SAT & QBF In Formal Verification

Armin Biere
Institute for Formal Models and Verification
Johannes Kepler University, Linz, Austria

RISC Seminar
Schlol3 Hagenberg

March 14, 2005

Overview 2

1. SAT
e DPLL

e Decision Heuristics and Learning

2. Bounded Model Checking

3. QBF
e QBF for Symbolic Traversal
e State-of-the-Art in QBF Solvers

e Resolve & Expand

SAT & QBF in Formal Verification — RISC Seminar — March 2005 Armin Biere — JKU Linz

SAT SAT: State-of-the-Art | 3

e input formula in conjunctive normal form (CNF)
— a formula in CNF is a conjunction of clauses
— each clause a disjunction of literals

— a literal is positive (V) or negated boolean variable (—V)
(rvv) A (SVV) A (XVYVV) A (=VVIE) A (2VV =XV YV -r)
e SAT = check whether formula in CNF is satisfiable
(satisfiable = exists assignments which makes the formula true)
— the NP complete problem

— can be restricted (also in practice) to clauses of length 3

— equivalent to check formula or circuit satisfiability

SAT & QBF in Formal Verification — RISC Seminar — March 2005 Armin Biere — JKU Linz

Tseitin Transformation: Circuit to CNF

SAT: State-of-the-Art | 4

equivalence checking problem

)
a) u
b7) D
C— 1%

OA(X—a)A(X—C)A(X<—aAC)A ...

OA(XVa)A(XVC)A(XVave)A ...

SAT & QBF in Formal Verification — RISC Seminar — March 2005

constraints

Implications

clauses

Armin Biere — JKU Linz

Variable Elimination by Resolution SAT: State-of-the-Art [

original clauses in which v or —v occurs:

—rvy
VvV r
SVV
VYV XV Tyvr
XVYyVvy

add non-trivial resolvents:

(SVr), (xVvyvr), and (SV XV -yVr)

remove original clauses

SAT & QBF in Formal Verification — RISC Seminar — March 2005 Armin Biere — JKU Linz

Pure Literals SAT: State-of-the-Art [g

e pure literal | in a CNF f
— | occursin f

— =l does not occur in f

e clauses with pure literals can be removed

— result f{I/1}

— f{I/0} = f{I/1}

— stronger semantic criteria possible (e.g. autarkies)

e pure literal reduction as satisfiability preserving transformation

SAT & QBF in Formal Verification — RISC Seminar — March 2005 Armin Biere — JKU Linz

DP for SAT SAT: State-of-the-Art [7]

[DavisPutnam60]

dp-sat()
forever
boolean-constraint-propagation()
if contains-empty-clause() then return unsatisfiable
remove-clauses-with-pure-literals()
If no-clause-left() then return satisfiable
Vv := next-not-eliminated-variable()
Cy := clauses-containing(v)
C-v := clauses-containing(—v)
C':=0
forall cy € G, do
forall c.y € C-y do
¢ :=resolve(v, cy, C-v)
if non-trivial(c’) then C’' :=C'u{c}
replace CyUC-y by C/

SAT & QBF in Formal Verification — RISC Seminar — March 2005 Armin Biere — JKU Linz

DPLL for SAT SAT: State-of-the-Art [g

[DavisLogemannLoveland62]

Trade Space for Time

dpll-sat(Assignment S)
boolean-constraint-propagation()
If contains-empty-clause() then return unsatisfiable
If no-clause-left() then return satisfiable
VvV := next-unassigned-variable()
return dpll-sat(Su{v+ false}) v dpll-sat(Su{v+ true})

(pure literal rule omitted)

SAT & QBF in Formal Verification — RISC Seminar — March 2005 Armin Biere — JKU Linz

Historical Perspective | SAT: State-of-the-Art [g

e carly 90ies
— focus on decision heuristics

— 1st order heuristics

« derived from current assignment plus formula
x example: dynamic independent literal sum (DLIS)

x does not take search history into account (= 1st order)

e mid 90ies

— non-chronlogical backtracking, learning , conflict driven assignment

Solvers: RELSAT, GRASP, SATO

SAT & QBF in Formal Verification — RISC Seminar — March 2005 Armin Biere — JKU Linz

Implication Graph and Learning SAT: State-of-the-Art [19

Ievel n_l “\ \\
X

- -
-
-

learned clause: (-VV =X VYyV -2

SAT & QBF in Formal Verification — RISC Seminar — March 2005 Armin Biere — JKU Linz

Historical Perspective Il SAT: State-of-the-Art

e end of 90ies

— SAT solvers became mature enough to be used in various applications

— e.g. in formal verification: bounded model checking (BMC)

e since 2000

— wide spread industrial usage of SAT solvers in circuit verification

— improved lazy data structures, 2nd order decision heuristics

Solvers: ZCHAFF, BERKMIN

— regular SAT solver competition

11

SAT & QBF in Formal Verification — RISC Seminar — March 2005 Armin Biere — JKU Linz

