SAT & QBF in Formal Verification

Armin Biere

Institute for Formal Models and Verification Johannes Kepler University, Linz, Austria

RISC Seminar

Schloß Hagenberg

March 14, 2005

- 1. SAT
 - DPLL
 - Decision Heuristics and Learning
- 2. Bounded Model Checking
- 3. QBF
 - QBF for Symbolic Traversal
 - State-of-the-Art in QBF Solvers
 - Resolve & Expand

- input formula in conjunctive normal form (CNF)
 - a formula in CNF is a conjunction of clauses
 - each clause a disjunction of literals
 - a **literal** is positive (v) or negated boolean variable $(\neg v)$

$$(\neg r \lor v) \land (s \lor v) \land (x \lor y \lor v) \land (\neg v \lor r) \land (\neg v \lor \neg x \lor \neg y \lor \neg r)$$

- SAT = check whether formula in CNF is satisfiable
 (satisfiable = exists assignments which makes the formula true)
 - the NP complete problem
 - can be restricted (also in practice) to clauses of length 3
 - equivalent to check formula or circuit satisfiability

constraints

$$(x \leftrightarrow a \land c) \land \\ (y \leftrightarrow b \lor x) \land \\ (u \leftrightarrow a \lor b) \land \\ (v \leftrightarrow b \lor c) \land \\ (w \leftrightarrow u \land v) \land \\ (o \leftrightarrow y \oplus w)$$

$$o \land (x \rightarrow a) \land (x \rightarrow c) \land (x \leftarrow a \land c) \land \dots$$

implications

$${\color{red}o} \wedge (\overline{x} \vee a) \wedge (\overline{x} \vee c) \wedge (x \vee \overline{a} \vee \overline{c}) \wedge \dots$$

clauses

original clauses in which ν or $\neg \nu$ occurs:

add non-trivial resolvents:

$$(s \lor r), (x \lor y \lor r), \text{ and } (s \lor \neg x \lor \neg y \lor r)$$

remove original clauses

- pure literal l in a CNF f
 - l occurs in f
 - $\neg l$ does not occur in f
- clauses with pure literals can be removed
 - result $f\{l/1\}$
 - $f\{l/0\} \Rightarrow f\{l/1\}$
 - stronger semantic criteria possible (e.g. autarkies)
- pure literal reduction as satisfiability preserving transformation

[DavisPutnam60]

```
dp-sat()
    forever
       boolean-constraint-propagation()
       if contains-empty-clause() then return unsatisfiable
       remove-clauses-with-pure-literals()
       if no-clause-left() then return satisfiable
       v := next-not-eliminated-variable()
       C_{v} := \text{clauses-containing}(v)
       C_{\neg \nu} := \text{clauses-containing}(\neg \nu)
       C' := \emptyset
       forall c_v \in C_v do
         forall c_{\neg v} \in C_{\neg v} do
           c' := \text{resolve}(v, c_v, c_{\neg v})
           if non-trivial(c') then C' := C' \cup \{c'\}
       replace C_{\nu} \cup C_{\neg \nu} by C'
```

[DavisLogemannLoveland62]

Trade Space for Time

```
\frac{\text{dpll-sat}(Assignment S)}{\text{boolean-constraint-propagation()}}
\text{if contains-empty-clause() } \textbf{then return } \textbf{unsatisfiable}
\text{if no-clause-left() } \textbf{then return } \textbf{satisfiable}
v := \text{next-unassigned-variable()}
\textbf{return } \textbf{dpll-sat}(S \cup \{v \mapsto \textbf{false}\}) \ \lor \ \textbf{dpll-sat}(S \cup \{v \mapsto \textbf{true}\})
```

(pure literal rule omitted)

- early 90ies
 - focus on decision heuristics
 - 1st order heuristics
 - * derived from current assignment plus formula
 - * example: dynamic independent literal sum (DLIS)
 - ∗ does not take search history into account (⇒ 1st order)
- mid 90ies
 - non-chronlogical backtracking, learning, conflict driven assignment

Solvers: RELSAT, GRASP, SATO

learned clause: $(\neg v \lor \neg x \lor y \lor \neg z)$

- SAT solvers became mature enough to be used in various applications
- e.g. in formal verification: bounded model checking (BMC)
- since 2000
 - wide spread industrial usage of SAT solvers in circuit verification
 - improved lazy data structures, 2nd order decision heuristics
 Solvers: ZCHAFF, BERKMIN
 - regular SAT solver competition

