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Overview

• Hardware Verification Problems

– Model Checking

– Equivalence Checking

• Circuit vs. SAT Simplification Techniques

– redundancy removal with D-algorithm vs. variable instantiation

• QBF for Verification
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Model Checking

• explicit model checking [ClarkeEmerson’82], [Holzmann’91]

– program presented symbolically (no transition matrix)

– traversed state space represented explicitly

– e.g. reached states are explicitly saved bit for bit in hash table

⇒ State Explosion Problem (state space exponential in program size)

• symbolic model checking [McMillan Thesis’93], [CoudertMadre’89]

– use symbolic representations for sets of states

– originally with Binary Decision Diagrams [Bryant’86]

– Bounded Model Checking using SAT [BiereCimattiClarkeZhu’99]
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Forward Fixpoint Algorithm: Initial and Bad States

I B
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Forward Fixpoint Algorithm: Step 1

I B
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Forward Fixpoint Algorithm: Step 2

I B
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Forward Fixpoint Algorithm: Step 3

I B
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Forward Fixpoint Algorithm: Bad State Reached

I B
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Forward Fixpoint Algorithm: Termination, No Bad State Reachable

I B
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Forward Least Fixpoint Algorithm for Model Checking Safety

initial states I , transition relation T, bad states B

model-checkµ
forward (I , T, B)

SC = /0; SN = I ;

while SC 6= SN do
SC = SN;

if B∩SC 6= /0 then
return “found error trace to bad states”;

SN = SC∪ Img(SC) ;

done ;

return “no bad state reachable”;

symbolic model checking represents set of states in this BFS symbolically
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BDDs as Symbolic Representation

• BDDs are canonical representation for boolean functions

– states encoded as bit vectors ∈ IBn

– set of states S⊆ IBn as BDDs for characteristic function fS: IBn→ IB

fS(s) = 1 ⇔ s∈ S

• for all set operations there are linear BDD operations

– except for Img which is exponential (often also in practice)

s∈ Img( f ) ⇔ ∃ t ∈ IBn[ f (s)∧T(s, t)]

• variable ordering has strong influence on size of BDDs

• conjunctive partitioning of transition relation is a must
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Termination Check in Symbolic Reachability is in QBF

• checking SC = SN in 2nd iteration results in QBF decision problem

∀s0,s1,s2[I(s0)∧T(s0,s1)∧T(s1,s2)→ I(s2)∨∃t0[I(t0)∧T(t0,s2)]]

• not eliminating quantifiers results in QBF with one alternation

– note: number of necessary iterations bounded by 2n

• circuit reachability is PSPACE complete [Savitch’70]

T2·i(s, t) :≡ ∃m[∀c[∃ l , r[(c→ (l , r) = (s,m))∧(c→ (l , r) = (m, t))∧T i(l , r)]]]

• so why not forget about termination and concentrate on bug finding?

⇒ Bounded Model Checking
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Bounded Model Checking (BMC)
[BiereCimattiClarkeZhu TACAS’99]

• look only for counter example made of k states (the bound)

∨ ∨ ∨ ∨p¬ p¬ p¬ p¬p¬

0s s1 l+1s sksl

or
p¬ p¬ p¬ p¬p¬

0s sls1 l+1s sk

• simple for safety properties Gp (e.g. p = ¬B)

I(s0) ∧ (
k−1̂

i=0

T(si,si+1)) ∧
k_

i=0

¬p(si)

• harder for liveness properties Fp

I(s0) ∧ (
k−1̂

i=0

T(si,si+1)) ∧ (
k_

l=0

T(sk,sl)) ∧
k̂

i=0

¬p(si)
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Bounded Model Checking State-of-the-Art

• increase in efficiency of SAT solvers (i.e. zChaff) helped a lot

• SAT more robust than BDDs in bug finding

(shallow bugs are easily reached by explicit model checking or testing)

• better unbounded but still SAT based model checking algorithms

– see for instance invited talk by Ken McMillan at SAT’04 in Vancouver

• 3rd Intl. Workshop on Bounded Model Checking (BMC’05)

(in exactly 3 weeks, almost same place)