2nd Order Decision Heuristics SAT: State-of-the-Art [12]

e take search history into account
— focus on literals that recently contributed to conflicts

— pioneered by CHAFF’s Variable State Independent Decaying Sum (VSIDS):

1. increase score of literals in learned clauses
2. exponentially decrease all scores over time

3. pick unassigned variable with largest score

e works incredibly well in practice, but it is (still) unclear why

SAT & QBF in Formal Verification — RISC Seminar — March 2005 Armin Biere — JKU Linz

Explicit/Symbolic Checking Bounded Model Checking [13]

e model checking is about verifying temporal properties of systems algorithmically
— builds on Pnueli’'s idea on using temporal logic for specification purposes

— explicit model checking represents states explicitly [EmersonClarke81]

e state explosion problem , particulary in hardware verification:
— state space grows exponentially with the size of the system description

— symmetry or partial order reduction as one solution

e symbolic model checking
— symbolic representations for sets of states to combat the state explosion problem

— originally with binary decision diagrams (BDDs)
[CoudertMadre89,BurchClarkeMcMillanDillHwang90,McMillan93]

SAT & QBF in Formal Verification — RISC Seminar — March 2005 Armin Biere — JKU Linz

Bounded Model CheCking Bounded Model Checking [14]

[BiereClarkeCimattiZhu99]

e motivation : leverage improvements of SAT technology for model checking
— BDD based model checking did and does not scale as much as necessary

— SAT seems to be more robust than BDDs

e original idea: shift focus towards falsification instead of verification
— search for counter example traces of a certain length k

— reformulate existence of a counter example of length k as SAT problem

e impact:
— Industry uses simulation, then bounded and finally BDD based model checking

— accelerated interest in SAT technology

SAT & QBF in Formal Verification — RISC Seminar — March 2005 Armin Biere — JKU Linz

Bounded Model CheCking Safety Bounded Model Checking [15]

checking safety property Gp for a bound k as SAT problem:

1(s0) A T(s0,51) A=A T(ske1,%) A\ —p(S)
=0

check occurrence of —p in the first k states

SAT & QBF in Formal Verification — RISC Seminar — March 2005 Armin Biere — JKU Linz

Bounded Model CheCking Liveness Bounded Model Checking [1g6]

generic counter example trace of length k for liveness Fp

So S1 S “Sk
O—»O0—»O)—»0—>»

—p —p —p —p —p
k k
1(s0) A T(s0,51) Ao A T(SS%e1) A V=1 A A —p(s)
=0 =0

(however we recently showed that liveness can always
be reformulated as safety [BiereArthoSchuppan02])

SAT & QBF in Formal Verification — RISC Seminar — March 2005 Armin Biere — JKU Linz

Completeness in Bounded Model Checking Bounded Model Checking [17]

e find bounds on the maximal length of counter examples
— also called completeness threshold

— exact bounds are hard to find = approximations

e induction
— use of inductive invariants (manually generated)

— generalization of inductive invariants: pseudo induction or k-induction

e Use SAT for quantifier elimination as with BDDs
— then model checking becomes fixpoint calculation

— alternatively use approximate elimination (as in McMillan’s interpolation)

e Or in an abstraction/refinement loop

SAT & QBF in Formal Verification — RISC Seminar — March 2005 Armin Biere — JKU Linz

Symbolic Transitive Closure QBF: Resolve & Expand [1g]

T boolean formula encoding of a (finite transition) relation
[Tl € {0,1}"x{0,1}"

Transitive Closure

T* T2

Standard Linear Unfolding lterative Squaring via Copying

TiHl(st) = ImT(sm)AT(mt) T?(st) = Im T (smAT (mt)

Non Copying Iterative Squaring

T2l(st) = Imve. 3lLr (c— (I,r)=(sm)AC— (I,r)=(mt))AT(,r)

SAT & QBF in Formal Verification — RISC Seminar — March 2005 Armin Biere — JKU Linz

DPLL for SAT and QBF QBF: Resolve & Expand [19]

dpll-sat(Assignment S) [DavisLogemannLoveland62]
boolean-constraint-propagation()
If contains-empty-clause() then return false
if no-clause-left() then return true
V := next-unassigned-variable()
return dpll-sat(Su{v— false}) Vv dpll-sat(SuU{v— true})

dpll-gbf(Assignment S) [CadoliGiovanardiSchaerf98]
boolean-constraint-propagation()
If contains-empty-clause() then return false
If no-clause-left() then return true
V := next- outermost -unassigned-variable()

@ :=is-existential(v) ? vV : A

return dpll-sat(Su{v+— false}) @ dpll-sat(SU{v truet})

SAT & QBF in Formal Verification — RISC Seminar — March 2005 Armin Biere — JKU Linz

The Crux of QBF QBF: Resolve & Expand [20] -

Why is QBF harder than SAT?

