
Evaluating CDCL Variable Scoring Schemes

Armin Biere Andreas Fröhlich

Johannes Kepler University, Linz, Austria

18th International Conference on

Theory and Applications of Satisfiability Testing

SAT’15

The University of Texas at Austin
Austin, TX, USA

Wednesday, 24th September, 2015

Motivation 1

VSIDS/EVSIDS important

empirically

no formal argument “why it works”

reconsider simpler alternatives

particularly variable move to front schemes (VMTF)

requires careful data structure design

formalization of these heuristics

empirical evaluation

so a step towards “Trying to Understand the Power of VSIDS”

Evaluating CDCL Variable Scoring Schemes @ SAT’15

Decision Heuristics 2

decision heuristics consist of

variable selection: which variable to assign next?

phase selection: assign variable to which phase (true or false)?

phase saving [PipatsrisawatDarwiche’07]

select phase to which variable was assigned before

initialized by static one-side heuristics [JeroslowWang’90]

very effective and thus default in state-of-the-art solvers

we consider only variable selection as decision heuristic for this study

clause based heuristics less effective (BerkMin, CMTF)

same applies to literal based heuristics (using literal scores)

variable selection and decision heuristic boils down to

compute and maintain heuristic scores for variables

select variable with highest score

Evaluating CDCL Variable Scoring Schemes @ SAT’15

Scores in CDCL Loop 3

for (;;) {

if (bcp ()) { // [X] reorder assigned variables

// eagerly is considered too costly

if (restarting ())

restart (); // [E] reuse trail if possible thus

// need to know next decision variable

// [C] unassigning variables might

// lead to reordering to support (B)

if (!decide ()) // [B] find next decision variable

return SAT; // (unassigned one with highest score)

} else {

if (!analyze ()) // [A] learn clause from conflict and bump

return UNSAT; // relevant variables (increase score)

} // [D] optionally rescore all variables

} // (explicitly or to avoid overflow)

// [C] backtrack and unassign variables

Evaluating CDCL Variable Scoring Schemes @ SAT’15

Variable Scoring Schemes 4

how to compute scores

static or dynamic

bump variables: when to increase scores and by how much

rescore variables: when to decrease scores and by how much

state-of-the-art: VSIDS (from Chaff)

more precisely the exponential variant (EVSIDS) of MiniSAT

data structures for finding decision variables

eager or lazy update of “order”

state-of-the-art: priority queue of variables ordered by score (MiniSAT)

data structure depends on how scores are computed and vice versa

Evaluating CDCL Variable Scoring Schemes @ SAT’15

Zero, First and Second Order Variable Scoring Schemes 5

zero order scheme = static scores

computed for instance once during preprocessing

still needs search for “best” unassinged variable

only total orders considered so far

first order schemes = dynamic but state less

for instance: score = pos occs × neg occs

independent of how search reached current branch / search node

might be quite expensive to compute / update (linear in CNF size)

second order schemes: variable score depends on history of search

first order + learning ⇒ second order

but can also be used to speed up search for “best” variable

goal is logarithmic or even constant algorithm for variable selection

Evaluating CDCL Variable Scoring Schemes @ SAT’15

VSIDS 6

VSIDS appeared in seminal Chaff paper from Princeton (2001)

bump variables occurring in learned clauses

bumping means incrementing an integer VSIDS score
current state-of-the-art: bump all variables used to derive learned clause

thus independent of state of clauses (satisfied or not)

rescoring gives focus on recently used variables

scores are “decayed”, e.g., originally divided by two every 256th conflict

“low pass filter” on “use frequency” of variables
http://youtu.be/MOjhFywLre8

search for next unassigned variable with largest score

keeps an array of variables sorted by score

only re-sorts it w.r.t. score during rescoring (every 256th conflict)

uses right-most unassigned variable, thus original implementation imprecise

Evaluating CDCL Variable Scoring Schemes @ SAT’15

http://youtu.be/MOjhFywLre8

ZChaff’s Optimized Search for Next Decision Variable 7

ZChaff’s implementation actually sorted the other way around, largest score first

idx:

val:

scr:

13

0

x

idx:

val:

scr:

11

213

0

idx:

val:

scr:

2

145

x

idx:

val:

scr:

7

90

1

idx:

val:

scr:

8

301

1

array of variables sorted by score

next−search’ next−search
select 2

basically start search at largest score variable
scan array towards smaller positions with smaller score

until unassigned variable is found, e.g., with idx 2 in the example

easily leads to accumulated quadratic search cost (for decisions)

avoided by “caching” position of last found decision variable in “next-search”
next search can start from there

if variable right to next-search becomes assigned move next-search

no update of next-search during bumping (in ZChaff)

