Translating into SAT

Armin Biere
Johannes Kepler Universitat Linz

SAT’16 Industrial Day

Université de Bordeaux
Bordeaux, France

Saturday, 9th July, 2016

SAT Example: Equivalence Checking if-then-else Chains

optimization of if-then-else chains

original C code optimized C code
if(la && !'b) h(); if(a) £0);
else if('a) g(); else if(b) g();
else f£(); else h{();

4)

if(la) { if(a) £0);

if(!b) h(); = else {

else gl(); if(!'b) h();
} else £(); else g(); }

How to check that these two versions are equivalent?

Compilation

original = if —a A\ —b then h else if —a then g else f
= (—aA-b)NhV —(—a\—b)Nif —a then g else f
= (maA-b)NhV =(maN-D)N(—alg V al f)
optimized = if athen f else if b then g else &

alf VvV —aNif b then g else K
aNfV —aN(bAg NV —bAh)

(maAN=b)ANh NV =(maN—b)AN(—aNg V aNf) < aNfN —aN(bANgV —bAh)

How to Check (In)Equivalence? 3

Reformulate it as a satisfiability (SAT) problem:

Is there an assignment to a,b, f, g, h,
which results in different evaluations of original and optimized?

or equivalently:
|s the boolean formula compile(original) > compile(optimized) satisfiable?

such an assignment would provide an easy to understand counterexample

Note: by concentrating on counterexamples we moved from Co-NP to NP

Note: this is mostly of theoretical interest but in practice there might be big differences if
you have many problems and average expected result is only one (SAT or UNSAT)

SAT Example: Circuit Equivalence Checking

np

}

bV alc

bV alc

equivalent?

a

C

—
e

(avb) N (bVc)

(avb) N (bVc)

SAT

SAT (Satisfiability) the classical NP complete Problem:

Given a propositional formula f over n propositional variables V = {x,y,...}.
Is there an assignmentc:V — {0,1} witho(f) =17

SAT belongs to NP

There is a non-deterministic Touring-machine deciding SAT in polynomial time:

guess the assignment o (linear in n), calculate o(f) (linear in |f])
Note: on a real (deterministic) computer this would still require 2" time
SAT is complete for NP (see complexity / theory class)

Implications for us:
general SAT algorithms are probably exponential in time (unless NP = P)

Conjunctive Normal Form
Definition

a formula in Conjunctive Normal Form (CNF) is a conjunction of clauses

CiINCAN...NCy

each clause C is a disjunction of literals

and each literal is either a plain variable x or a negated variable x.

Example (aVvbVc)A(aVvb)A(ave)

Note 1: two notions for negation: in x and — as in —x for denoting negation.
Note 2: the original SAT problem is actually formulated for CNF

Note 3: SAT solvers mostly also expect CNF as input

CNF Encoding through Negation Normalform

NNF: —in front of variables only, arbitrary nested A and Vv

might need to expand non-monotonic operators into A and Vv
= (a<>b)=(—aN-b)V(aND)
= requires to work with circuit/DAG to avoid exponential explosion

apply De’Morgan rule to push negations down
= —(aAb)=-aV—b —(aVb)=-aN—b

bottom-up CNF translation
= (NiG)N(A;Dj) is already a CNF
= (NiG)V(A;D;) =N, j(C;vDj) “clause distribution” (quadratic)

whole procedure exponential in /A alternation depth

but might produce compact CNFs for small formulas
= (maN-b)V(aAb) = (mava)\(—aVb)\(=bVa)N(=b¥b)

NNF to CNF encoding interesting concept but (not really) used in practice

Why are Sharing / Circuits / DAGs important?

VAN

DAG may be exponentially more succinct than expanded Tree

Examples: adder circuit, parity, mutual exclusion

Parity Example

Roole

parity (Boole a,

tmp0 =
tmpl =
tmp2 =
tmp3 =
tmpd =
tmpd =
tmpb =
tmp’/ =
return

Boole b, Boole ¢, Boole d, Boole e,

Boole f, Boole g, Boole h, Boole 1, Boole 7J)

O
N

. H D Q Hh O QN
%)

'a

'tmpO
'tmpl
'tmp2
'tmp3
'tmp4
'tmp5
'tmp6
'tmp7/

ay

: tmpO;

: tmpl;

1 tmpZ;

1 tmp3;

: tmp4;

: tmpS;

: tmpo6;

: tmp7;

Eliminiate the tmp... variables through substitution.