- take search history into account
 - focus on literals that recently contributed to conflicts
 - pioneered by CHAFF's Variable State Independent Decaying Sum (VSIDS):
 - 1. increase score of literals in learned clauses
 - 2. exponentially decrease all scores over time
 - 3. pick unassigned variable with largest score
- works incredibly well in practice, but it is (still) unclear why

- model checking is about verifying temporal properties of systems algorithmically
 - builds on Pnueli's idea on using temporal logic for specification purposes
 - explicit model checking represents states explicitly [EmersonClarke81]
- state explosion problem, particularly in hardware verification:
 - state space grows exponentially with the size of the system description
 - symmetry or partial order reduction as one solution
- symbolic model checking
 - symbolic representations for sets of states to combat the state explosion problem
 - originally with binary decision diagrams (BDDs) [CoudertMadre89,BurchClarkeMcMillanDillHwang90,McMillan93]

[BiereClarkeCimattiZhu99]

- motivation: leverage improvements of SAT technology for model checking
 - BDD based model checking did and does not scale as much as necessary
 - SAT seems to be more robust than BDDs
- original idea: shift focus towards falsification instead of verification
 - search for counter example traces of a certain length k
 - reformulate existence of a counter example of length k as SAT problem
- impact:
 - industry uses simulation, then bounded and finally BDD based model checking
 - accelerated interest in SAT technology

checking safety property Gp for a bound k as SAT problem:

$$I(s_0) \wedge T(s_0, s_1) \wedge \cdots \wedge T(s_{k-1}, s_k) \wedge \bigvee_{i=0}^k \neg p(s_i)$$

check occurrence of $\neg p$ in the first k states

generic counter example trace of length k for liveness $\mathbf{F}p$

$$I(s_0) \land T(s_0, s_1) \land \cdots \land T(s_k, s_{k+1}) \land \bigvee_{l=0}^k s_l = s_{k+1} \land \bigwedge_{i=0}^k \neg p(s_i)$$

(however we recently showed that liveness can always be reformulated as safety [BiereArthoSchuppan02])

- find bounds on the maximal length of counter examples
 - also called completeness threshold
 - exact bounds are hard to find ⇒ approximations
- induction
 - use of inductive invariants (manually generated)
 - generalization of inductive invariants: pseudo induction or k-induction
- use SAT for quantifier elimination as with BDDs
 - then model checking becomes fixpoint calculation
 - alternatively use approximate elimination (as in McMillan's interpolation)
- or in an abstraction/refinement loop

boolean formula encoding of a (finite transition) relation

$$[[T]] \subseteq \{0,1\}^n \times \{0,1\}^n$$

Transitive Closure

$$T^* \equiv T^{2^n}$$

Standard Linear Unfolding

Iterative Squaring via Copying

$$T^{i+1}(s,t) \equiv \exists m. T^{i}(s,m) \wedge T(m,t)$$

$$T^{2\cdot i}(s,t) \equiv \exists m. T^i(s,m) \wedge T^i(m,t)$$

Non Copying Iterative Squaring

$$T^{2\cdot i}(s,t) \equiv \exists m. \forall c. \exists l, r. (c \rightarrow (l,r) = (s,m)) \land (\overline{c} \rightarrow (l,r) = (m,t)) \land T^{i}(l,r)$$

```
[DavisLogemannLoveland62]
dpll-sat(Assignment S)
   boolean-constraint-propagation()
   if contains-empty-clause() then return false
   if no-clause-left() then return true
   v := next-unassigned-variable()
   return dpll-sat(S \cup \{v \mapsto false\}) \lor dpll-sat(S \cup \{v \mapsto true\})
dpll-qbf(Assignment S)
                                               [CadoliGiovanardiSchaerf98]
   boolean-constraint-propagation()
   if contains-empty-clause() then return false
   if no-clause-left() then return true
   v := next-outermost -unassigned-variable()
    @ := is-existential(v) ? \vee : \wedge
   return dpll-sat(S \cup \{v \mapsto false\}) @ dpll-sat(S \cup \{v \mapsto true\})
```

Why is QBF harder than SAT?

$$\models \forall x . \exists y . (x \leftrightarrow y)$$

$$\not\models \exists y . \forall x . (x \leftrightarrow y)$$

Decision Order Matters!