Evaluating CDCL Variable Scoring Schemes @ SAT’15

JeruSAT 8

original ZChaff implementation imprecise in three aspects

integer scores

effect of bumping not immediate

selected unassigned variable not necessarily the one with largest score

JeruSAT [Nadel’02] partial fix was to

array of doubly linked lists of variables with same score

was still imprecise since it still used integer scores

costly eager update of data structure during (un)assigning, bumping and rescoring

scr: 3

scr: 2

scr: 1

scr: 0

idx: 5 val: 1

idx: 3 val: 0 idx: 2 val: x idx: 4 val: 1

Evaluating CDCL Variable Scoring Schemes @ SAT’15

Variable Move To Front 9

Siege SAT solver [Ryan’04] used variable move to front (VMTF)

bumped variables moved to head of doubly linked list

search for unassigned variable starts at head

variable selection is an online sorting algorithm of scores

classic “move-to-front” strategy achieves good amortized complexity

original implementation severely restricted

only moved a subset of bumped variables

details about caching the search not described
no source code published either

not exactly the same as VSIDS

as consequence VMTF not used in state-of-the-art solvers

Evaluating CDCL Variable Scoring Schemes @ SAT’15

MiniSAT’s Exponential VSIDS (EVSIDS) from 2004 10

floating point scores

allows fine grained rescore at every conflict

consider multiplying by f = 0.9 every score at each conflict

actually, instead of updating scores of all variables (at every conflict)

only increase score of bumped variables by gi

with i the conflict-index, and g = 1/ f

non-bumped variables not touched

priority queue of variables ordered by score

implemented as binary heap with update (bubble up)

lazy assigned variable removal

remove largest score variable from heap until unassigned one found

put unassigned variables not on the heap back (logarithmic complexity)

normalized VSIDS (NVSIDS) ∈ [0,1] as (theoretical) model [Biere’08]

Evaluating CDCL Variable Scoring Schemes @ SAT’15

Summary Variable Scoring Schemes 11

s old score s′ new score

variable score s′ after i conflicts

bumped not-bumped

STATIC s s static decision order
INC s+1 s increment scores

SUMnew s+ i s sum of conflict-indices
VSIDS h256

i · s+1 h256
i · s original implementation in Chaff

NVSIDS f · s+(1− f) f · s normalized variant of VSIDS
EVSIDS s+gi s exponential MiniSAT dual of NVSIDS

ACIDSnew (s+ i)/2 s average conflict-index decision scheme
VMTF i s variable move-to-front

0 < f < 1 g = 1/ f , hm
i = 0.5 if m divides i, hm

i = 1 otherwise

Evaluating CDCL Variable Scoring Schemes @ SAT’15

Fast VMTF Implementation 12

fast simple implementation for caching searches in VMTF
doubly linked list does not have positions as an ordered array

bump = move-to-front = dequeue then insertion at the head

time-stamp list entries with “insertion-time”
insertion-time same role as variable positions in ZChaff

maintained invariant: all variables right of next-search are assigned

requires (constant time) update to next-search while unassigning variables

occassionally (32-bit) time-stamps will overflow: update all time stamps

idx: 5

val: x

time: 6

idx: 3

val: 1

time: 8

idx: 4

val: 0

time: 9

idx: 7

val: x

time: 15

next−search next−search’unassign 9

val: 1

time: 12

idx: 9

idx: 5

val: x

time: 6

idx: 3

val: 1

time: 8

idx: 9

val: 1

time: 12

idx: 7

val: x

time: 15

val: 0

time: 9

next−search

bump 4

idx: 4

Evaluating CDCL Variable Scoring Schemes @ SAT’15

Fast Generic Queue Implementation 13

one implementation working reasonably well for all schemes

our preliminary results presented at BANFF’14 suggested VMTF not working

profiling revealed updating binary heap as a bottle neck

without time-stamping VMTF produces too much overhead

array of variables split into doubly linked list of variables with same score exponent

similar to JeruSAT but for floating points

can be considered as a 1st level of radix / bucket sort

exponent-next-search position as in ZChaff

each doubly linked list sorted by mantissa of scores

mantissa-next-search and insertion-times as in our fast VMTF implementation

key optimization is to add another radix / bucket sort level
based on some bits of the mantissa

see paper for more optimization to avoid otherwise pathological cases

empirically not a bottle-neck anymore

Evaluating CDCL Variable Scoring Schemes @ SAT’15

●●●●●●●
●●●●

●
●●

●●●●
●●●

●●●●
●●●●●●●●

●●●●●●●
●●●●●●●●

●●●●●●●●●
●●●●●●●●

●●●
●
●●●●●

●●●
●●

●●●●●●●●●
●●

●●●
●●●●●

●●
●●

●●
●●●●

●
●
●
●●

●
●●

●
●●

●●●
●

●●
●●

●●
●●●

●●●●
●
●●

●
●●

●●
●

●
●●

●
●
●●●●

●●
●

0 50 100 150

0
20

0
40

0
60

0
80

0
10

00

solved SAT competition 2014 application track instances (ordered by time)

tim
e

(s
ec

)

