# Translating into SAT

Armin Biere Johannes Kepler Universität Linz

# SAT'16 Industrial Day

Université de Bordeaux Bordeaux, France

Saturday, 9th July, 2016

# optimization of if-then-else chains

#### original C code optimized C code if(!a && !b) h(); if(a) f(); else if(!a) g(); else if(b) g();else f(); else h(); if(!a) { if(a) f(); $if(!b) h(); \Rightarrow$ else { else g(); if(!b) h(); } else f(); else g(); }

How to check that these two versions are equivalent?

original 
$$\equiv$$
 if  $\neg a \wedge \neg b$  then  $h$  else if  $\neg a$  then  $g$  else  $f$ 

$$\equiv (\neg a \wedge \neg b) \wedge h \vee \neg (\neg a \wedge \neg b) \wedge \text{if } \neg a \text{ then } g \text{ else } f$$

$$\equiv (\neg a \wedge \neg b) \wedge h \vee \neg (\neg a \wedge \neg b) \wedge (\neg a \wedge g \vee a \wedge f)$$

optimized 
$$\equiv$$
 if  $a$  then  $f$  else if  $b$  then  $g$  else  $h$   $\equiv$   $a \land f \lor \neg a \land$  if  $b$  then  $g$  else  $h$   $\equiv$   $a \land f \lor \neg a \land (b \land g \lor \neg b \land h)$ 

$$(\neg a \wedge \neg b) \wedge h \vee \neg (\neg a \wedge \neg b) \wedge (\neg a \wedge g \vee a \wedge f) \quad \Leftrightarrow \quad a \wedge f \vee \neg a \wedge (b \wedge g \vee \neg b \wedge h)$$

Reformulate it as a satisfiability (SAT) problem:

Is there an assignment to a,b,f,g,h, which results in different evaluations of original and optimized?

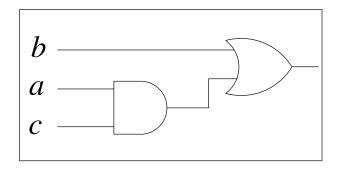
or equivalently:

Is the boolean formula  $compile(original) \nleftrightarrow compile(optimized)$  satisfiable?

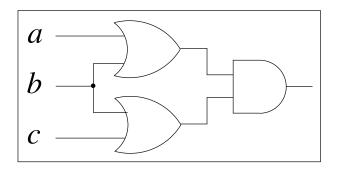
such an assignment would provide an easy to understand counterexample

Note: by concentrating on counterexamples we moved from Co-NP to NP

**Note:** this is mostly of theoretical interest but in practice there might be big differences if you have many problems and average expected result is only one (SAT or UNSAT)



$$b \vee a \wedge c$$



$$(a \lor b) \land (b \lor c)$$

# equivalent?

$$b \vee a \wedge c$$

$$\Leftrightarrow$$

$$(a \lor b) \land (b \lor c)$$

**SAT** (Satisfiability) the classical NP complete Problem:

Given a propositional formula f over n propositional variables  $V = \{x, y, \ldots\}$ .

Is there an assignment  $\sigma: V \to \{0,1\}$  with  $\sigma(f) = 1$ ?

# **SAT** belongs to NP

There is a <u>non-deterministic</u> Touring-machine deciding SAT in polynomial time:

guess the assignment  $\sigma$  (linear in n), calculate  $\sigma(f)$  (linear in |f|)

**Note:** on a <u>real</u> (deterministic) computer this would still require  $2^n$  time

**SAT is complete for NP** (see complexity / theory class)

# Implications for us:

general SAT algorithms are probably exponential in time (unless NP = P)

#### **Definition**

a formula in Conjunctive Normal Form (CNF) is a conjunction of clauses

$$C_1 \wedge C_2 \wedge \ldots \wedge C_n$$

each clause *C* is a disjunction of literals

$$C = L_1 \vee \ldots \vee L_m$$

and each literal is either a plain variable x or a negated variable  $\overline{x}$ .

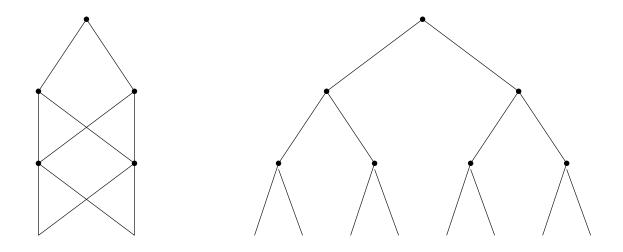
**Example** 
$$(a \lor b \lor c) \land (\overline{a} \lor \overline{b}) \land (\overline{a} \lor \overline{c})$$

