SAT In Formal Hardware Verification

Armin Biere

Institute for Formal Models and Verification
Johannes Kepler University Linz, Austria

Invited Talk SAT'05

St. Andrews, Scotland
20. June 2005

Overview

e Hardware Verification Problems
— Model Checking

— Equivalence Checking

e Circuit vs. SAT Simplification Technigues

— redundancy removal with D-algorithm vs. variable instantiation

e QBF for Verification

Model Checking

e explicit model checking [ClarkeEmerson’82], [Holzmann'91]
— program presented symbolically (no transition matrix)
— traversed state space represented explicitly
— e.g. reached states are explicitly saved bit for bit in hash table

= State Explosion Problem (state space exponential in program size)

e symbolic model checking [McMillan Thesis’93], [CoudertMadre’89]
— use symbolic representations for sets of states
— originally with Binary Decision Diagrams [Bryant’86]

— Bounded Model Checking using SAT [BiereCimattiClarkeZhu'99]

Forward Fixpoint Algorithm: Initial and Bad States

Forward Fixpoint Algorithm: Step 1

Forward Fixpoint Algorithm: Step 2

Forward Fixpoint Algorithm: Bad State Reached

Forward Fixpoint Algorithm: Termination, No Bad State Reachable

Forward Least Fixpoint Algorithm for Model Checking Safety

initial states I, transition relation T, bad states B

U
model-checkforward

=0, 5 =1;
while & # Sy do
=S
if BN& # 0 then
return “found error trace to bad states™
SN =SU Img(S)
done;
return “no bad state reachable™

(I, T, B)

symbolic model checking represents set of states in this BFS symbolically

BDDs as Symbolic Representation

e BDDs are canonical representation for boolean functions
— states encoded as bit vectors € B"
— set of states SC IB" as BDDs for characteristic function fg IB" — IB
fg(s)=1 < seS
e for all set operations there are linear BDD operations

— except for Imgwhich is exponential (often also in practice)

scimg(f) < JteB"f(S)AT(s1)]
e variable ordering has strong influence on size of BDDs

e conjunctive partitioning of transition relation is a must

10

Termination Check in Symbolic Reachability is in QBF

checking & = Sy in 2nd iteration results in QBF decision problem

V0,81, 82[1 (s0) A T (s0,51) A T(81,82) — 1(s2) V 3ol (to) A T (to, S2)]

not eliminating quantifiers results in QBF with one alternation

— note: number of necessary iterations bounded by 2"

circuit reachability is PSPACE complete [Savitch’70]

T2(st) := ImyeELr[(c— (I,r) = (sm) AT — (I,r) = (M) AT'(1,1)]

so why not forget about termination and concentrate on bug finding?

= Bounded Model Checking

11

Bounded Model Checking (BMC)
[BiereCimattiClarkeZhu TACAS’99]

e look only for counter example made of k states (the bound)

So S S S4+1 Sk So S S Si+1 Sk
O O O O @) or O O » (O O >
NV v N v NV p N/ —p —p —p —p —p

e simple for safety properties Gp (e.g. p=—B)
k—1 k

1(so) A (A T(s,541) A\ —p(s)

e harder for liveness properties Fp
k—1 k k

I(s0) A (A T(s,811) A (V T(s68)) A A —p(s)

1=0 =0 =0

12

Bounded Model Checking State-of-the-Art

e increase in efficiency of SAT solvers (i.e. zChaff) helped a lot

e SAT more robust than BDDs in bug finding

(shallow bugs are easily reached by explicit model checking or testing)

e better unbounded but still SAT based model checking algorithms

— see for instance invited talk by Ken McMillan at SAT’04 in Vancouver

e 3rd Intl. Workshop on Bounded Model Checking (BMC’05)

(in exactly 3 weeks, almost same place)

e other logics and better encodings

13

Original Translation for LTL and Lasso Witnesses

[BiereCimattiClarkeZhu TACAS’99]

on 1st look seems exponential
(in formula size |f|)

on 2nd look cubic
(in kand linear in | f|)

on 3rd look quadratic
(associativity)

on 4th look linear
(adhoc simplifications)

but binary operators U, R
make it at least quadratic again

nex{i) =

j=min(l,i)