- almost all implementations are QBF-enhanced DPLL: [Cadoli...98] [Rintanen01]
 - recently learning was added [Giunchiglia...01] [Letz01] [ZhangMalik02]
 - all deterministic solvers (except one) in QBF-Evaluation'03 were DPLL based
 - top-down: split on variables from the outside to the inside
- multiple quantifier elimination procedures:
 - enumeration [PlaistedBiereZhu03] [McMillan02]
 - expansion [Aziz-Abdulla...00] [WilliamsBiere...00] [AyariBasin02]
 - bottom-up: eliminate variables from the inside to the outside
- q-resolution [Kleine-Büning...95]

• collect variables in scopes, order variables and scopes according to nesting depth:

$$\underbrace{\exists a,b,c,d}_{\text{scope 0}} \underbrace{\forall x,y,z}_{\text{scope 1}} \underbrace{\exists r,s,t}_{\text{scope 2}} \underbrace{(c \lor d)(a \lor \overline{c} \lor \overline{x} \lor y)(\overline{a} \lor x \lor s)(t \lor \ldots)}_{\text{cope 2}} \cdots$$

attach clauses to the scope of its innermost variables

remove innermost universal literals in clauses attached to universal scopes:

$$(a \lor \overline{c} \lor \overline{x} \lor y)$$
 simplifies to $(a \lor \overline{c})$

q-resolution = resolution + forall reduction

- all clauses are forall reduced
 - innermost scope is always existential
 - no clauses attached to universal scopes
- normalized structure of quantified CNF:

$$egin{array}{lll} \Omega(S_1)\,S_1 \,.&& \Omega(S_2)\,S_2 \,.& \ldots & orall S_{m-1} \,.& \exists \,S_m \,.& f \,\wedge\, g & m \geq 2 \ && f &\equiv & {
m clauses \ of \ scope} & S_m \ && g &\equiv & {
m clauses \ of \ outer \ scopes} & S_i, & i < m-1 \ && S_\exists &\equiv & S_m \ && S_orall &\equiv & S_{m-1} \ && \end{array}$$

resolve-and-expand()

```
forever
  simplify()
  if contains-empty-clause() then return false
  if no-clause-left() then return true
  if is-propositional() then return sat-solve(0)
  v := schedule-cheapest-to-eliminate-variable()
  if is-existential(v) then resolve(v)
  if is-universal(v) then expand(v)
```

original clauses in which ν or $\neg \nu$ occurs:

add forall reduced non-trivial resolvents:

$$(s \lor r), (x \lor y \lor r), \text{ and } (s \lor \neg x \lor \neg y \lor r)$$

remove original clauses

one-to-one mapping of variables: $u \in S_{\exists}$ mapped to $u' \in S'_{\exists}$

before expansion:

$$\Omega(S_1) S_1$$
. $\Omega(S_2) S_2$ $\forall S_{\forall}$. $\exists S_{\exists}$. $f \land g$

after expansion:

$$\Omega(S_1) S_1$$
. $\Omega(S_2) S_2$ $\forall (S_{\forall} - \{v\})$. $\exists (S_{\exists} \cup S'_{\exists})$. $f\{v/0\} \land f'\{v/1\} \land g$

elimination cost: number of expected added literals

- $o(l) \equiv \text{number of clauses with literal } l$
- $s(l) \equiv sum of lengths of clauses with literal l$
- $s(S) \equiv sum lengths of clauses with scope S$

- expansion cost: $\mathbf{s}(\mathbf{S}_{\exists}) \left(\mathbf{s}(\mathbf{v}) + \mathbf{s}(\neg \mathbf{v}) + \mathbf{o}(\mathbf{v}) + \mathbf{o}(\neg \mathbf{v})\right)$
- $\bullet \ \ \text{resolution cost:} \quad \ o(\neg v) \, \cdot \, \left(\textcolor{red}{s}(v) \, \, o(v) \right) \, + \, o(v) \, \cdot \, \left(\textcolor{red}{s}(\neg v) \, \, o(\neg v) \right) \, \, \left(\textcolor{red}{s}(v) \, + \, \textcolor{red}{s}(\neg v) \right)$