**Note 1:** two notions for negation: in  $\bar{x}$  and  $\neg$  as in  $\neg x$  for denoting negation.

Note 2: the original SAT problem is actually formulated for CNF

Note 3: SAT solvers mostly also expect CNF as input

- NNF: ¬ in front of variables only, arbitrary nested ∧ and ∨
- might need to expand non-monotonic operators into ∧ and ∨
  - $(a \leftrightarrow b) \equiv (\neg a \land \neg b) \lor (a \land b)$
  - requires to work with circuit/DAG to avoid exponential explosion
- apply De'Morgan rule to push negations down
  - $\neg (a \land b) \equiv \neg a \lor \neg b \qquad \neg (a \lor b) \equiv \neg a \land \neg b$
- bottom-up CNF translation
  - $(\bigwedge_i C_i) \wedge (\bigwedge_j D_j)$  is already a CNF
  - $(\bigwedge_i C_i) \lor (\bigwedge_j D_j) \equiv \bigwedge_{i,j} (C_i \lor D_j)$  "clause distribution" (quadratic)
- whole procedure exponential in ∨/∧ alternation depth
- but might produce compact CNFs for small formulas
  - $(\neg a \land \neg b) \lor (a \land b) \equiv (\neg a \lor a) \land (\neg a \lor b) \land (\neg b \lor a) \land (\neg b \lor b)$
- NNF to CNF encoding interesting concept but (not really) used in practice



DAG may be exponentially more succinct than expanded Tree

**Examples:** adder circuit, parity, mutual exclusion

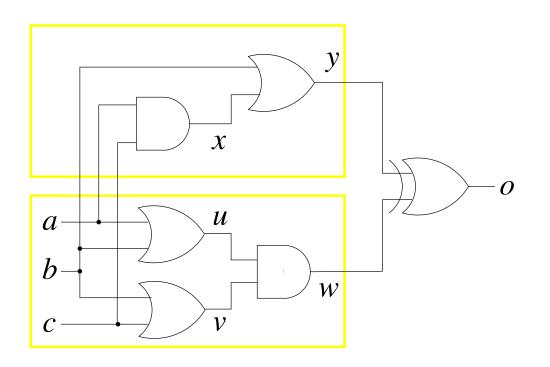
```
Boole
parity (Boole a, Boole b, Boole c, Boole d, Boole e,
        Boole f, Boole g, Boole h, Boole i, Boole j)
  tmp0 = b ? !a : a;
  tmp1 = c ? !tmp0 : tmp0;
  tmp2 = d ? !tmp1 : tmp1;
  tmp3 = e ? !tmp2 : tmp2;
  tmp4 = f ? !tmp3 : tmp3;
  tmp5 = q? !tmp4 : tmp4;
  tmp6 = h ? !tmp5 : tmp5;
  tmp7 = i ? !tmp6 : tmp6;
  return j ? !tmp7 : tmp7;
```

Eliminiate the tmp... variables through substitution.

What is the size of the DAG vs the Tree representation?

- through caching of results in algorithms operating on formulas (examples: substitution algorithm, generation of NNF for non-monotonic ops)
- when modeling a system: variables are introduced for subformulae (then these variables are used multiple times in the toplevel formula)
- structural hashing: detects structural identical subformulae (see Signed And Graphs later)
- equivalence extraction: e.g. BDD sweeping, Stålmarcks Method

#### **CNF**



$$(x \leftrightarrow a \land c) \land \\ (y \leftrightarrow b \lor x) \land \\ (u \leftrightarrow a \lor b) \land \\ (v \leftrightarrow b \lor c) \land \\ (w \leftrightarrow u \land v) \land \\ (o \leftrightarrow y \oplus w)$$

$$o \land (x \to a) \land (x \to c) \land (x \leftarrow a \land c) \land \dots$$

$${\color{red}o} \wedge (\overline{x} \vee a) \wedge (\overline{x} \vee c) \wedge (x \vee \overline{a} \vee \overline{c}) \wedge \dots$$

Negation: 
$$x \leftrightarrow \overline{y} \Leftrightarrow (x \to \overline{y}) \land (\overline{y} \to x) \Leftrightarrow (\overline{x} \lor \overline{y}) \land (y \lor x)$$

Disjunction: 
$$x \leftrightarrow (y \lor z) \Leftrightarrow (y \rightarrow x) \land (z \rightarrow x) \land (x \rightarrow (y \lor z))$$
  
  $\Leftrightarrow (\overline{y} \lor x) \land (\overline{z} \lor x) \land (\overline{x} \lor y \lor z)$ 

Conjunction: 
$$x \leftrightarrow (y \land z) \Leftrightarrow (x \rightarrow y) \land (x \rightarrow z) \land ((y \land z) \rightarrow x)$$
  
  $\Leftrightarrow (\overline{x} \lor y) \land (\overline{x} \lor z) \land (\overline{(y \land z)} \lor x)$   
  $\Leftrightarrow (\overline{x} \lor y) \land (\overline{x} \lor z) \land (\overline{y} \lor \overline{z} \lor x)$ 

Equivalence: 
$$x \leftrightarrow (y \leftrightarrow z) \Leftrightarrow (x \rightarrow (y \leftrightarrow z)) \land ((y \leftrightarrow z) \rightarrow x)$$
  