• other logics and better encodings
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Original Translation for LTL and Lasso Witnesses
[BiereCimattiClarkeZhu TACAS’99]

on 1st look seems exponential
(in formula size | f |)

on 2nd look cubic
(in k and linear in | f |)

on 3rd look quadratic
(associativity)

on 4th look linear
(adhoc simplifications)

but binary operators U, R
make it at least quadratic again

l [p]ik := p(si)

l [¬p]ik := ¬p(si)

l [ f ∧g]ik := l [ f ]ik∧ l [g]ik

l [X f ]ik := l [ f ]
next(i)
k

l [G f ]ik :=
kV

j=min(l,i)
l [ f ]

j
k

l [F f ]ik :=
kW

j=min(l,i)
l [ f ]

j
k

with

next(i) :=
{

i +1 if i < k
l else
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Linear Circuit for Counterexample to Infinitely Often

original translation of FGp after applying associativity and sharing

p s3)(

p s2)(

p s1)(

p s0)(

L4

L1

L2

L3

(could be further simplified)
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Simple and Linear Translation for LTL
[LatvalaBiereHeljankoJunttila FMCAD’04]

evaluate semantics on loop in two iterations

〈 〉= 1st iteration [ ] = 2nd iteration

:= i < k i = k

[p]i p(si) p(sk)

[¬p]i ¬p(si) ¬p(sk)

[X f ]i [ f ]i+1
Wk

l=0(T(sk,sl)∧ [ f ]l)

[G f ]i [ f ]i ∧ [G f ]i+1
Wk

l=0(T(sk,sl)∧〈G f 〉l)

[F f ]i [ f ]i ∨ [F f ]i+1
Wk

l=0(T(sk,sl)∧〈F f 〉l)

〈G f 〉i [ f ]i ∧〈G f 〉i+1 [ f ]k
〈F f 〉i [ f ]i ∨〈F f 〉i+1 [ f ]k
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Simple and Linear Translation for LTL cont.

• semantic of LTL on single path is the same as CTL semantic

– symbolically implement fixpoint calculation for (A)CTL

– fixpoint computation terminates after 2 iterations (not k)

– boolean fixpoint equations ⇒ boolean graphs

• easy to implement and optimize, fast

– generalized to past time [LatvalaBiereHeljankoJunttila VMCAI’05]

– minimal counter examples for past time [SchuppanBiere TACAS’05]

– incremental (and complete) [LatvalaHeljankoJunttila CAV’05]

17



Why Not Just Try to Satisfy Boolean Equations directly?

recursive expansion Fp ≡ p∨XFp

p

checking Gp implemented as search for witness for Fp

Kripke structure: single state with self loop in which p does not hold

incorrect translation of Fp:

model constraints︷ ︸︸ ︷
I(s0)∧T(s0,s0) ∧ ([Fp]↔ p(s0)∨ [Fp])︸ ︷︷ ︸

translation

∧
assumption︷︸︸︷

[Fp]︸︷︷︸
x

since it is satisfiable by setting x = 1 though p(s0) = 0

(x fresh boolean variable introduced for [Fp])
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Equivalence Checking

a_0 = (b_0 + c_0) * (!b_0 + !c_0)
a_1 = . . .

a = b + c

. . .

(RTL = Register Transfer Level)

RTL

B1 = . . .
A0 = B0*!C0 + !B0*C0

Equivalence Checker

Compare
Gate−Level

. . .

Synthesis Tool

Compiler

Synthesis + Optimization

(internal Synthesis)
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Equivalence Checking in the Large

foptimizedf

common
structure

shared input variables

equivalent ?
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Equivalence Checking in the Large

foptimizedf

shared input variables

internal functional
equivalences
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Equivalence Checking in the Large

foptimizedf

functional
overlap

shared input variables

22



Equivalence Checking in the Large

foptimizedf

shared input variables
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Equivalence Checking in the Large

foptimizedf

shared input variables
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Equivalence Checking in the Large

foptimizedf

shared input variables
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Equivalence Checking in the Large

foptimizedf

shared input variables
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Equivalence Checking in the Large

foptimizedf =

shared input variables
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Equivalence Checking

• BDD-Sweeping [KühlmannKrohm DAC’97]

– levelized, resource driven construction of small overlapping BDDs

– BDDs are mapped back to circuit nodes

– circuit nodes with same BDD are functionally equivalent

• can be combined with top-down approach (e.g. backward chaining)

– interleave BDD building with circuit based SAT solver

• recently SAT-Sweeping [Kühlmann ICCAD’04]

– candidate pairs of equivalent circuit nodes through random simulation

– more robust than BDDs, particularly when used as simplifier for BMC
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Automatic Test Pattern Generation (ATPG)

• need to test chips after manufacturing

– manufacturing process introduces faults (< 100% yield)

– faulty chips can not be sold (should not)

– generate all test patterns from functional logic description

• simplified failure model

– at most one wire has a fault

– fault results in fixing wire to a logic constant:

“stuck at zero fault” (s-a-0) “stuck at one fault” (s-a-1)
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ATPG with D-Algorithm
[Roth’66]

• adding logic constants D and D allows to work with only one circuit

0 represents 0 in fault free and 0 in faulty circuit

1 represents 1 in fault free and 1 in faulty circuit

D represents 1 in fault free and 0 in faulty circuit

D represents 0 in fault free and 1 in faulty circuit

• otherwise obvious algebraic rules (propagation rules)

1∧D≡ D 0∧D≡ 0 D∧D≡ 0 etc.