What is the size of the DAG vs the Tree representation?

How to detect Sharing

= through caching of results in algorithms operating on formulas
(examples: substitution algorithm, generation of NNF for non-monotonic ops)

= when modeling a system: variables are introduced for subformulae
(then these variables are used multiple times in the toplevel formula)

® structural hashing: detects structural identical subformulae
(see Signed And Graphs later)

® equivalence extraction: e.g. BDD sweeping, Stalmarcks Method

10

Example of Tseitin Transformation: Circuit to CNF

CNF
0 >
1=
M D
c—— v

oN(x—=a)N(x—=>c)N(xalc)N ...

oN(XVa)N(XVc)A(xVave)A ...

o N

11

Tseitin Transformation: Input / Output Constraints

Negation: X 4>

<

S (x—=y)AHT—=x)
& (XVY)A(Vx)

Disjunction: x+ (yVz) & (—=x)A(z—=x)A(x— (yVz))
& (GVX)ANEZV)ANEVYVZ)

Conjunction: x+ (yAz) & (x—=>y)Ax—2)A((YAZ) = x)
& (XIVY)ANEVZ)A((yAZ) VX
& XVY)AEVZ)AGTVZVX)

Equivalence: x< (y+oz2) & =< 2)A((y+<2z)—x)
& =2 (=)A=) A (e 2) —x)
S x=20—=2)A A= (z=y)A((y+2) —x)
& (XVIV)AEIVZIVY)A((y < 2) = x)
& (XVIV)AEVZIVI)IA((YAZ)V(IAZ)) — x)
& EVIVOAGEVIVY)A((yAZ) = x)AN((FAZ) = x)
& (XVIVZ)AEXVZIVY)IAGTVZIVX)A(yVzZVX)

12

Optimizations for Tseitin Transformation

m goal is smaller CNF (less variables, less clauses)
m extract multi argument operands (removes variables for intermediate nodes)
= half of AND, OR node constraints can be removed for unnegated nodes

= a node occurs negated if it has an ancestor which is a negation
= half of the constraints determine parent assignment from child assignment

= those are unnecessary if node is not used negated
[PlaistedGreenbaum’86] and then [ChambersManoliosVroon’09]

® structural circuit optimizations like in the ABC tool from Berkeley

® however might be simulated on CNF level
see [JarvisaloBiereHeule-TACAS 10] and our later discussion on blocked clauses

® compact technology mapping based encoding [EenMishchenkoSorensson’07]

13

Buggy Program

int middle (int x, int y, 1int 2z) {
int m = z;
if (v < z) {
if (x < vy)

m = yy
else 1f (x < z2)
m = yy
} else {
if (x > vy)
m =y
else 1f (x > z)
m = X;
}
return m;

}

this program is supposed to return the middle (median) of three numbers

Test Suite for Buggy Program 15

middle
middle
middle
middle
middle
middle

middle

middle
middle
middle

middle
middle
middle

NN DR NN

This black box test suite has to be generated manually.

How to ensure that it covers all cases?

Need to check outcome of each run individually and deter-
mine correct result.

Difficult for large programs.

Better use specification and check it.

Specification for Middle

let a be an array of size 3 indexed from 0 to 2

alil| =xNaljl=yAalk| =z
A

al0] < a[l]Aall] < al2]
A

NN INED

m=all]

median obtained by sorting and taking middle element in the order
coming up with this specification is a manual process

16

Encoding of Middle Program in Logic

int m = z;
if (y < z) { (y<z/\x<y%m:y)
if (x < vy) VAN
mo= vi Y<zAx>yAx<z—m=Yy)
else 1f (x < 2z) A
m o= yj
}e]_se{ (y<Z/\x2y/\XZZ%m:Z)
if (x > vy) A\
n= i (y>zAx>y—>m=y)
else 1f (x > z) A
m = Xy
} (y>zAx<yAx>z7—>m=x)
return m; A\

}

(yZzAx<yAx<z—m=z)

this formula can be generated automatically by a compiler

17

Checking Specification as SMT Problem

let P be the encoding of the program, and S of the specification
program is correct if “P — §” is valid

program has a bug if “P — S” is invalid

program has a bug if negation of “P — S” is satisfiable (has a model)
program has a bug if “P A —5” is satisfiable (has a model)