 $\Leftrightarrow (x \rightarrow ((y \rightarrow z) \land (z \rightarrow y)) \land ((y \leftrightarrow z) \rightarrow x)$   
 $\Leftrightarrow (x \rightarrow (y \rightarrow z)) \land (x \rightarrow (z \rightarrow y)) \land ((y \leftrightarrow z) \rightarrow x)$   
 $\Leftrightarrow (\overline{x} \lor \overline{y} \lor z) \land (\overline{x} \lor \overline{z} \lor y) \land (((y \land z) \lor (\overline{y} \land \overline{z})) \rightarrow x)$   
 $\Leftrightarrow (\overline{x} \lor \overline{y} \lor z) \land (\overline{x} \lor \overline{z} \lor y) \land (((y \land z) \rightarrow x) \land ((\overline{y} \land \overline{z}) \rightarrow x))$   
 $\Leftrightarrow (\overline{x} \lor \overline{y} \lor z) \land (\overline{x} \lor \overline{z} \lor y) \land (\overline{y} \lor \overline{z} \lor x) \land (y \lor z \lor x)$ 

- goal is smaller CNF (less variables, less clauses)
- extract multi argument operands (removes variables for intermediate nodes)
- half of AND, OR node constraints can be removed for <u>unnegated</u> nodes
  - a node occurs negated if it has an ancestor which is a negation
  - half of the constraints determine parent assignment from child assignment
  - those are unnecessary if node is not used negated
     [PlaistedGreenbaum'86] and then [ChambersManoliosVroon'09]
- structural circuit optimizations like in the ABC tool from Berkeley
- however might be simulated on CNF level
   see [JärvisaloBiereHeule-TACAS'10] and our later discussion on blocked clauses
- compact technology mapping based encoding [EénMishchenkoSörensson'07]

```
int middle (int x, int y, int z) {
  int m = z;
  if (y < z) {
    if (x < y)
        m = y;
    else if (x < z)
        m = y;
} else {
    if (x > y)
        m = y;
    else if (x > z)
        m = x;
} return m;
}
```

this program is supposed to return the middle (median) of three numbers

This black box test suite has to be generated manually.

How to ensure that it covers all cases?

- middle (1, 1, 1) = 1

middle (1, 1, 2) = 1

middle (1, 2, 1) = 1

middle (2, 1, 1) = 1

middle (1, 2, 2) = 2

middle (2, 1, 2) = 2

middle (2, 2, 1) = 2

Need to check outcome of each run individually and determine correct result.

Difficult for large programs.

Better use specification and check it.

let a be an array of size 3 indexed from 0 to 2

$$a[i] = x \land a[j] = y \land a[k] = z$$

$$\land a[0] \le a[1] \land a[1] \le a[2]$$

$$\land i \ne j \land i \ne k \land j \ne k$$

$$\rightarrow m = a[1]$$

median obtained by sorting and taking middle element in the order coming up with this specification is a manual process

```
int m = z;
if (y < z) {
   if (x < y)
     m = y;
   else if (x < z)
     m = y;
} else {
   if (x > y)
     m = y;
   else if (x > z)
     m = x;
}
return m;
}
```

$$(y < z \land x < y \rightarrow m = y)$$

$$(y < z \land x \ge y \land x < z \rightarrow m = y)$$

$$(y < z \land x \ge y \land x \ge z \rightarrow m = z)$$

$$(y \ge z \land x \ge y \land x \ge z \rightarrow m = z)$$

$$(y \ge z \land x \le y \land x > z \rightarrow m = x)$$

$$(y \ge z \land x \le y \land x \le z \rightarrow m = z)$$

this formula can be generated automatically by a compiler

let P be the encoding of the program, and S of the specification program is correct if " $P \to S$ " is valid program has a bug if " $P \to S$ " is invalid program has a bug if negation of " $P \to S$ " is satisfiable (has a model) program has a bug if " $P \land \neg S$ " is satisfiable (has a model)