I+1 ifi<k
I else

14

Linear Circuit for Counterexample to Infinitely Often

original translation of FGp after applying associativity and sharing

p(s;)
@ L

0N
J [

5 [P

(could be further simplified)

p(s))

p(sy)

Lﬁ%UU

15

Simple and Linear Translation for LTL

[LatvalaBiereHeljankoJunttila FMCAD’04]

evaluate semantics on loop in two iterations

() = lst iteration

|] = 2nd iteration

= | < Kk | =Kk

[p); p(s) p(s¢)
—p; —p(s) —P(S¢)

X f); L VI o (T (s08) ALF])
Gfl; | [fiAIGHiL: | VEo(T(s63)A(GT))
Ffli | [fivVIFfipe | Vo(T(ses)AFEY)
<Gf>| [f]|/\<Gf>|+1 [f]k

<Ff>| [f]|\/<Ff>|+1 [f]k

16

Simple and Linear Translation for LTL cont.

e semantic of LTL on single path is the same as CTL semantic
— symbolically implement fixpoint calculation for (A)CTL
— fixpoint computation terminates after 2 iterations (not k)

— boolean fixpoint equations =- boolean graphs

e easy to implement and optimize, fast
— generalized to past time [LatvalaBiereHeljankoJunttila VMCAI'05]
— minimal counter examples for pasttime [SchuppanBiere TACAS'05]

— Iincremental (and complete) [LatvalaHeljankoJunttila CAV’05]

17

Why Not Just Try to Satisfy Boolean Equations directly?
p

recursive expansion Fp = pVXFp %

checking Gp implemented as search for withess for Fp
Kripke structure: single state with self loop in which p does not hold

Incorrect translation of Fp:

model cgnstraints aSSl/J_r/n\ption
() AT(s0:50) A ([Fpl < p(so) VIFR]) A [Fp]

translation

since it is satisfiable by setting x=1 though p(sp) =0

(x fresh boolean variable introduced for [Fp])

18

Equivalence Checking

/Equivalence Checker

N Compiler
RTL a=b+cC —
‘ T {(internal Synthesis)}
/ Synthesis Tool \ ‘

Synthesis + Optimization g? - BO*!CO + !BO*CO

(b 0O+c 0)* (b 0+!c 0)

d

ao
1 Compare
Gate-Level

(RTL = Register Transfer Level)

Equivalence Checking in the Large

f

equivalent ?

shared input variables

f optimized

20

Equivalence Checking in the Large

f

shared input variables

f optimized

21

Equivalence Checking in the Large

shared input variables

f optimized

22

Equivalence Checking in the Large

f

shared input variables

f optimized

23

Equivalence Checking in the Large

f .

shared input variables

f optimized

24

Equivalence Checking in the Large

f .

f optimized

shared input variables

25

Equivalence Checking in the Large

f

f optimized

shared input variables

26

Equivalence Checking in the Large

f — optimized

shared input variables

27

Equivalence Checking

e BDD-Sweeping [KuhlmannKrohm DAC'97]
— levelized, resource driven construction of small overlapping BDDs
— BDDs are mapped back to circuit nodes

— circuit nodes with same BDD are functionally equivalent

e can be combined with top-down approach (e.g. backward chaining)

— interleave BDD building with circuit based SAT solver

e recently SAT-Sweeping [KUhimann ICCAD’04]
— candidate pairs of equivalent circuit nodes through random simulation

— more robust than BDDs, particularly when used as simplifier for BMC

28

Automatic Test Pattern Generation (ATPG)

e need to test chips after manufacturing
— manufacturing process introduces faults (< 100% vyield)
— faulty chips can not be sold (should not)

— generate all test patterns from functional logic description

e simplified failure model
— at most one wire has a fault

— fault results in fixing wire to a logic constant:

“stuck at zero fault” (s-a-0) “stuck at one fault” (s-a-1)

29

ATPG with D-Algorithm
[Roth'66]

e adding logic constants D and D allows to work with only one circuit

O represents 0O in fault free and
1 represents 1 in fault free and
D represents 1 in faultfree and

D represents 0O in faultfree and

in faulty circuit
in faulty circuit
In faulty circuit

in faulty circuit

e otherwise obvious algebraic rules (propagation rules)

1IAD=D oAnD=0 DAD=0 etc.

e new conflicts: e.g. variable/wire can not be 0 and D at the same time

30

Fault Injection for S-A-0 Fault

assume opposite value 1 before fault

(both for fault free and faulty circuit)

inputs

assume difference value D after fault

output

31

D-Algorithm Example: Fault Injection

32

D-Algorithm Example: Path Sensitation

33

D-Algorithm Example: Propagation

test vector

(c,t,e)= (1,1,0)

34

Justification

generate partial input vector to justify 1

output

only backward propagation , remaining unassigned inputs can be arbitrary

35

Observation

extend partial input vector to propagate D or D to ouput

-]

inputs D output

forward propagation of D and D, backward propagation of 0 and 1

36

Dominators and Path Sensitation

e idea: use circuit topology for additional necessary conditions

— assign and propagate these conditions after fault injection

e gate dominates fault iff every path from fault to output goes through it

— more exactly we determine wires (input to gates) that dominate a fault

e If Input dominates a fault assign other inputs to non-controlling value

s—a-0 dominator

implied
1 D P

SN
_

only path to ouput

1
implied non-controlling value

37

Redundancy Removal with D-Algorithm: Fault Injection

38

Redundancy Removal with D-Algorithm: Path Sensitation

39

Redundancy Removal with D-Algorithm: 1st Propagation

40

Redundancy Removal with D-Algorithm: 2nd Propagation

0

C L 4

i
elL
—{ >0

Redundancy Removal with D-Algorithm: Untestable

0 0
C L
1 | conflict

i
elL
—{ >0

Redundancy Removal with D-Algorithm: Assume Fault

DU

43

Redundancy Removal with D-Algorithm: Simplified Circuit

: — N
J

)
_

44

Redundancy Removal for SAT

e assume CNF is generated via Tseitin transformation from formula/circuit
— formula = model constraints + negation of property
— CNF consists of gate input/output consistency constraints

— plus additional unit forcing output o of whole formula to be 1

e remove redundancy in formula under assumptiono=1

e propagation of D or D to o does not make much sense
— not interestedino=0

— check simply for unsatisfiability = noneedforD,D (!?)

45

Variable Instantiation

[AnderssonBjesseCookHanna DAC’'02] and Oepir SAT solver

e satisfiability preserving transformation

e motivated by original pure literal rule :
— If a literal | does not occur negatively in CNF f

— thenreplace | by 1in f (continue with f[l — 1])

e generalization to variable instantiation :
—if fl—0 — f{l—1] isvalid

— thenreplace | by 1in f (continue with f[l — 1])

46

Why Is Variable Instantiation a Generalization of the Pure Literal Rule?
Let f=f AfgAfy with
f” 1 does not occur
fo | occurs negatively
f1 | occurs positively
further assume (assumption of pure literal rule)
fo=1
then

fl—0 o fAfl—0 = f o fl—1

a7

Variable Instantiation Implementation

We have
fo[l—1]
n
fll —1 f'A 1l = 1] A ol — 1 f'Afoll — 1 f'A NG
1—1 < 1[;] ol—1 < ol—1 < _/_\.

and since f[l — 0] = f’ we only need show the validity of
fl — O] /\ C;

which is equivalent to the unsatisfiability of
fll -0 AC fori=1...n
which again is equivalent to the unsatisfiability of
fAITAG fori=1...n

This can be done directly on the CNF and needs n unsatisfiability checks.

