Minimizing Learned Clauses

Niklas Sörensson ${ }^{1} \quad$ Armin Biere ${ }^{2}$
${ }^{1}$ Chalmers University of Technology, Göteborg, Sweden
2 Johannes Kepler University, Linz, Austria

SAT'09

Twelfth International Conference on
Theory and Applications of Satisfiability Testing

Swansea, Wales, United Kingdom

$$
(\bar{d} \vee \bar{g} \vee \bar{l} \vee \bar{r} \vee \bar{h} \vee \bar{i})
$$

[BeameKautzSabharwal-JAIR'04] variation, independently discovered

Two step algorithm:

1. mark all variables in 1 st UIP clause
2. remove literals with all antecedent literals also marked

Correctness:

- removal of literals in step 2 are self subsuming resolution steps.
- implication graph is acyclic.

Confluence: produces a unique result.

[MiniSAT 1.13]

Four step algorithm:

1. mark all variables in 1st UIP clause
2. for each candidate literal: search implication graph
3. start at antecedents of candidate literals
4. if search always terminates at marked literals remove candidate

Correctness and Confluence as in local version!!!

Optimization: terminate early with failure if new decision level is "pulled in"

		solved instances		time in hours		space in GB		out of memory		deleted literals
MiniSATwithpreprocessing	recur	788	9\%	170	11\%	198	49\%	11	89\%	
	local	774	7\%	177	8\%	298	24\%	72	30\%	16\%
	none	726		192		392		103		
MiniSATwithoutpreprocessing	recur	705	13\%	222	8\%	232	59\%	11	94\%	37\%
	local	642	3\%	237	2\%	429	24\%	145	26\%	15\%
	none	623		242		565		196		
PicoSatwithpreprocessing	recur	767	10\%	182	13\%	144	45\%	10	60\%	31\%
	local	745	6\%	190	9\%	188	29\%	10	60\%	15\%
	none	700		209		263		25		
$\begin{gathered} \text { PICOSAT } \\ \text { without } \\ \text { preprocessing } \end{gathered}$	recur	690	6\%	221	8\%	105	63\%	10	68\%	33\%
	local	679	5\%	230	5\%	194	31\%	10	68\%	14\%
	none	649		241		281		31		
altogether	recur	2950	9\%	795	10\%	679	55\%	42	88\%	34\%
	local	2840	5\%	834	6\%	1109	26\%	237	33\%	15\%
	none	2698		884		1501		355		

10 runs for each configuration with 10 seeds for random number generator

	MiniSAT with preprocessing					
	seed	solved	time	space	mo	del
1. recur	8	82	16	19	1	33\%
2. recur	6	81	17	20	1	33\%
3. local	0	81	16	29	7	16\%
4. local	7	80	17	29	8	15\%
5. recur	4	80	17	20	1	33\%
6. recur	1	79	17	20	1	33\%
7. recur	9	79	17	20	1	34\%
8. local	5	78	18	29	7	16\%
9. local	1	78	17	29	6	16\%
10. recur	0	78	17	20	1	34\%
11. recur	5	78	17	19	1	33\%
12. local	3	77	18	31	7	16\%
13. local	8	77	18	30	8	16\%
14. recur	7	77	17	20	1	34\%
15. recur	3	77	17	20	1	34\%
16. recur	2	77	17	20	2	33\%
17. none	7	76	19	39	9	0\%
: :	:	:	:	:	:	:

- first proper description of original MiniSAT 1.13 minimization algorithm
- extensive experimental results:
minimization is effective and efficient
- substantial statistical variance in running SAT solvers
- how to use clauses not in the implication graph
[AudemardBordeauxHamadiJabbourSais SAT'09] ...
- how to use intermediate resolvents
[HanSomenzi SAT'10] ...
- how to extract resolution proofs directly