$$(y < z \land x < y \rightarrow m = y) \qquad \land \\ (y < z \land x \ge y \land x < z \rightarrow m = y) \qquad \land \\ (y < z \land x \ge y \land x \ge z \rightarrow m = z) \qquad \land \\ (y \ge z \land x \ge y \rightarrow m = y) \qquad \land \\ (y \ge z \land x \le y \land x > z \rightarrow m = x) \qquad \land \\ (y \ge z \land x \le y \land x \le z \rightarrow m = z) \qquad \land \\ (y \ge z \land x \le y \land x \le z \rightarrow m = z) \qquad \land \\ a[i] = x \land a[j] = y \land a[k] = z \qquad \land \\ a[0] \le a[1] \land a[1] \le a[2] \qquad \land \\ i \ne j \land i \ne k \land j \ne k \qquad \land \\ m \ne a[1]$$

```
(set-logic QF_AUFBV)
(declare-fun \times () (_BitVec 32)) (declare-fun y () (_BitVec 32))
(declare-fun z () (_{\perp} BitVec 32)) (declare-fun m () (_{\perp} BitVec 32))
(assert (=> (and (bvult y z) (bvult x y) ) (= m y)))
(assert (=> (and (bvult y z) (bvuge x y) (bvult x z)) (= m y)))  ; fix last 'y'->'x'
(assert (=> (and (bvult y z) (bvuge x y) (bvuge x z)) (= m z)))
(assert (=> (and (bvuge y z) (bvugt x y) ) (= m y)))
(assert (=> (and (bvuge y z) (bvule x y) (bvugt x z)) (= m x)))
(assert (=> (and (bvuge y z) (bvule x y) (bvule x z)) (= m z)))
(declare-fun i ()(_ BitVec 2)) (declare-fun i ()(_ BitVec 2)) (declare-fun k ()(_ BitVec 2))
(declare-fun a ()(Array (_{-} BitVec 2) (_{-} BitVec 32)))
(assert (and (bvule #b00 i) (bvule i #b10) (bvule #b00 j) (bvule j #b10)))
(assert (and (bvule #b00 k) (bvule k #b10)))
(assert (and (= (select a i) x) (= (select a j) y) (= (select a k) z)))
(assert (bvule (select a #b00) (select a #b01)))
(assert (bvule (select a #b01) (select a #b10)))
(assert (distinct i į k))
(assert (distinct m (select a #b01)))
(check-sat)
(get-model)
(exit)
```

```
$ boolector -m middle32-buggy.smt2
sat
(model
  (define-fun x () (_ BitVec 32) #b01100101100001110100001100001)
  (define-fun v () (_ BitVec 32) #b01100001101010111000011000010101)
  (define-fun z () (_ BitVec 32) #b11101011110110111000110100010110)
  (define-fun m () (_ BitVec 32) #b01100001101010111000011000010101)
  (define-fun i () (_ BitVec 2) #b01)
  (define-fun j () (_ BitVec 2) #b00)
  (define-fun k () (_ BitVec 2) #b10)
  (define-fun a (
   (a_x0 (_ BitVec 2))) (_ BitVec 32)
    (ite (= a_x0 \#b00) \#b0110000110101111000011000010101
    (ite (= a_x0 \#b01) \#b01100101100011101000011000011001
    (ite (= a_x0 #b10) #b111010111101111000110100010110
      #b0000000000000000000000000000000000))))
2 01100101100011101000011000011001 x
3 01100001101010111000011000010101 y
4 111010111110110111000110100010110 z
5 01100001101010111000011000010101 m
28 01 i
29 00 j
30 10 k
31[00] 01100001101010111000011000010101 a
31[01] 011001011000011101000011000011001 a
31[10] 11101011110110111000110100010110 a
$ boolector middle32-fixed.smt2
unsat
```

- encoding directly into CNF is hard, so we use intermediate levels:
  - 1. application level
  - 2. bit-precise semantics world-level operations: bit-vector theory
  - 3. bit-level representations such as AIGs

or vectors of AIGs

- 4. CNF
- encoding application level formulas into word-level: as generating machine code
- word-level to bit-level: bit-blasting similar to hardware synthesis
- encoding "logical" constraints is another story

equality check of 4-bit numbers x, y with one bit result e

$$e \leftrightarrow (x = y)$$

$$[e_0]_1 \leftrightarrow ([x_3, x_2, x_1, x_0]_4 = [y_3, y_2, y_1, y_0]_4)$$

$$e_0 \leftrightarrow \bigwedge_{i=0}^{3} (x_i \leftrightarrow y_i)$$

$$e_0 \leftrightarrow ((x_3 \leftrightarrow y_3) \land (x_2 \leftrightarrow y_2) \land (x_1 \leftrightarrow y_1) \land (x_0 \leftrightarrow y_0))$$

(strict unsigned) inequality check of 4-bit numbers x, y with one bit result c

$$c \leftrightarrow (x < y)$$

$$[c_0]_1 \leftrightarrow ([x_3, x_2, x_1, x_0]_4 < [y_3, y_2, y_1, y_0]_4)$$

$$c_0 \leftrightarrow \mathsf{LessThan}(3, x, y)$$

with

$$\mathsf{LessThan}(-1,x,y) = \bot$$
 
$$\mathsf{LessThan}(\ i,x,y) = (\neg x_i \land y_i) \lor \big((x_i \leftrightarrow y_i) \land \mathsf{LessThan}(i-1,x,y)\big) \qquad \text{if } i \leq 0$$

$$c_0 \leftrightarrow \bar{x}_3 y_3 \lor (x_3 = y_3)(\bar{x}_2 y_2 \lor (x_2 = y_2)(\bar{x}_1 y_1 \lor (x_1 = y_1)\bar{x}_1 y_1))$$

