
$$

attach clauses to the scope of its innermost variables

- remove innermost universal literals in clauses attached to universal scopes:

$$
(a \vee \bar{c} \vee \bar{x} \vee y) \quad \text { simplifies to } \quad(a \vee \bar{c})
$$

- q-resolution $=$ resolution + forall reduction
- all clauses are forall reduced
$\Rightarrow \quad$ innermost scope is always existential
$\Rightarrow \quad$ no clauses attached to universal scopes
- normalized structure of quantified CNF:

$$
\begin{aligned}
\Omega\left(S_{1}\right) S_{1} \cdot & \Omega\left(S_{2}\right) S_{2} \cdot \ldots \quad \forall S_{m-1} \cdot \exists S_{m} \cdot f \wedge g \quad m \geq 2 \\
f & \equiv \text { clauses of scope } \quad S_{m} \\
g & \equiv \text { clauses of outer scopes } \quad S_{i}, \quad i<m-1 \\
S_{\exists} & \equiv S_{m} \\
S_{\forall} & \equiv S_{m-1}
\end{aligned}
$$

resolve-and-expand()

forever

simplify()
if contains-empty-clause() then return false
if no-clause-left() then return true
if is-propositional() then return sat-solve(Ø)
$v:=$ schedule-cheapest-to-eliminate-variable()
if is-existential (v) then resolve (v)
if is-universal (v) then expand (v)
original clauses in which v or $\neg v$ occurs:

add forall reduced non-trivial resolvents:

$$
(s \vee r), \quad(x \vee y \vee r), \quad \text { and } \quad(s \vee \neg x \vee \neg y \vee r)
$$

remove original clauses

$$
\text { one-to-one mapping of variables: } \quad u \in S_{\exists} \quad \text { mapped to } \quad u^{\prime} \in S_{\exists}^{\prime}
$$

before expansion:

$\Omega\left(S_{1}\right) S_{1} \cdot \Omega\left(S_{2}\right) S_{2} \cdot \ldots \forall S_{\forall} \quad \exists \exists S_{\exists} \quad f \wedge g$
after expansion:
$\Omega\left(S_{1}\right) S_{1} \cdot \Omega\left(S_{2}\right) S_{2} . \ldots \forall\left(S_{\forall}-\{v\}\right) . \exists\left(S_{\exists} \cup S_{\exists}^{\prime}\right) . \quad f\{v / 0\} \wedge f^{\prime}\{v / 1\} \wedge g$

- elimination cost: number of expected added literals
$o(l) \equiv$ number of clauses with literal l
$s(l) \equiv$ sum of lengths of clauses with literal l
$s(S) \equiv$ sum lengths of clauses with scope S
- expansion cost: $\quad \mathrm{s}\left(\mathrm{S}_{\exists}\right)-(\mathrm{s}(\mathrm{v})+\mathrm{s}(\neg \mathrm{v})+\mathrm{o}(\mathrm{v})+\mathrm{o}(\neg \mathrm{v}))$
- resolution cost: $\mathrm{o}(\neg \mathrm{v}) \cdot(\mathrm{s}(\mathrm{v})-\mathrm{o}(\mathrm{v}))+\mathrm{o}(\mathrm{v}) \cdot(\mathrm{s}(\neg \mathrm{v})-\mathrm{o}(\neg \mathrm{v}))-(\mathrm{s}(\mathrm{v})+\mathrm{s}(\neg \mathrm{v}))$

benchmark family	\#inst	decide	qube	semprop	expand	quantor
1 adder*	16	2	2	2	1	3
2 Adder2*	14	2	2	2	2	3
3 C[0-9]*	27	2	3	2	3	4
4 CHAIN*	11	10	7	11	4	11
5 comp*	5	4	4	5	5	5
6 flip*	7	6	7	7	7	7
7 impl*	16	12	16	16	16	16
8 k*	171	77	91	97	60	108
9 mutex*	2	1	2	2	2	2
10 robots*	48	0	36	36	15	24
11 term1*	4	2	3	3	1	3
12 toilet*	260	187	260	260	259	259
13 TOILET*	8	8	6	8	8	8
14 tree*	12	10	12	12	8	12
\#(among best in family)		1	7	10	5	12
\#(single best in family)		0	0	0	0	4