’: VX.Ely.(X<—>y)

= dy.UX. (X<y)

Decision Order Matters!

SAT & QBF in Formal Verification — RISC Seminar — March 2005 Armin Biere — JKU Linz

State-of-the-Art

QBF: Resolve & Expand |21 |

e almost all implementations are QBF-enhanced DPLL:

[Cadoli...98] [Rintanen01]

— recently learning was added [Giunchiglia...01] [Letz01] [ZhangMalik02]

— all deterministic solvers (except one) in QBF-Evaluation’03 were DPLL based

— top-down: split on variables from the

outside | to the

e multiple quantifier elimination procedures:

inside

— enumeration [PlaistedBiereZhu03] [McMillan02]

— expansion [Aziz-Abdulla...00] [WilllamsBiere...00] [AyariBasin02]

— bottom-up: eliminate variables from the |inside

e (-resolution [Kleine-Buning...95]

SAT & QBF in Formal Verification — RISC Seminar — March 2005

to the

outside

Armin Biere — JKU Linz

Forall Reduction and O-Resolution OBF: Resolve & Expand [22]

e collect variables in scopes, order variables and scopes according to nesting depth:

dab,c,d. Vxy,z drst. (cvd)(avcvxvy)@vxvs)(tv...) .-
scope O scopel scope?2

attach clauses to the scope of its innermost variables

e remove innermost universal literals in clauses attached to universal scopes:

(avtvxVvy) simplifiesto (aVc)

e (-resolution = resolution + forall reduction

SAT & QBF in Formal Verification — RISC Seminar — March 2005 Armin Biere — JKU Linz

Invariant OQBF: Resolve & Expand [23]

e all clauses are forall reduced

= Innermost scope is always existential

= no clauses attached to universal scopes

e normalized structure of quantified CNF:

QS S QAS. ... VSho1- ISn. T AQ m> 2
f = clauses of scope Sny
g = clausesofouterscopes S, i<m-1
S = Sy
Sy = Sm-1

SAT & QBF in Formal Verification — RISC Seminar — March 2005 Armin Biere — JKU Linz

Algorlthm OQBF: Resolve & Expand [24]

resolve-and-expand()

forever
simplify()
If contains-empty-clause() then return false
If no-clause-left() then return true
If is-propositional() then return sat-solve(0)
v .= schedule-cheapest-to-eliminate-variable()
If is-existential(v) then resolve(v)

If is-universal(v) then expand(v)

SAT & QBF in Formal Verification — RISC Seminar — March 2005 Armin Biere — JKU Linz

ReSO|Ve QBF: Resolve & Expand | 25|

original clauses in which v or —v occurs:

—rvy
VvV r
SV YV — %
VYV XV Ty Vv r
XVyvVvy

add forall reduced non-trivial resolvents:

(sVr), (xVvyvVvr), and (SV XV -yVr)

remove original clauses

SAT & QBF in Formal Verification — RISC Seminar — March 2005 Armin Biere — JKU Linz

EXpand QBF: Resolve & Expand | 26|

one-to-one mapping of variables: uc€S; mappedto U ¢ S’g

before expansion:

QASS. AYS. ... VS .35 . fAQ

after expansion:

QS) S A S. ... V(S —{v}). ISUS). F{v/0} A T{v/1} Ag

SAT & QBF in Formal Verification — RISC Seminar — March 2005 Armin Biere — JKU Linz

SCthUle QBF: Resolve & Expand | 27|

e elimination cost: number of expected added literals

o(l) = number of clauses with literal |

s(I) = sum of lengths of clauses with literal |

s(S) = sum lengths of clauses with scope S
e expansion cost: S(Sg) — (s(v) +s(—Vv) +0(v) + o(ﬂv))

e resolution cost: o(—v) - (s(v) — o(v)) + o(Vv) - (s(ﬁv) — o(ﬂv)) — (s(v) + s(ﬁv))

SAT & QBF in Formal Verification — RISC Seminar — March 2005 Armin Biere — JKU Linz