• new conflicts: e.g. variable/wire can not be 0 and D at the same time
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Fault Injection for S-A-0 Fault

assume opposite value 1 before fault

(both for fault free and faulty circuit)

outputinputs
s−a−0

D1

assume difference value D after fault
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D-Algorithm Example: Fault Injection

c

t

e
o

s−a−0

1 D
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D-Algorithm Example: Path Sensitation

c

t

e
o

s−a−0

1 D

0

0
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D-Algorithm Example: Propagation

c

t

e
o

s−a−0

1 D

0

0

D
1

1

0

0

test vector (c, t,e) = (1,1,0)
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Justification

generate partial input vector to justify 1

outputinputs
s−a−0

D1
X

0

1
1

1

only backward propagation , remaining unassigned inputs can be arbitrary
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Observation

extend partial input vector to propagate D or D to ouput

outputinputs
s−a−0

D1
X

0

1
1

1

0

X
1

D
D

0

1

forward propagation of D and D, backward propagation of 0 and 1
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Dominators and Path Sensitation

• idea: use circuit topology for additional necessary conditions

– assign and propagate these conditions after fault injection

• gate dominates fault iff every path from fault to output goes through it

– more exactly we determine wires (input to gates) that dominate a fault

• if input dominates a fault assign other inputs to non-controlling value

s−a−0 dominator
1 D

D

1

implied

implied non−controlling value

only path to ouput
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Redundancy Removal with D-Algorithm: Fault Injection

s−a−0

1 D

c

t

e
o
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Redundancy Removal with D-Algorithm: Path Sensitation

c

t

e
o

s−a−0

1 D

0

0
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Redundancy Removal with D-Algorithm: 1st Propagation

c

t

e
o

s−a−0

1 D

0

0

D
1

1
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Redundancy Removal with D-Algorithm: 2nd Propagation

c

t

e
o

s−a−0

1 D

0

0

D
1

1

0

0
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Redundancy Removal with D-Algorithm: Untestable

c

t

e
o

s−a−0

1 D

0

0

D
1

1

0

00
1 conflict
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Redundancy Removal with D-Algorithm: Assume Fault

c

t

e
o0
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Redundancy Removal with D-Algorithm: Simplified Circuit

c

t

e
o
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Redundancy Removal for SAT

• assume CNF is generated via Tseitin transformation from formula/circuit

– formula = model constraints + negation of property

– CNF consists of gate input/output consistency constraints

– plus additional unit forcing output o of whole formula to be 1

• remove redundancy in formula under assumption o = 1

• propagation of D or D to o does not make much sense

– not interested in o = 0

– check simply for unsatisfiability ⇒ no need for D, D (!?)
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Variable Instantiation
[AnderssonBjesseCookHanna DAC’02] and Oepir SAT solver

• satisfiability preserving transformation

• motivated by original pure literal rule :

– if a literal l does not occur negatively in CNF f

– then replace l by 1 in f (continue with f [l 7→ 1])

• generalization to variable instantiation :

– if f [l 7→ 0]→ f [l 7→ 1] is valid

– then replace l by 1 in f (continue with f [l 7→ 1])

46



Why is Variable Instantiation a Generalization of the Pure Literal Rule?

Let f ≡ f ′∧ f0∧ f1 with

f ′ l does not occur

f0 l occurs negatively

f1 l occurs positively

further assume (assumption of pure literal rule)

f0≡ 1

then

f [l 7→ 0] ⇔ f ′∧ f1[l 7→ 0]
!⇒ f ′ ⇔ f [l 7→ 1]
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Variable Instantiation Implementation