(y<zAx<y—>m=Yy)
(y<zAXZ>yAx<z—>m=Yy)
(y<zZAX>yAx>z—>m=73)
(y>zAx>y—>m=y)
(y>zAx<yAx>z—>m=x)
(yZzAx<yAx<z—m=gz)
alil =xANaljl=yANalk] =z
al0] <a[l]Aa[l] < al2]
NI

m # a|l]

> > > > > > > > >

18

Encoding with Bit-Vector Logic in SMTLIB2

set-logic QF AUFBV)

declare-fun x () (_ BitVec 32)) (declare-fun y () (_ BitVec 32))

declare-fun z () (_ BitVec 32)) (declare-fun m () (_ BitVec 32))

assert (=> (and (bvulty z) (bvult xy)) (= my)))

assert (bvulty z) (bvuge xy) (bvult x 2)) (= my))) ;fixlast’y’->’%X’
assert (bvult y z) (bvuge x y) (bvuge x z)) (= m z)))
assert (bvuge y z) (bvugt x y)) (= my)))
()
)

VVVVYVYV

(

(

(

(

(

(

(

(assert

(assert (=> (bvuge y z) (bvule x y) (bvule x z)) (= m z)))

(declare-fun i ()(_ BitVec 2)) (declare-fun j ()(_ BitVec 2)) (declare-fun k ()(_ BitVec 2))
(declare-fun a ()(Array (_ BitVec 2) (_ BitVec 32)))
(
(
(
(
(
(
(
(
(
(

AN AN AN N

(
(and
(an
(an
(and (bvuge y z) (bvule x y) (bvugt x z)) (= m x)))
(an

d
d
d
d
(-

assert (and (bvule #b00 i) (bvule i #010) (bvule #b00 j) (bvule j #b10)))
assert (and (bvule #b00 k) (bvule k #b10)))

assert (and (= (select a i) x) (= (select a j) y) (= (select a k) z)))

assert (bvule (select a #b00) (select a #b01)))

assert (bvule (select a #b01) (select a #b10)))

assert (distinct i j k))

assert (distinct m (select a #b01)))

check-sat)

get-model)

exit)

19

$ boolector -m middle32-buggy.smt2
sat
(model
(define—-fun
(define—fun
(define—fun
(define—fun
(define—-fun
(
(
(

32) #b01100101100011101000011000011001

32) #b01100001101010111000011000010101
_ BitVec 32) #b11101011110110111000110100010110

32)

(_ BitVec

(

(

(_ BitVec #001100001101010111000011000010101
(

(

(

_ BitVec

_ BitVec 2) #b01l)
_ BitVec 2) #Db00)
_ BitVec 2) #bl0)

define—fun
define—-fun
define—-fun a (
(a_x0 (_ BitVec 2))) (. BitVec 32)
(ite (= ax0 #b00) #b01100001101010111000011000010101
(ite (= ax0 #b01l) #b01100101100011101000011000011001
(ite (= ax0 #bl0) #b11101011110110111000110100010110
#o000000000000000000000000000000000))))

(
(
(
(
(
(
(

~— S S S S S S

AU H 3N KX

01100101100011101000011000011001
01100001101010111000011000010101
11101011110110111000110100010110
5 01100001101010111000011000010101
28 01 1

29 00 7

30 10 k

31[00] 01100001101010111000011000010101 a
317017 01100101100011101000011000011001 a
31[10] 11101011110110111000110100010110 a
S boolector middle32-fixed.smt?2

unsat

Sw N~
S N KX

~— N N

Intermediate Representations 21

® encoding directly into CNF is hard, so we use intermediate levels:
1. application level
2. bit-precise semantics world-level operations: bit-vector theory
3. bit-level representations such as AlGs or vectors of AlGs
4. CNF

® encoding application level formulas into word-level: as generating machine code
®= word-level to bit-level: bit-blasting similar to hardware synthesis

® encoding “logical” constraints is another story

Bit-Blasting Equality

equality check of 4-bit numbers x,y with one bit result e

leol1 <> ([x3,%2,x1,%0]4 = [y3,¥2:Y1,0)4)

3

eo < /\ (x; <> i)
i—0

eg <> ((x3 <> y3) A (g <> y2) A (x1 <> y1) A (x0 > Y0))

22

Bit-Blasting Inequality

(strict unsigned) inequality check of 4-bit numbers x,y with one bit result ¢

cer (x<y)

[CO]l — ([X3,X2,X1,X()]4 < [y37y27y17y0]4)