48

Variable Instantiation for Tseitin Encodings

(avce) (cve)
(bvc) (dve)
(avbvc) (cvdVve)
o—)
d
= TATA VD) } = add cas unit
~ f ATA (dVe)

requires two satisfiability checks while ATPG for ¢ s-a-1 needs just one run

49

Stalmarck’s Method and Recursive Learning

e orginally Stalmarck’s Method works on “sea of triplets” [Stalmarck’89]

X=X1@...@Xn with @ boolean operator
— equivalence reasoning + structural hashing + test rule

— testrule translated to CNF f: f = (BCP(f AX)NBCP(f AX))

add to f units that are implied by both cases x and X

e Recursive Learning [KunzPradhan 90ties]
— originally works on circuit structure
— 1dea Is to analyze all ways to justify a value, intersection is implied

— translated to CNF f which contains clause (I1V...Vlp)

BCP on all |; seperately and add intersection of derived units

50

Further CNF Simplification Techniques

e failed literals, various forms of equivalence reasoning

e HyperBinaryResolution [BacchusWinter]
— binary clauses obtained through hyper resolution

— avoid adding full transitive closure of implication chains

e Variable and Clause Elimination

— via subsumption and clause distribution, and related techniques

see our SAT’05 paper and talk by Niklas Een for further references

— autarkies and blocked clauses [Kullman]

51

Summary Circuit based Simplification vs. CNF simplification

e circuit reasoning/simplification can use structure of circuit
— graph structure (dominators)
— notion of direction (forward and backward propagation)

— partial models (some inputs do not need to be assigned)

e CNF simplification does not rely on circuit structure

— ortogonal: can for instance remove individual clauses

e adapt ideas from circuit reasoning to SAT

(e.g. avoid multiple SAT checks for redundancy removal in CNF)

52

QBF for Hardware Verification and Synthesis

e rectification problems (actually a synthesis problem)

3p[vilg(i, p) = s(i)]]
with parameters p, inputs i, generic circuit g, and specification s

QBF solvers only used in [SchollBecker DAC’01] otherwise BDDs
e games, open systems, non-deterministic planning applications?

e model checking

— termination check as in classical (BDD based) model checking

(only one alternation)

— acceleration as in PSPACE completeness for QBF proof

(at most linear number of alternations in number of state bits n)

53

Decisions Procedures for Verification using SAT

specific workshop: Satisfiability modulo Theories (SMT'05)

e examples
— processor verification [BurchDill CAV'94], [VelevBryant JSC'03]

— translation validation [PnueliStrichmanSiegel’ 98]

eager approach: translate into SAT

e lazy approach
— augment SAT solver to handle non-propositional constraints

— In each branch: SAT part satisfiable, check non-propositional theory

54

Examples for Using SAT in Software Verification

e [JacksonVaziri ISSTA'00] Alloy
— bounded model checking of OO modelling language Alloy

— checks properties of symbolic simulations with bounded heap size

e [KroeningClarkeYorav DAC03] CBMC
— targets equivalence checking of hardware models

— bounded model checking of C resp. Verilog programs

e [XieAlken POPLO5] Saturn
— LINT for lock usage in large C programs (latest Linux kernel)

— neither sound nor complete, but 179 bugs out of 300 warnings

55

QBF In Software Verification
[CookKroningSharygina — SMC’05]

e model: asynchronous boolean programs

— parallel version of those used in SLAM, BLAST or MAGIC

e symbolic representation of set of states

— related work uses BDDs, [CookKroningSharygina] boolean formulas

e termination check for reachability (partially explicit)
— trivial with BDDs as symbolic representation

— QBF decision procedure for boolean formulas <« QUANTOR

e SAT/QBF version seems to scale much better than BDDs

56

Summary

e applications fuel interest in SAT/QBF
— learn from specific techniques ...

— ... and generalize

e SAT/QBF as core technologies for verification

— simplified setting in SAT (CNF)

+ 0N one hand restricts what can be done
x focus on generic techniques

x efficient implementations

57