# addition of 4-bit numbers x, y with result s also 4-bit

$$s = x + y$$

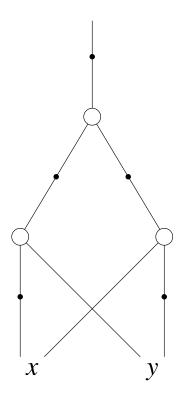
$$[s_3, s_2, s_1, s_0]_4 = [x_3, x_2, x_1, x_0]_4 + [y_3, y_2, y_1, y_0]_4$$

$$[s_3, \cdot]_2 = FullAdder(x_3, y_3, c_2)$$
  
 $[s_2, c_2]_2 = FullAdder(x_2, y_2, c_1)$   
 $[s_1, c_1]_2 = FullAdder(x_1, y_1, c_0)$   
 $[s_0, c_0]_2 = FullAdder(x_0, y_0, false)$ 

#### where

$$[s,o]_2$$
 = FullAdder $(x,y,i)$  with  $s \leftrightarrow x \text{ xor } y \text{ xor } i$   $o \leftrightarrow (x \land y) \lor (x \land i) \lor (y \land i) = ((x+y+i) \ge 2)$ 

- widely adopted bit-level intermediate representation
  - see for instance our AIGER format http://fmv.jku.at/aiger
  - used in Hardware Model Checking Competition (HWMCC)
  - also used in the structural track in SAT competitions
  - many companies use similar techniques
- basic logical operators: <u>conjunction</u> and <u>negation</u>
- DAGs: nodes are conjunctions, negation/sign as <u>edge attribute</u> bit stuffing: signs are compactly stored as LSB in pointer
- automatic sharing of isomorphic graphs, constant time (peep hole) simplifications
- <u>or even</u> SAT sweeping, full reduction, etc ... see ABC system from Berkeley



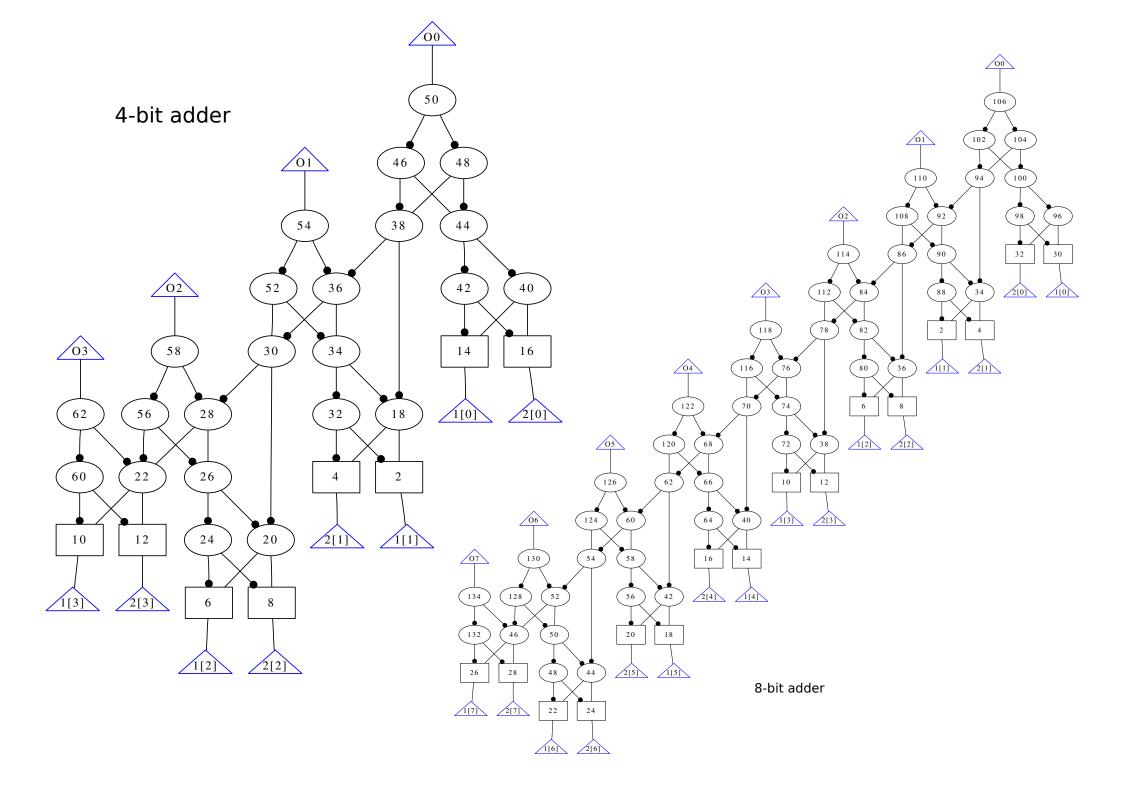
negation/sign are edge attributes not part of node