LessThan(—1,x,y)
LessThan(i,x,y)

co < X3y3V (x3

cog <> LessThan(3,x,y)
with
il
(—x; Ay V ((x,- <> y;) ALessThan(i — 1,x,y))

¥3)(Xoy2 V (X2 = y2) (X1y1 V (X1 = y1)%131))

23

ifi <0

Bit-Blasting Addition

addition of 4-bit numbers x,y with result s also 4-bit

s=x+Yy

[537527S17SO]4 — [X3,X2,X1,XO]4+ [y37y27y17y0]4

53, -]2 = FullAdder(x3,y3,c2)
52,022 = FullAdder(x2,y,¢1)

(

(
s1,c1l2 = FullAdder(x1,y1,co)
s0,c0la = FullAdder(xg, yo,false)

where

|s,0]p = FullAdder(x,y,i) with
s X XOr y Xxor i

<
o < XAY)VEADV AL = ((x+y+i)>2)

24

And-Inverter-Graphs (AIG) 25

= widely adopted bit-level intermediate representation
= gsee for instance our AIGER format http:/fmv.jku.at/aiger

= used in Hardware Model Checking Competition (HWMCC)

= also used in the structural track in SAT competitions

= many companies use similar techniques

® Dbasic logical operators: conjunction and negation

® DAGs: nodes are conjunctions, negation/sign as edge attribute
bit stuffing: signs are compacitly stored as LSB in pointer

® gutomatic sharing of isomorphic graphs, constant time (peep hole) simplifications

®m oreven SAT sweeping, full reduction, etc ... see ABC system from Berkeley

http://fmv.jku.at/aiger

XOR as AlIG

X Y

negation/sign are edge attributes
not part of node

xxory = (XAY)V(xAY) = (XAY)A(xAY)

26

Bit-Stuffing Techniques for AlGs in C

typedef struct AIG AIG;

struct AIG

{
enum Tag tag;
void *datal2];
int mark, level;
AIG *next;

}i

/* BND, VAR */

/* traversal */
/* hash collision chain */

#define sign_aig(aig) (1 & (unsigned) aiq)

#define not_aig(aig) ((AIG*) (1 ~ (unsigned) aig))

#define strip aig(aig) ((AIG*) (~1 & (unsigned) aig))

#fdefine false_aig ((AIG*) 0)
#fdefine true_aig ((AIG*) 1)

assumption for correctness:

sizeof (unsigned)

== gizeof (voidx)

27

A4

=0 I 4
PR
AR e R
A
oue Ao ne
42X
g e‘\aﬁn <
JIP.0vosCans
o&‘\qu &
-
RO A<
No
.05 0R0RT R
4o (<4
N o
@ . k p 00@4 ORER:
“ - \ @VO@‘. &
@‘@ . . S g @)ﬂ &

4-bit adder
/02N
3
S
PR
o

vector of length 16 shifted by bit-vector of length 4

bit

Structural Hashing and Hyper-Binary Resolution
[HeuledJarvisaloBiere-CPAIOR’1 3]

a<>xN\y b < xN\y
a<b

(avx)(avy)(avivy)(bVx)(bVy)(bViVy)

hyper-binary resolve in multiple binary clauses in “parallel”:

avx avy bViVy bVx bVy aViVy
avb aVb

thus “in principle” hyper-binary resolution can simulate structural hashing, however ...

31

Splatz

400 600 800 1000

200

Lingeling versus Splatz

X ok & e,

XA EOHK K K de ¢ od Fi

400 600

Lingeling

800

1000

(o]

X B e Pk 1

¢ b o n

2d-strip—packing
argumentation

bio

crypto—aes
crypto—des
crypto—gos
crypto—md5
crypto—sha
crypto—vpmc
diagnosis
fpga—routing
hardware—bmc
hardware—bmc-ibm
hardware—cec
hardware—manolios
hardware-velev
planning

scheduling
scheduling—pesp
software—bit—verif
software—bmc
symbolic—simulation
termination

Boolector Architecture

(o),
Eos

parse

rewrite
O1

e

S

_oum 7

O1 = bottom up simplification
O2 = global but almost linear

O3 = normalizing (often non-linear) [defauli]

subst
02 *
slice synthesize
norm *
03 [AIG(Vec) j
Y
encode
Y

SAT Solver

Lingeling / PicoSAT / MiniSAT

" (s

33

Encoding Logical Constraints 34

® Tseitin’s construction suitable for most kinds of “model constraints”
= assuming simple operational semantics: encode an interpreter