Benchmarking Structured Instances of SAT'03 QBF Evaluation

28|

benchmark family #inst| decide | qube | semprop | expand | quantor

1| adder* 16 2 2 2 1 3
2| Adder2* 14 2 2 2 2 3
3| C[0-9]* 27 2 3 2 3 4
4| CHAIN* 11 10 7 11 4 11
5| comp* <) 4 4) <) <)
6| flip* 7 6 7 7 7 7
71 impl* 16 12 16 16 16 16
8| k* 171 77 91 97 60 108
9| mutex* 2 1 2 2 2 2
10| robots* 48 0) 36 36 15 24
11| terml* 4 2 3 3 1 3
12| tollet* 260 187| 260 260 259 259
13| TOILET* 8 8 6 8 8 8
14| tree* 12 10 12 12 8 12
#(among best in family) 1 7 10 5 12
#(single best in family) 0 0 0 0 4

(families with no difference and two actually random families removed)

SAT & QBF in Formal Verification — RISC Seminar — March 2005

Armin Biere — JKU Linz

Slmp“fy QBF: Resolve & Expand | 29|

e resolve gquadratic in number of occurrences, expand may double the size

= simplify CNF as much as possible before elimination

e standard simplification: unit propagation , pure literal rule , forall reduction

e equivalence reasoning : extract bi-implications and substitute variables
VX Ay . (XVYy)(Xx—=y)(y—Xx) = Wx.3Ay.xvy)(x=y) = Wx.Iy.xvx) = 0
e subsumption : remove subsumed clauses

— backward subsumption is checked on-the-fly whenever a clause is added

— forward subsumption is expensive and only checked before expensive operations

SAT & QBF in Formal Verification — RISC Seminar — March 2005 Armin Biere — JKU Linz

Solved Hard Instances of SAT'03 QBF Evaluation: QUANTOR 0]

hard instance | time | space | V = units | pure subsu. | subst. | Vred.
1| Adder2-6-s| 29.6 19.7| 90| 13732 126| 13282 174081 0| 37268
2| adder-4-sat| 0.2 2.8| 42 1618 0 884 6487 0 960
3| adder-6-sat| 36.6 22.7| 90| 13926 0 7290, 197091 0| 54174
4| C49*1.* 0 0*| 27.9 13.3] 1 579 0 0 48 84 0
5/ C5*1.*.0.0* 56.2 16.0] 2 2288 10 0 4552| 2494 0)
6| kpath.n-15| 0.1 0.8| 32 977 66 82 2369 2 547
7| kpath.n-16| 0.1 0.8 34 1042 69 85 2567 2 597
8| kpath.n-17| 0.1 0.9| 36 1087 72 100 3020 2 639
9| k.path.n-18| 0.1 0.9| 36 1146 76 106 3242 2 725
10| k_path.n-20| 0.1 0.9| 38 1240 84 149 3967 2 855
11| k_path.n-21| 0.1 1.0| 40 1318 84 130 4470 2 909
12 k t4p_n-7| 15.5| 105.8| 43| 88145| 138| 58674| 760844 8 215
13 kK t4p_p-8| 5.8 178.6| 29| 12798 206 5012 85911 4 138
14 k t4p_p-9| 0.3 45| 32 4179| 137 1389 23344 10 142
15 kK t4p_p-10| 27.9| 152.9| 35| 130136 193| 63876 938973 4 137
16 k t4p_p-11| 86.0| 471.5| 38| 196785| 204| 79547| 1499430 4 140
17 Kk t4p_p-15| 84.6| 354.7| 50| 240892| 169| 181676| 1336774 9 226
18 K t4p_p-20| 3.6 16.1| 65| 27388| 182| 21306| 197273 11 325

time in seconds, space in MB

SAT & QBF in Formal Verification — RISC Seminar — March 2005 Armin Biere — JKU Linz

Solved Hard Instances of SAT'03 QBF Evaluation:

EXPAND ONLY

hard instance | time | space |V
1| Adder2-6-s| (12.2) m.o.| —
2| adder-4-sat| (12.1) m.o.| —
3| adder-6-sat| (13.0) m.o.| —
4| C49*1.* 0 0*| 98.3] 408| 1
5 C5*1.*0.0* 357.0{ 45.6| 2
6| k_path_n-15| (16.5) m.o.| —
7| k_path.n-16| (16.6) m.o.| —
8| k_path.n-17| (16.2) m.o.| —
9|/ k_path_n-18| (16.8) m.o.| —
10| k_path_n-20| (21.4) m.o.| —
11| k_path_.n-21| (21.0) m.o.| —
12 K t4p_n-7| (16.8) m.o.| —
13 K t4p_p-8| (21.4) m.o.| —
14 K t4p_p-9| (21.2) m.o.| —
15 K t4p_p-10| (17.3) m.o.| —
16 K t4p_p-11| (17.3) m.o.| —
17 K tdp_p-15| (21.3) m.o.| —
18 K_t4p_p-20| (20.9) m.o.| —

time in seconds, space in MB, m.o. = memory out (> 1 GB)

SAT & QBF in Formal Verification — RISC Seminar — March 2005

Armin Biere — JKU Linz

31|