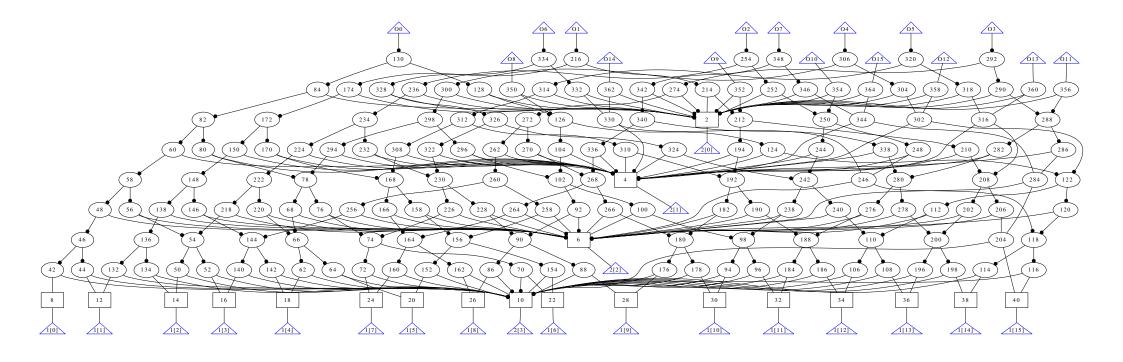
$$x \text{ xor } y \equiv (\overline{x} \wedge y) \vee (x \wedge \overline{y}) \equiv \overline{(\overline{x} \wedge y)} \wedge \overline{(x \wedge \overline{y})}$$

```
typedef struct AIG AIG;
struct ATG
                                 /* AND, VAR */
  enum Tag tag;
  void *data[2];
  int mark, level;
                                /* traversal */
                                 /* hash collision chain */
 AIG *next;
};
#define sign_aig(aig) (1 & (unsigned) aig)
#define not_aig(aig) ((AIG*)(1 ^ (unsigned) aig))
#define strip aig(aig) ((AIG*)(~1 & (unsigned) aig))
#define false aig ((AIG*) 0)
#define true aig ((AIG*) 1)
```

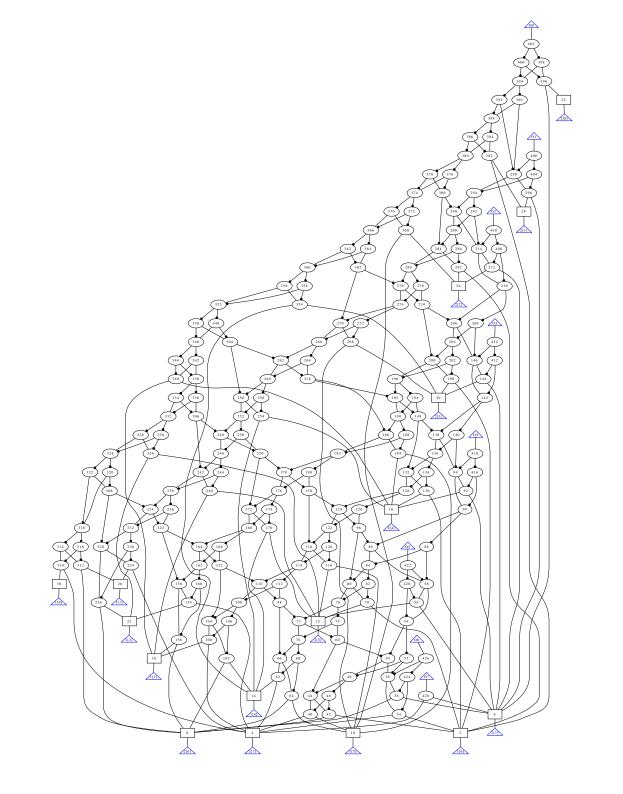
## assumption for correctness:

```
sizeof(unsigned) == sizeof(void*)
```





bit-vector of length 16 shifted by bit-vector of length 4



[HeuleJärvisaloBiere-CPAIOR'13]

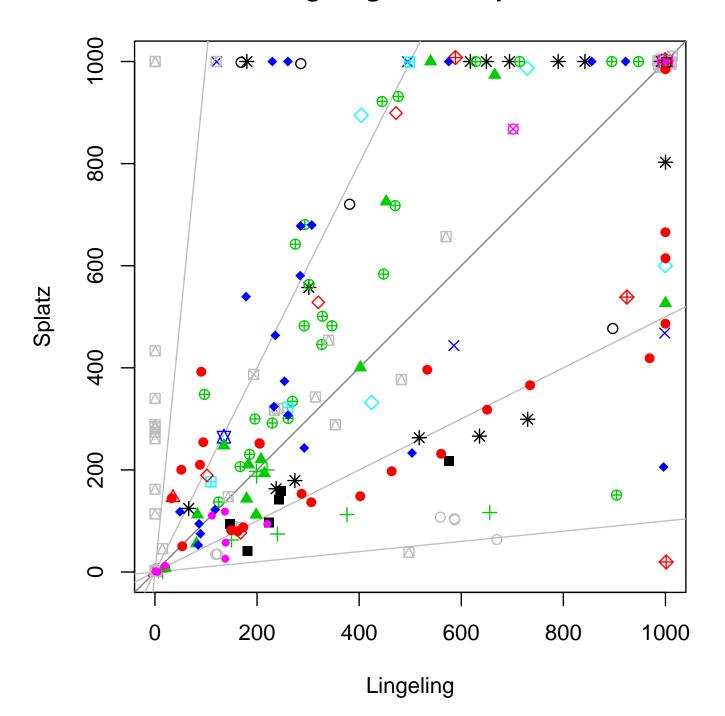
$$\frac{a \leftrightarrow x \land y \qquad b \leftrightarrow x \land y}{a \leftrightarrow b}$$

$$(\bar{a} \vee x)(\bar{a} \vee y)(a \vee \bar{x} \vee \bar{y})(\bar{b} \vee x)(\bar{b} \vee y)(b \vee \bar{x} \vee \bar{y})$$