= gmall domains: one-hot encoding large domains: binary encoding

= harder to encode properties or additional constraints

= temporal logic / fix-points

= environment constraints

m example for fix-points / recursive equations: x=(aVy), y=(bVx)
= has unique least fix-point x=y=(aVb)
= and unique largest fix-point x=y=rtrue but unfortunately

= only largest fix-point can be (directly) encoded in SAT otherwise need ASP

Example of Logical Constraints: Cardinality Constraints 35

® given a set of literals {/y,...1,}
= constraint the number of literals assigned to true

= Hb,....ln}| >k or [Hh,....ln}|<k or |{li,....In}| =k

= multiple encodings of cardinality constraints
= paive encoding exponential: at-most-two quadratic, at-most-three cubic, etc.

= quadratic O(k-n) encoding goes back to Shannon
= linear O(n) parallel counter encoding [Sinz'05]
= for an O(n-logn) encoding see Prestwich’s chapter in our Handbook of SAT

® generalization Pseudo-Boolean constraints (PB), e.g. 2-a+b+c+d+2-e >3
actually used to handle MaxSAT in SAT4J for configuration in Eclipse

BDD based Encoding of Cardinality Constraints

2<H{l,...,lo}| <3

/Y [y Ny Y R /Y N N —

/Y Ny S A Ay A N R—

[Y S S B S

l---l-— -l —— L~ = —ly-— —ly— - -1

0 0 0 0 0 0

“then” edge downward, “else” edge to the right

36

Bounded Variable Elimination (BVE)
[DavisPutnam60] [EénBiere SAT’'05]

® considered to be the most effective preprocessing technique
= works particularly well on “industrial” formulas

= usually removes 80% variables and a similar number of clauses
= bounded: eliminate variable if resulting CNF does not have more clauses

i J
b
y A(Ci VD))
i,
= ignore tautological C; vV D;
= always for 0, or 1 positive/negative occurrences
= same for 2 positive and 2 negative occurrences

= combined with subsumption and strengthening

= simulates NNF compact encodings “at the leafs”

37

Blocked Clauses 38

[Kullman’99]
blocked clause C € F all clauses in F with [
_ (Ivavc)
fixa CNF F
(avbVli)
(IVbVvd)

since all resolvents of C on [are tautological C can be removed
Proof
assignment o satisfying F\C but not C

can be extended to a satisfying assignment of F by flipping value of /

Blocked Clauses and Encoding / Preprocessing Techniques 39
[JarvisaloBiereHeule-TACAS’10]

COl Cone-of-Influence reduction
MIR Monontone-Input-Reduction

NSI Non-Shared Inputs reduction

PG Plaisted-Greenbaum polarity based encoding

TST standard Tseitin encoding

(B)VE (Bounded) Variable-Elimination as in DP / Quantor / SATelLite

BCE Blocked-Clause-Elimination

CNF-level simplification

Circuit-level simplification

[BCE+VE](PG) [<

= BCE+VE

VE(PG) BCE(PG) |<
PL(PG) ——

PG(COI) PG(MIR) PG(NSI)

PG

Plaisted-Greenbaum encoding

BCE

VE

COl

TST

Tseitin encoding

Inprocessing: Interleaving Preprocessing and Search

PrecoSAT [Biere’09], Lingeling [Biere’10], also in CryptoMiniSAT [Soos’09]

B preprocessing can be extremely beneficial

= most SAT competition solvers use bounded variable elimination (BVE)
[EénBiere SAT’05]

= equivalence / XOR reasoning
= probing / failed literal preprocessing / hyper binary resolution

= however, even though polynomial, can not be run until completion
®= simple idea to benefit from full preprocessing without penalty
= “preempt” preprocessors after some time

= fesume preprocessing between restarts

= [imit preprocessing time in relation to search time

41

Benefits of Inprocessing 42

® gpecial case incremental preprocessing:

= preprocessing during incremental SAT solving

= allows to use costly preprocessors
= without increasing run-time “much” in the worst-case

= gtill useful for benchmarks where these costly techniques help

= good examples: probing and distillation even BVE can be costly

® additional benefit:
= makes units / equivalences learned in search available to preprocessing

= particularly interesting if preprocessing simulates encoding optimizations
® danger of hiding “bad” implementation though ...
®= .. and hard(er) to debug and get right [JarvisaloHeuleBiere-lJCAR’12]

® more complex APl: 1glfreeze, lglmelt