We have

f [l 7→ 1] ⇔ f ′ ∧ f1[l 7→ 1]︸ ︷︷ ︸
1

∧ f0[l 7→ 1] ⇔ f ′∧ f0[l 7→ 1] ⇔ f ′∧

f0[l 7→1]︷ ︸︸ ︷
n̂

i=1

Ci

and since f [l 7→ 0]⇒ f ′ we only need show the validity of

f [l 7→ 0] →
n̂

i=1

Ci

which is equivalent to the unsatisfiability of

f [l 7→ 0] ∧ Ci for i = 1. . .n

which again is equivalent to the unsatisfiability of

f ∧ l ∧ Ci for i = 1. . .n

This can be done directly on the CNF and needs n unsatisfiability checks.
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Variable Instantiation for Tseitin Encodings

(a∨c)

(b∨c)

(a∨b∨c)

(c∨e)

(d∨e)

(c∨d∨e)

a

b
d

c
e

6|= f ∧ c ∧ (a∨b)

6|= f ∧ c ∧ (d∨e)

 ⇒ add c as unit

requires two satisfiability checks while ATPG for c s-a-1 needs just one run
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Stålmarck’s Method and Recursive Learning

• orginally Stålmarck’s Method works on “sea of triplets” [Stålmarck’89]

x = x1@. . .@xn with @ boolean operator

– equivalence reasoning + structural hashing + test rule

– test rule translated to CNF f : f ⇒ (BCP( f ∧x)∩BCP( f ∧x))

add to f units that are implied by both cases x and x

• Recursive Learning [KunzPradhan 90ties]

– originally works on circuit structure

– idea is to analyze all ways to justify a value, intersection is implied

– translated to CNF f which contains clause (l1∨ . . .∨ ln)

BCP on all l i seperately and add intersection of derived units
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Further CNF Simplification Techniques

• failed literals, various forms of equivalence reasoning

• HyperBinaryResolution [BacchusWinter]

– binary clauses obtained through hyper resolution

– avoid adding full transitive closure of implication chains

• Variable and Clause Elimination

– via subsumption and clause distribution, and related techniques

see our SAT’05 paper and talk by Niklas Éen for further references

– autarkies and blocked clauses [Kullman]
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Summary Circuit based Simplification vs. CNF simplification

• circuit reasoning/simplification can use structure of circuit

– graph structure (dominators)

– notion of direction (forward and backward propagation)

– partial models (some inputs do not need to be assigned)

• CNF simplification does not rely on circuit structure

– ortogonal: can for instance remove individual clauses

• adapt ideas from circuit reasoning to SAT

(e.g. avoid multiple SAT checks for redundancy removal in CNF)
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QBF for Hardware Verification and Synthesis

• rectification problems (actually a synthesis problem)

∃p[∀i[g(i, p) = s(i)]]

with parameters p, inputs i, generic circuit g, and specification s

QBF solvers only used in [SchollBecker DAC’01] otherwise BDDs

• games, open systems, non-deterministic planning applications?

• model checking

– termination check as in classical (BDD based) model checking

(only one alternation)

– acceleration as in PSPACE completeness for QBF proof

(at most linear number of alternations in number of state bits n)
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Decisions Procedures for Verification using SAT

• specific workshop: Satisfiability modulo Theories (SMT’05)

• examples

– processor verification [BurchDill CAV’94], [VelevBryant JSC’03]

– translation validation [PnueliStrichmanSiegel’98]

• eager approach: translate into SAT

• lazy approach

– augment SAT solver to handle non-propositional constraints

– in each branch: SAT part satisfiable, check non-propositional theory
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Examples for Using SAT in Software Verification

• [JacksonVaziri ISSTA’00] Alloy

– bounded model checking of OO modelling language Alloy

– checks properties of symbolic simulations with bounded heap size

• [KroeningClarkeYorav DAC03] CBMC

– targets equivalence checking of hardware models

– bounded model checking of C resp. Verilog programs

• [XieAiken POPL’05] Saturn

– LINT for lock usage in large C programs (latest Linux kernel)

– neither sound nor complete, but 179 bugs out of 300 warnings
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QBF in Software Verification
[CookKröningSharygina – SMC’05]

• model: asynchronous boolean programs

– parallel version of those used in SLAM, BLAST or MAGIC

• symbolic representation of set of states

– related work uses BDDs, [CookKröningSharygina] boolean formulas

• termination check for reachability (partially explicit)

– trivial with BDDs as symbolic representation

– QBF decision procedure for boolean formulas ⇐ QUANTOR

• SAT/QBF version seems to scale much better than BDDs
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Summary

• applications fuel interest in SAT/QBF

– learn from specific techniques . . .

– . . . and generalize

• SAT/QBF as core technologies for verification

– simplified setting in SAT (CNF)

∗ on one hand restricts what can be done

∗ focus on generic techniques

∗ efficient implementations
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