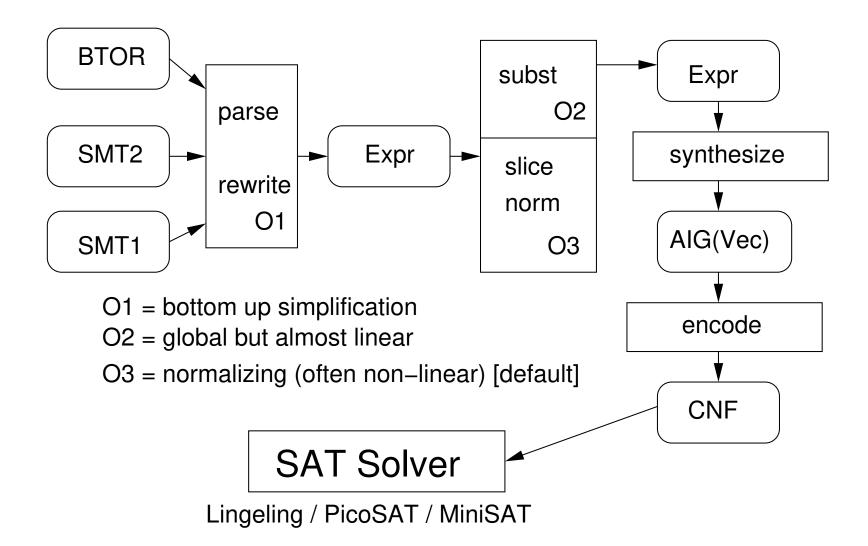
hyper-binary resolve in multiple binary clauses in "parallel":

thus "in principle" hyper-binary resolution can simulate structural hashing, however ...

## **Lingeling versus Splatz**



- 2d-strip-packing
- △ argumentation
- + bio
- × crypto-aes
- crypto-des
- □ crypto-md5
- \* crypto-sha
- ◆ crypto-vpmc
- diagnosis
- fpga-routing
- hardware-bmc
- hardware-bmc-ibm
- hardware-cec
- hardware-manolios
- hardware-velev
- planning
- scheduling
- scheduling-pesp
- software-bit-verif
- software-bmc
- □ symbolic-simulation
- termination



- Tseitin's construction suitable for most kinds of "model constraints"
  - assuming simple operational semantics: encode an interpreter
  - small domains: one-hot encoding large domains: binary encoding
- harder to encode properties or additional constraints
  - temporal logic / fix-points
  - environment constraints
- **•** example for fix-points / recursive equations:  $x = (a \lor y), y = (b \lor x)$ 
  - has unique <u>least</u> fix-point  $x = y = (a \lor b)$
  - and unique largest fix-point x = y = true but unfortunately
  - only largest fix-point can be (directly) encoded in SAT otherwise need ASP

- given a set of literals  $\{l_1, \dots l_n\}$ 
  - constraint the number of literals assigned to true
  - $|\{l_1,\ldots,l_n\}| \ge k$  or  $|\{l_1,\ldots,l_n\}| \le k$  or  $|\{l_1,\ldots,l_n\}| = k$
- multiple encodings of cardinality constraints
  - naïve encoding exponential: <u>at-most-two</u> quadratic, <u>at-most-three</u> cubic, etc.
  - quadratic  $O(k \cdot n)$  encoding goes back to Shannon
  - linear O(n) parallel counter encoding [Sinz'05]
  - for an  $O(n \cdot \log n)$  encoding see Prestwich's chapter in our Handbook of SAT
- generalization <u>Pseudo-Boolean</u> constraints (PB), e.g.  $2 \cdot \overline{a} + \overline{b} + c + \overline{d} + 2 \cdot e \ge 3$  actually used to handle MaxSAT in SAT4J for configuration in Eclipse

$$2 \le |\{l_1, \dots, l_9\}| \le 3$$

"then" edge downward, "else" edge to the right

# [DavisPutnam60] [EénBiere SAT'05]

- considered to be the most effective preprocessing technique
  - works particularly well on "industrial" formulas
  - usually removes 80% variables and a similar number of clauses
  - bounded: eliminate variable if resulting CNF does not have more clauses

replace 
$$\bigwedge_i (x \vee C_i) \wedge \bigwedge_j (\neg x \vee D_j)$$
 by 
$$\bigwedge_{i,j} (C_i \vee D_j)$$