(families with no difference and two actually random families removed)

- resolve quadratic in number of occurrences, expand may double the size
\Rightarrow simplify CNF as much as possible before elimination
- standard simplification: unit propagation, pure literal rule, forall reduction
- equivalence reasoning: extract bi-implications and substitute variables

$$
\forall x . \exists y .(x \vee y)(x \rightarrow y)(y \rightarrow x) \equiv \forall x . \exists y .(x \vee y)(x=y) \equiv \forall x . \exists y \cdot(x \vee x) \equiv 0
$$

- subsumption: remove subsumed clauses
- backward subsumption is checked on-the-fly whenever a clause is added
- forward subsumption is expensive and only checked before expensive operations

hard instance		time	space	\forall	\exists	units	pure	subsu.	subst.	Vred.
1	Adder2-6-s	29.6	19.7	90	13732	126	13282	174081	0	37268
2	adder-4-sat	0.2	2.8	42	1618	0	884	6487	0	960
3	adder-6-sat	36.6	22.7	90	13926	0	7290	197091	0	54174
4	C49*1.*_0_0*	27.9	13.3	1	579	0	0	48	84	0
5	C5*1.*_0_0 *	56.2	16.0	2	2288	10	0	4552	2494	0
6	k_path_n-15	0.1	0.8	32	977	66	82	2369	2	547
7	k_path_n-16	0.1	0.8	34	1042	69	85	2567	2	597
8	k_path_n-17	0.1	0.9	36	1087	72	100	3020	2	639
9	k_path_n-18	0.1	0.9	36	1146	76	106	3242	2	725
10	k_path_n-20	0.1	0.9	38	1240	84	149	3967	2	855
11	k_path_n-21	0.1	1.0	40	1318	84	130	4470	2	909
12	k_t4p_n-7	15.5	105.8	43	88145	138	58674	760844	8	215
13	k_t4p_p-8	5.8	178.6	29	12798	206	5012	85911	4	138
14	k_t4p_p-9	0.3	4.5	32	4179	137	1389	23344	10	142
15	k_t4p_p-10	27.9	152.9	35	130136	193	63876	938973	4	137
16	k_t4p_p-11	86.0	471.5	38	196785	204	79547	1499430	4	140
17	k_t4p_p-15	84.6	354.7	50	240892	169	181676	1336774	9	226
18	k_t4p_p-20	3.6	16.1	65	27388	182	21306	197273	11	325

time in seconds, space in MB

hard instance		time	space	\forall
1	Adder2-6-s	(12.2)	m.o.	-
2	adder-4-sat	(12.1)	m.o.	-
3	adder-6-sat	(13.0)	m.o.	-
4	C49*1.*_0_0*	98.3	40.8	1
5	C5*1.*_0_0*	357.0	45.6	2
6	k_path_n-15	(16.5)	m.o.	-
7	k_path_n-16	(16.6)	m.o.	-
8	k_path_n-17	(16.2)	m.o.	-
9	k_path_n-18	(16.8)	m.o.	-
10	k_path_n-20	(21.4)	m.o.	-
11	k_path_n-21	(21.0)	m.o.	-
12	k_t4p_n-7	(16.8)	m.o.	-
13	k_t4p_p-8	(21.4)	m.o.	-
14	k_t4p_p-9	(21.2)	m.o.	-
15	k_t4p_p-10	(17.3)	m.o.	-
16	k_t4p_p-11	(17.3)	m.o.	-
17	k_t4p_p-15	(21.3)	m.o.	-
18	k_t4p_p-20	(20.9)	m.o.	-

time in seconds, space in MB, m.o. $=$ memory out ($>1 \mathrm{~GB}$)