benchmark family		#inst	decide	qube	semprop	expand	quantor
1	adder*	16	2	2	2	1	<u>3</u>
2	Adder2*	14	2	2	2	2	3 3 4 11
3	C[0-9]*	27	2	3	2	3	<u>_4</u>
4	CHAIN*	11	10	7	11	4	11
5	comp*	5	4	4	5	5	5
6	flip*	7	6	7	7	7	7
7	impl*	16	12	16	16	16	16
8	k*	171	77	91	97	60	<u>108</u>
9	mutex*	2	1	2	2	2	2
10	robots*	48	0	36	36	15	24
11	term1*	4	2	3	3	1	3
12	toilet*	260	187	260	260	259	259
13	TOILET*	8	8	6	8	8	8
14	tree*	12	10	12	12	8	12
#(among best in family)			1	7	10	5	12
#(single best in family)			_0	_0	_0	_0	<u>4</u>

(families with no difference and two actually random families removed)

- resolve quadratic in number of occurrences, expand may double the size
 - ⇒ simplify CNF as much as possible before elimination
- standard simplification: unit propagation, pure literal rule, forall reduction
- equivalence reasoning: extract bi-implications and substitute variables

$$\forall x . \exists y . (x \lor y)(x \to y)(y \to x) \quad \equiv \quad \forall x . \exists y . (x \lor y)(x = y) \quad \equiv \quad \forall x . \exists y . (x \lor x) \quad \equiv \quad 0$$

- subsumption: remove subsumed clauses
 - backward subsumption is checked on-the-fly whenever a clause is added
 - forward subsumption is expensive and only checked before expensive operations

hard instance time space ∀ ∃ units pure subsu. subst. ∀re							∀rod			
hard instance		time	space	V		units	pure	subsu.	subst.	∀red.
1	Adder2-6-s	29.6	19.7	90	13732	126	13282	174081	0	37268
2	adder-4-sat	0.2	2.8	42	1618	0	884	6487	0	960
3	adder-6-sat	36.6	22.7	90	13926	0	7290	197091	0	54174
4	C49*1.*_0_0*	27.9	13.3	1	579	0	0	48	84	0
5	C5*1.*_0_0*	56.2	16.0	2	2288	10	0	4552	2494	0
6	k_path_n-15	0.1	8.0	32	977	66	82	2369	2	547
7	k_path_n-16	0.1	8.0	34	1042	69	85	2567	2	597
8	k_path_n-17	0.1	0.9	36	1087	72	100	3020	2	639
9	k_path_n-18	0.1	0.9	36	1146	76	106	3242	2	725
10	k_path_n-20	0.1	0.9	38	1240	84	149	3967	2	855
11	k_path_n-21	0.1	1.0	40	1318	84	130	4470	2	909
12	k_t4p_n-7	15.5	105.8	43	88145	138	58674	760844	8	215
13	k_t4p_p-8	5.8	178.6	29	12798	206	5012	85911	4	138
14	k_t4p_p-9	0.3	4.5	32	4179	137	1389	23344	10	142
15	k_t4p_p-10	27.9	152.9	35	130136	193	63876	938973	4	137
16	k_t4p_p-11	86.0	471.5	38	196785	204	79547	1499430	4	140
17	k_t4p_p-15	84.6	354.7	50	240892	169	181676	1336774	9	226
18	k_t4p_p-20	3.6	16.1	65	27388	182	21306	197273	11	325

time in seconds, space in MB

h	ard instance	ce time space		\forall
1	Adder2-6-s	(12.2)	m.o.	-
2	adder-4-sat	(12.1)	m.o.	-
3	adder-6-sat	(13.0)	m.o.	_
4	C49*1.*_0_0*	98.3	40.8	1
5	C5*1.*_0_0*	357.0	45.6	2
6	k_path_n-15	(16.5)	m.o.	-
7	k_path_n-16	(16.6)	m.o.	-
8	k_path_n-17	(16.2)	m.o.	-
9	k_path_n-18	(16.8)	m.o.	-
10	k_path_n-20	(21.4)	m.o.	-
11	k_path_n-21	(21.0)	m.o.	-
12	k_t4p_n-7	(16.8)	m.o.	-
13	k_t4p_p-8	(21.4)	m.o.	_
14	k_t4p_p-9	(21.2)	m.o.	-
15	k_t4p_p-10	(17.3)	m.o.	-
16	k_t4p_p-11	(17.3)	m.o.	-
17	k_t4p_p-15	(21.3)	m.o.	-
18	k_t4p_p-20	(20.9)	m.o.	_

time in seconds, space in MB, m.o. = memory out (> 1 GB)