- ignore tautological  $C_i \vee D_j$
- always for 0, or 1 positive/negative occurrences
- same for 2 positive and 2 negative occurrences
- combined with subsumption and strengthening
- simulates NNF compact encodings "at the leafs"

[Kullman'99]

blocked clause  $C \in F$ 

all clauses in F with  $\bar{l}$ 

fix a CNF F

 $(\overline{l} \vee \overline{a} \vee c)$ 

 $(a \lor b \lor l)$ 

 $(\overline{l} \vee \overline{b} \vee d)$ 

since all resolvents of C on l are tautological C can be removed

#### **Proof**

assignment  $\sigma$  satisfying  $F \setminus C$  but not C

can be extended to a satisfying assignment of F by flipping value of l

[JärvisaloBiereHeule-TACAS'10]

**COI** Cone-of-Influence reduction

MIR Monontone-Input-Reduction

**NSI** Non-Shared Inputs reduction

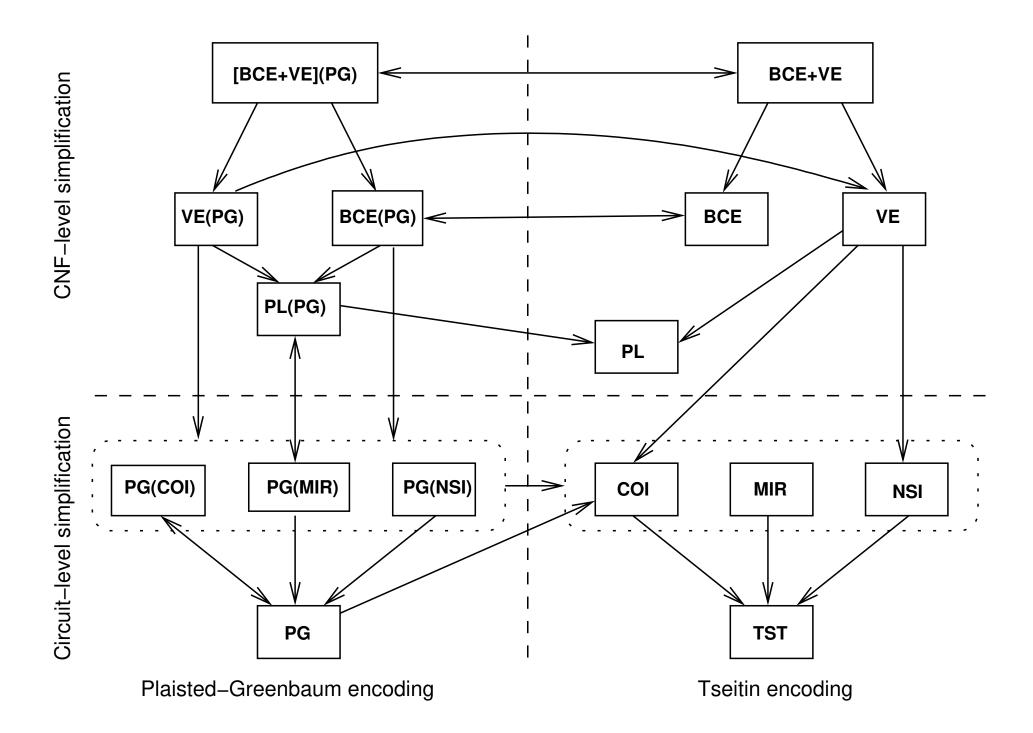
**PG** Plaisted-Greenbaum polarity based encoding

**TST** standard Tseitin encoding

(B)VE (Bounded) Variable-Elimination

as in DP / Quantor / SATeLite

**BCE** Blocked-Clause-Elimination



# PrecoSAT [Biere'09], Lingeling [Biere'10], also in CryptoMiniSAT [Soos'09]

- preprocessing can be extremely beneficial
  - most SAT competition solvers use bounded variable elimination (BVE)
     [EénBiere SAT'05]
  - equivalence / XOR reasoning
  - probing / failed literal preprocessing / hyper binary resolution
  - however, even though polynomial, can not be run until completion
- simple idea to benefit from full preprocessing without penalty
  - "preempt" preprocessors after some time
  - resume preprocessing between restarts
  - limit preprocessing time in relation to search time

- special case incremental preprocessing:
  - preprocessing during incremental SAT solving
- allows to use <u>costly</u> preprocessors
  - without increasing run-time "much" in the worst-case
  - still useful for benchmarks where these costly techniques help
  - good examples: probing and distillation

even BVE can be costly

- additional benefit:
  - makes units / equivalences learned in search available to preprocessing
  - particularly interesting if preprocessing simulates encoding optimizations
- danger of hiding "bad" implementation though ...
- ... and hard(er) to debug and get right

[JärvisaloHeuleBiere-IJCAR'12]

■ more complex API: lglfreeze, lglmelt ...