●●●●●●●
●●●●

●
●●

●●●●
●●●

●●●●
●●●●●●●●

●●●●●●●
●●●●●●●●

●●●●●●●●●
●●●●●●●●

●●●
●
●●●●●

●●●
●●

●●●●●●●●●
●●

●●●
●●●●●

●●
●●

●●
●●●●

●
●
●
●●

●
●●

●
●●

●●●
●

●●
●●

●●
●●●

●●●●
●
●●

●
●●

●●
●

●
●●

●
●
●●●●

●●
●

●

static
inc
sum
vsids
acids
vmtf
evsids

evsids vmtf acids vsids sum inc static
solved 157 152 151 114 58 47 26

unsatisfiable 87 85 82 51 22 17 9
satisfiable 70 67 69 63 36 30 17

reductions (1e3 #) 8 8 8 10 8 8 8
restarts (1e3 #) 5826 6000 5678 4491 2612 2387 5593

rescored (1e3 #) 253 0 0 2338 0 0 0
conflicts (1e6 #) 488 476 444 604 527 540 463

decisions (1e6 #) 3691 3581 3889 4263 2603 2567 21503
simp (1e3 sec) 29.7 30.0 29.4 32.6 34.5 34.1 31.2

search (1e3 sec) 143.1 146.4 147.9 174.9 203.9 209.7 226.7
bump (1e3 sec) 7.8 6.2 16.0 16.9 34.6 37.2 0.0

decide (1e3 sec) 2.3 2.5 2.6 2.8 1.7 1.7 12.9
rescore (1e3 sec) 0.2 0.0 0.0 2.6 0.0 0.0 0.0

●●●●●●●
●●●●

●
●●

●●●●
●●●

●●●●
●●●●●●●●

●●●●●●●
●●●●●●●●

●●●●●●●●●
●●●●●●●●

●●●
●
●●●●●

●●●
●●

●●●●●●●●●
●●

●●●
●●●●●

●●
●●

●●
●●●●

●
●
●
●●

●
●●

●
●●

●●●
●

●●
●●

●●
●●●

●●●●
●
●●

●
●●

●●
●

●
●●

●
●
●●●●

●●
●

0 50 100 150

0
20

0
40

0
60

0
80

0
10

00

solved SAT competition 2014 application track instances (ordered by time)

tim
e

(s
ec

)

●●●●●●●
●●●●

●
●●

●●●●
●●●

●●●●
●●●●●●●●

●●●●●●●
●●●●●●●●

●●●●●●●●●
●●●●●●●●

●●●
●
●●●●●

●●●
●●

●●●●●●●●●
●●

●●●
●●●●●

●●
●●

●●
●●●●

●
●
●
●●

●
●●

●
●●

●●●
●

●●
●●

●●
●●●

●●●●
●
●●

●
●●

●●
●

●
●●

●
●
●●●●

●●
●

●●●●●●●●
●
●●●●

●●●●●
●●●●●●●

●●●
●●●

●●●●●
●●

●●
●
●●●

●●

●

●
●●

●●

●●●●

●●●
●●

●●●

●●

●●
●

●●
●●●

●
●
●
●●●

●●
●
●●

●●
●
●

●
●

●
●●

●●
●

●
●

●●
●

●●●●●●●
●●●

●●●
●●●●●

●●●●●●●
●●●●●●

●●●
●●●●●

●●●●●●
●●●●●●●●

●●●●
●●●●

●●●●●●●●
●●

●●
●●●●

●●●●●
●●●●

●●●
●●●●

●●●
●●

●●●
●●●

●●●
●
●●

●●●
●●

●
●
●

●
●●

●●
●
●●

●
●●

●
●●●

●●
●●

●●●

●

●

●
●
●●

●●
●●

●

●
●

●

static
inc
sum
vsids
acids
vmtf
evsids

●

●

minisat
sc14ayv
glucose.2.3
swdia5bya26
queue
heap

heap queue

swd
ia5by
a26

glu
cose
2.3 sc14ayv

mini
sat

solved 161 156 153 144 119 101
unsatisfiable 90 86 81 79 60 41

satisfiable 71 70 72 65 59 60
reductions (1e3 #) 8 8 59 10 30 —

restarts (1e3 #) 5870 6003 3210 3846 7948 1782
rescored (1e3 #) 241 0 — — 393 —
conflicts (1e6 #) 463 474 650 728 760 1090

decisions (1e6 #) 3874 3566 5868 6818 5002 8388
simp (1e3 sec) 29.2 29.7 0.8 0.8 32.4 2.2

search (1e3 sec) 141.8 144.6 165.4 172.5 164.4 206.5
bump (1e3 sec) 3.8 4.9 — — 3.3 —

decide (1e3 sec) 4.9 2.5 — — 6.4 —
rescore (1e3 sec) 0.1 0.0 — — 0.0 —

Conclusion 18

surveyed and classified variable selection / scoring schemes

and came up with a new one ACIDS (as well as SUM)

EVSIDS, VMTF, ACIDS comparable in performance

with a generic fast queue implementation

VMTF was considered to be obsolete

can be made effective (with less code than EVSIDS)

needs proper optimized implementation: time-stamping with insertion-time

VMTF might be easier to reason about in proof complexity

threads to validity

unclear whether VMTF only works in combination with Glucose restarts
see also our POS’15 paper and talk

benchmark selection in recent SAT competitions controversial

future work: implement simple SAT solver only based on VMTF

Evaluating CDCL Variable Scoring Schemes @ SAT’15

